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A NOTE ON TEST MODULES

L. BICAN, P, JAMBOR, T. KEPKA, P. NEMEC, Praha

Abstract: Sometimes, it is useful to have a criterion
to determine whether a module is injective, simply by test-
ing its injectivity with respect to submodules of a fixed
module, This problem has been studied by several authors,
e.g. the well-known Baer s criterion states that every ring
R 1s a test module for injectivity in the category of R-mo-
dules, In this paper, several characterizations of test modu~-
les for injectivity are presented. Further, an attempt is ma-
de to dualize some of these results,

Key words: Injective module, projective module, test
module, centrally splitting preraéical. !

AMS: 16A52 Ref. Z.: 2.723.2

By R-mod we understand the category of unital left mo-
dules over an associative ring R with unit. First, several
basic facts concerning preradicals, which.are going to be
our main tool. A preradical r for R-mod is a subfunctor of
the identity functor, i.e. r assigns to each module M its
submodule r(M) in such a way that every homomorphism of M
into N induces a homomorphism of r(M) into r(N) by restric-
tion. For every preradical r we define the class of r-tor-
sion modules by J,, ={Me R-mod | r(M) = M} and the class
of r-torsionfree modules by & ={MeR-mod|r(M) =0%.

A module M splits in r if r(M) is a direct summand of M, We
shall say that amreradical r is
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- idempotent, if r(r(M))
- a radical if r(M/r(M))

r(M) for all Me R-mod,
O for all Me R—mod,

- hereditary if r(N) = Nar(M) for all nSM, Me R-mod,

~ cohereditary if r(M/N) = r(M) + N/N for all N M,
M€ R-mod,

- stable if every injective module splits in r,

~ costable if R and consequently every projective modu-
le splits in r,

- splitting if every module splits in r,

- centrally splitting if r(R) is a ring direct summand

in R and r is cohereditary.

With every preradical r we associate preradicals h(r)
and ch(r) defined by h(r) (M) = Mn r(E(M)), where E(M) deno-
tes the injective hull of M, and ch(r)(M) = r(R)M. Obvious-
ly, h(r) is hereditary and ch(r) is cohereditary. For every
module M we define preradicals py and pM by py(Q) = S In £,
fe Hom (M,Q), and Q) = N Ker f, fe Hom (Q,M), for all
Q€ R-mod. Finally, we shall say that 0—> K—> P—=>M-—>10
is a projective cover of M if P is projective and K is small
in P, i.e. K+ N = P implies N = P,

We shall need the following simple result.

Temma 1: Let

i P
0—>>A —>B——>(C—0

ale
J qQ
O—> X—Y—=2 —=0

be a commutative diagram with exact rows and ¢: B—> X,

¥ : C—>Y be such that @j + py = g. Then
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(i) if Ker p = Ker g.q and Im j is essential in Y then
Im i is essential in B and @j = g,

(ii) if Im j = Im ig and Im i is small in B then Im j
is small in Y and p¥ = &.

Proof: (i) Obviously, Ker p = Ker g.q mears nothing
else than Im i = g_l(Im j) and hence Im i is essential m B.
let yeIn jnIm (g = ¢ j). Then there are x€ X, be B with xj =
=y=bg~-b gJj, hence bg = (x + by) jelIm j, and so b = ai
for some ac A. Now we have y = b (g - ¢ j) = aipy = 0.

(ii) It is easy to see that Im j is small in Y. Further,
for each be B theré is aedwith by j=aig=ai (gj +py) =
= ai ¢ j. Then, however, b - aie€ Ker ép,j = Ker (g ~ pP¥), 80
that B = Ker (g - py) + Im i,

Now we present several results concerning M-injectivity.
These result s are already known, however our proofs are %ery
easy. In particular, we get an extremely simple characteriza-
tion of M-injective hulls. Let M, Qe R-mod. Recall that Q is
said to be M-injective if every diagram

0 —sA —>NM
£
Q
with exact row can be completed.

Proposition 2: ILet M, Q& R-mod. The following conditions
are equivalent:
(i) & is M-injective,

0,—-—>-A—-::>M

“(ii) every diagram Q with exact row and
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Im i essential in M, can be completed,
' (iii) Im £EQ for every fe€ Hom(M,E(Q)),
(iV) pM(E(Q))S- Q.

Proof: The implications (i) implies (ii) and (iii)
implies (iv) are obvious, while the implication (ii) imp-
lies (iii) follows immediately from Lemma 1 (i).

