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Abstract: In the present paper, the signed Wilcoxon
statistic 18 investigated. Under the hypothesis of symmet-
ry, & local limit theorem with the Edgeworth expansion is
proved and an asymptotic expansion of the distribution func-
tionm is derived.
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1. Introduction. ILet Xyye00,Xy be independent random
variables with a continuous distribution functiom (af) F,
symmetric about zero. Let Z(l)‘ Z(2)< ...<Z(N) denote the
ordered lle . Define ranks Dq,...,Dy by

1z, 1 =289, 5=1,...,K
J
Further define random variables T,,...,Iy by
T, =1 if X, >0,
J
= 0 otherwise.

Under the hypothesis of symmetry, the Tj are independent
with P(Tj = 1) = 1/2. Consider the Wilcoxon signed statistic
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N .
(1.1) Sy = =, T5e

2= J
This statistic is a sum of independent nonidentically dis-
tributed random variables and its distribution is asympto- ‘

tically normal with natural parameters
ESy
var SN

The problem of Edgeworth expansion for the distribution

N(N + 1)/4,

N(N + 1)(2N + 1)/24.

function of Sy was investigated mmerically (without study-
ing the rate of convergence) by Fellingham and Stoker (1964)
and by Claypool and Holbert (1974). A valid expansion for
df to three terms can be obtained as a special case of re-
sults of Albers, Bickel and van Zwet (15974).

In the present paper, the Edgeworth expansion to p
terms, p22, is established both for the probabilities
P(SN = k) as well as for the df of Sy, in the latter case
with additiomal terms due to the lattice character of the

distribution.

2, Basic notation and main results. ILet § and ¢

be the df and the density of WN'(0,1), let H be the Hermi-
te polynomial of degree m. Let 953, J=1, be the cumulants
of Sy, %,, %, being denoted as w , 62 |, respectively.
Put
r~~ .
(2.1) 2. = ®./&9,
N J 3

For every integer 9 2= 1 put
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N >4 1 ok
(2.2) Quu(x) = = H29+25kj(X)élT2. (es)77(2,5/(25)1) ¥,

and

»41
(2.3) Q) = - E*szzikj-l‘x’%?z ()7
x (%3251 3,

where the summation ={* extends over all nonnegative inte-

P41
gers kp,...,k, ; such that ’}EZ

2 - l)kj =» and 3 in

the subscripts stands for .=, .
322
Notice that

(2.4) S (e Ty, () = ¢ (X)Qy(x).

Further define

£-1

(2.5) 2,0 =%+ @ J, G, »pz2,

” .
(2.6)  Byy(x) = S, cos (2ormx) (@ Narm)PHL, a1,
(2.7) Bpyay(0 = =, sin Qorm)@Ham®* )L, A 20,

Throughout the paper, ¢ and C denote positive constants, the
values of which are not specified and may differ in diffe-
rent formulas or in different places in the same formula.

Now, we shall'formulate the results.

Theorem 2.1, Denote x = (k -w)/6 , k = 0,1,...
eee,N(N + 1)/2. Then

n-1
(2.8)  6P(Sy=X) = @1+ F Qux) + 0oP)

unifornly in k.
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Theorem 2,2. lLet
hy=1, A=4m+ 1, 4m + 2,

ky=-1, A=4m+ 3, 4m,
where m is an integer. Then

(2.9) P(Sy -6 tex) = & (x) +
-1 -1 i -p
+$§4 h, 6§ "B, (Fx +(a)-<;.x—a' §p(x) + O(N"F)

uniformly in x.

Remarks. 1. The sum on the right-hand side of (2.9)
includes terms, which are of higher order than N P; this is
due to the fact that both the expression and the prodf are
more easy to handle in the present form (see Esseen (1945)).

2. It can be shown that Theorems 2.1 and 2.2 are va-
1id for the two-sample Wilcoxon statistic under the hypo-
thesis of randomness. Theorem 2.2 for this statistic gives
& generalizatiom of a similar result of Rogers (1971). (See
[11] and [9)).

3. Proofs of theorems. Let fy, fy, ?n be the charac~
teristic functioms (c¢f) of Sy, Sy— @, (Sy~w)/6 , respec-
tively.

Lemma 3.1, The following inequalities hold true:

2
(3.1) [ Bg(t)] & 5 por 1l a /N,

(3.2) I Bg(t)t e c e or w /M <1tl 2 2ar/w,
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(3.3) \fn(m.—_e-ﬂfa for 2ar/N=<ltle .

Proof. It can be easily shown that

é

N
(3.4) fm(t) ==%IT4 cos (tj/2).

7. to consider 0£t £ o only. The
The symmetry of Fy allows us to co g
proof is given in three steps as follows:

1. Let O<t<or/N, Then for 1£ j<R
lcos (tj/2)| = cos (ti/2)£1 - t2j2(25r2)—1
and
“= N 2.2, 2.-1
lfN(t)l.é.%‘Uq (1 - t55°(2ar°)™ " £
- 2.2
N on2g2p -2 ~tE/5
éexp (_t22.'§4 32(2“2)-1) = e 2% S £ e .