(iv) implies (i). Let ASM and fe Hom (4,Q). There is
g €Hom (M,E(Q)) making the diagram

O—>=A—>M

3%

E(Q)
commutative. However, Im g€ p;(E(Q))=Q and we are through.
Proposition 3: Let M, Q€ R-mod and r = Py The follow-~

ing are equivalent:

(1) Q is M-injective,

Ac » B
(ii) every diagram fl such that there is C& R~
Q
mod with BEC and C/Ker £ € iT'r can be comple ted,
i A > B
(iii)every diagram fl with B/Ker £ € rh(r) can
Q ,
be comple ted,
I<—>R
(iv) every disgram f l with R/Ker f e Th(r) can
Q

be completed.
Proof: (i) implies (ii): Consider the commutative dia-
gram
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At—-Bf-—-»c
r], e
4

P
B(Qy”
where C/ker f ¢ 5;. Since Ker £SKer g and Im g=C/Ker g, we
have Im g & Tr and Proposition 2 (iv) yields Im g<Q.
(ii) implies (iii). Consider the commutative diagram

Ao B
pl e
A/Ker £ <> B/Ker £

g h
Q
where P, q are natural epimorphisms, g is a monomorphism and
pg = £. Since B/Ker £ ¢ Th(r)' B/Ker £<r(E(B/Ker £)) & .'J"r
and, by (ii), there is h: B/Ker £—> Q making the whiole dia-
gram commutative. ’

(iii) implies (iv) obviously.

(iv) implies (i). Let A M, xeM\ 4, f: A—> Q be such
that f cannot be extended to a larger submodule of M. Put I =
= (A:x), and define g: I—> Q by rg = rxf for all reI. Denote
K=Ker gand L = Ker £. Then K = (L:x) and R/K & (Rx + L)/Le
c ‘rh(r)' Hence g can be extended to h: R—»Q and we can
define k: RBx + A—>Q by (rx + a)k = r(1h) + af for all ae 4,

re& R, a contradiction.

Proposition 4: Ilet M, Qe R-mod and Qy = Q + p(E)Q)).
Then A

(i) Q is M-injective,

(ii) if QSN and N is M-injective then there is a mono-

morphism f: Qy—sN such that f] Q= 1,.
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Proof: Since QSQuSE(Q), py(E(Q)) = p(E(Q)ISQy
and Q is M-injective by Proposition 2 (iv). If QE N for so-
me M-injective module N, we have a monomorphism g: E(Q) —
—» E(N) with g} Q = 1,. However, py(E(Q))gspy(E(N))SN, so
£ =g Qy has the desired property.

Now we turn our attention to test modules. A module M

is said to be a test module for injectivity if every M-injec-

tive module is injective.

Proposition 5: Let MéR-mod and r = Py The following

are equivalent:

(i) M is a test module for injectivity,

(ii) E(Q) = Q + r(E(Q)) for all Q€ R-mod,

(iii) If Q€ R-mod and every homomorphism f: I —> Q, whe-
re I is a left ideal and R/Ker f & J (5), can be extended to

g: R—> Q, then Q is injective,

‘ 0—=A-—">u

(iv) if Q€ R-mod and every diagram f‘}/ with
Q

exact row and Im i essential in M can be completed then Q is

injective.
Proof: This is an immediate consequence of Propositions

2’ 3’ 4. -
Theorem 6: Let M& R-mod nd r = py. The following are

equivalent:
(i) M is a test module for injectivity,

(ii) h(r) is centrally splitting and every h(r)-tor-
sionfree module is completely reducible,
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(iii) I = h(r)(R) is a ring direct summand in R and
R/I is a comple tely reducible ring.

Proof: (i) implies (ii). For every N € ', E(N).= N +
+ r(E(N)) = r(E(N)), and hence r is stable by [1l, Proposi-
tion 2.4] , Further, if Q e ‘Th(r)' then Hom (M,E(Q)) = O,
and sc Q is M~injective by Proposition 2 (iii). Thus every
h(r)-torsionfree module is injective, and consequently comp-
letely reducible (since yh(r) is closed under submodules).
In particular, fh(r) is closed under factor-modules. Since
r is stable, h(r) is so by [1, Theorem 2.6] and therefore
h(r) is a radical by [1, Proposition 2.5] . Moreover, h(r)
is cohereditary by [3, Proposition 4.1] . However, every
stable hereditary cohereditary radical is centrally splitting
by [2, Proposition 5] .

(ii) implies (iii) trivially.