2, let 9 /N<t£2ar/N, let K denote the integral part
of 9 /t. Then "

- K , K 22 21
l;ﬁ’N(‘t)lég.:];l',1 | cos (t,]{2)l_é.é:l;r4(l - t2522x%)1) <
' K 2.3, 2,-1

zexp (152, P ea®)y g BTN

Making use of the inequalities -1 + ar/t <K < ar/t and
N/2 4 ar/t<XN we obtain for ar/N<t&2aw /K

_ .2 3, 2-1

|Zg(0)| < ot W/2-0 Ny, | -w/de

3. For 2or/H<t £« we shall consider the inequalities

(3.5) leos xl= (1L ~ (1 - cos 2x)/2)1/21;1 - (1 - cos2x)/4,
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(3.6) sin xz 2x/or valid for Q<£x £ /2

and the formula

N . .
(3.7 3, cos tj = sin(Nt/2)con (N + 1)t/2) (sin(t/2)) 7.
From (3.5) we obtain
- N N
lfn(t)l £ _TT,l (1=(1~cos tj)/4)« exp(-N/4 +.S1 cos tj/4)
A= =

and utilizing (3.7) and (3.6) we have

N

=

cos tjé(sin(t/2))-1 £ w/t<N/2,
?34

Hence

lfm(t) | < e~N/8 .

Lemms 3.2, For |t|< & ~1*% y, 0 <oc<1/3, the fol-

lowing expansion holds:

2~
(3.8) log Fy(t) = =, (it)?® 2, /(2n)1 + R(1),
where
2n L 2 -1
(3.9) Ron = @7 - 1) By Zy T2,
(3.10) IR(t)| & ¢ NZF+342r+2

and 3, are the Bernoulli numbers.

Proof. We shall use the axpansion
4
_ 2nm, ,2n . 2n -1
(3.11) log cos t = = (-1)"2%(2°" - 1) B, +*"((2n)12n)71,
valid for |tl«< ar/2. Suppose that |t|«< o¥r /N. Then we have

- N 0
log Fy(t) = &, =, (-1"2%2*-1) 6, (15/2)% ((2n)120)7T =
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N
(127 1) B, 2R ((2n)t zn)-ligw P2+ R(t) =

oMa

m

&

= 3,102 %y (2™ + R(L),

¥

where

N a :
= _13yR»2n_ .\ 2N 2n)12 -1.
R(t) .?4 E’”4( 1)7(2 1) ﬁZn(tJ) ((2n)12n)

-2
Utilizing the inequality [, [ & 4(2n)1(29r )" we have

N < . on N . 2r+2
R <, 2 X (i/a)Te 3 i/a)™a

- /) e N/ )P - (/)7L

-1+ec

Now, let us suppose |tl< & , 0 <o < 1/3. Then

INt/orla N 16 2B £ 1213 510 |
so that

|R(t) ] ¢ CNZT¥3 42r+2

Lemma 3.3. For ltl< 6™, 0<x < 1/6,
> oy o o-t22, 2T .
(3.12) fp(t) = e L+ =, Py, (it)) + 2(1),

where P2 »  are polynomials of degree 4» in it, coeffi-
cients of which are of order N-” , or, explicitly, in the

notation of Section.2,

> o~ k. 242Xk,
(3.13) Py, (1) = EX T, G5 D7HEyy/(2)1) Fae) J

and the remainder Z satisfies the inequality
L2
(3.14) lz(t)l 2 ¢ et /2 PPz (e,
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where Zp is a polynomial in t depending only on D.

- Proof. It follows from Lemma 3.2 and from [9, Lemma
3.2 and Lemma 3.3] .

Proof of Theorem 2.1l. Making use of the formula:

e d .
P(Sg = k) = (2ar)7t _fgf eIV £ (v)av

and putting v = t/6 and x = (k -(u)/e’ s we have for
O<oc < 1/6

e s
= = -1 -itx o/ =
SRIg=x) = @)t [ O oTHE Fioar =

. 2 -1
-1, r* -itx-t</2 .
= (2ar )¢ - e 1+ = P, (it))at +
[ao H:{;:G“ o= 4 2»
. -
+ gyt [ e TIEY/2 5(0ae 4
14 1< 6%
-1 -itx ¥ -
+ (2gr) f e P (tldt.
6%4ltlLme 5

The Fourier transform implies

a1

- . 2
-1 -itx=t</2
(2ar) Ix e as+ =,

P, (it))at =
, ?
= g@ar =, g, (),

Q,, being defined by (2.2). The rest of the proof follows
from Lemms 3.1 and 3.3.

Proof of Theorem 2.2, The proof is similar to that of

Theorem 2.2 in [9] and therefore is omitted.
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