(iii) implies (i), For each module Q we have the canoni-
cal decomposition E(Q) = A@ B, where A = IE(Q) and B is com~
pletely reducible., If Q is M-injective then IE(Q)s r(E(Q))=Q,
and 80 Q = A @ (BNnQ). However, both A and BnQ are injective.

Proposition 7: Let Me& R-mod and r = py. The following
are equivalent:

(i) E(R) is a homomorphic image of a direct sum of co-
pies of M,

(ii) M is a faithful test module for injectivity,

(1i1) h(r)(N) = N for all Ne R-mod,

(iv) every injective module is r-torsion.

“Proof: (i) implies (ii). We have E(R) = r(E(R)) =
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= h(r)(E(R)), 8o h(r)(R) = R and M is a test module for in-
jectivity by Theorem 6 (iii), Further, aM = 0 yields aE(R) =
= 0, and hence & = 0. v ,

(ii1) implies (iii). Put I = h(r)(R). By Theorem 6, I is
@ ring direct summand of R, R = I ® K. However, h(r) is cohe-
reditary, hence M = h(r)(M) = IM and KK = KIM = 0 yields K'=
= 0, M being faithful.

(iii) implies (iv) and (iv) implies (i) trivially.

Corollary 8: A module M is a generator for R-mod iff M
is a faithful test module for injectivity and Py is heredite-

ry.

In the final part we make an attempt to dualize some of
owr results. After giving a characterization of M=projective
nod.ules with projective covers, we shall proceed immediately
to the dualizction of Theorem 6. In order to get a complete
dualization of Theorem 6, we must restrict ourselves to the
case of left perfect rings. This restriction playe a serious
rGle here, as the recent solution of Whitehead’s problem (see
[4])) seems to indicate.

let Me R-mod. Recall that a module Q is said to be M-pro-
Jective if every diagram in the form

T Q
[
M—>N—>0
with exact row can be completed. We shall say that M is a
test module for projectivity if every M-projective module is
projective,
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Proposition 9: Let M, Q€R-mod and 0 —»K—=>P—=Q —=>
—» 0 be a projective cover of Q. The following are equiva-
lent:

(1) Q is M-projective,

Q

(ii) every disgram MP s ¥—s0
with ker p small in M can be completed,

(iii) KSKer £ for every fe Hom (P,M),

(iv) ke,

Proof: (i) implies (ii) and (iii) implies (iv) trivial=-
1y while (ii) implies (iii) by Lemma 1 (ii).

(iv) implies (i), Considering the commutative diagram
with exact rows

g £

0 —>» K> P—-B-hi—-bﬁ
M—d»N—>0

we have K& pl(P)sxer g, Hence there is h: Q—» M with ph = g,
and consequently hq = £,

Theorem 10: Let M& R-mod and r = pn. Consider the follo-
wing conditiors :
(i) M is a test module for projectivity,

(ii) ech(r) is centrally splitting and every ch(r)-tor-
sion module is completely reducible,

(iii) I = (O:M) = r(R) is a ring direct summand of R and
it is a completely reducible ring,

(iv) every M-projective module possessing projective co-
ver is projective.
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Then (ii) and (iii) are equivalent, (i) implies (ii)
end (iii) implies (iv). Moreover, if R is left perfect then
all these conditioms are equivalent.

Proof: The equivalence of (ii) and (iii) is easily
seen. Moreover, if R is left perfect then (iv) obviously
implies (i),

(i) implies (ii). Let I = r(R). Since M is an R/I mo-
dule and R/I is a free R/I-module, R/I is M-projective as
an R/I-module, and consequently as an R-module. Hence R/I
is projective and I is a left direct summand. Therefore ch(r)
is costable by [1, Theorem 3.8] and hence idempotent by L1,
Proposition 3.51 . Further, if IQ = Q for some Q R-mod,
then Hom (Q,M/N) = O for all NSM, and so Q is M-projective,
thus being projective. Consequently, every ch(r)-torsion mo-
dule is completely reducible (since g‘ch(r) is closed under
factor-modules) and, in particular, ‘Tch(r) is closed under
submodules. Thus ch(r) is costable, hereditary and coheredi-
tary, which means that ch(r) is centrally splitting by [2,
Proposition 5] .

(iii) implies (iv). Let Q be M-projective and 0 —> K—s>
—>P—> Q—> 0 be a projective cover of Q. We have P = IP @
@ A and, with respect to Proposition 9 (iv), KEr(P) and
r(P) = IP, P being projective. Thus K is a direct summand im
IP, IP being completely reducible, and so Q = IP/K @ A is

projective,

Corollary 11: ILet R be a left perfect ring. Then every
faithful module is a test module for projectivity.
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