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A NOTE ON CLOSED CATEGORIES
Jan PAVELKA, Praha

Abstract: For an adjoint situation

V,A® B,C) =~ V (4, [BC])
in a category 7V, the paper gives a description in terms
of the left adjoint ® of those closed category structu-
res in the sense of Eilenberg-Kelly on 'U“o that have

[ -,-1 for the internal hom-functor. It turns out that ®
need not really be (even up to an isomorphism) associative.

Key-Words: Adjoint situation, closed category, inter-
nal hom~functor, natural associativity. ?

AMS: 18D15 Ref, %.: 2.726.14

Introduction. Although the concept of a closed cate-
gory is the minimal one of the enrichments of category theo=
ry treated in [1], it already provides enough framework for
som® interesting applications (the study of U/ -categories,

V -functors, etc,), Of course, it facilitates the calculus
considerably if the internal hom~functor
[==1 & Vo¥= Vy— U,
has a left adjoint ‘
@ : Vv 0> ’I/Vo—-—-—> ’lfo
Nevertheless, once an adjoint to [-,-] is considered it

is always required to be (up to a specified natural isomor-
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phism) associative.

Since there exist closed categories in which the inter-
nal hom-functor has a non-associative adjoint (an example
will te given in Section 2), we can ask what it is on the
side of ® that exactly corresponds to an extension of
[=-y=1 to a closed category structure on 'v;,.

To settle this question we first analyze, on similar
lines as in [1], Chapter II, §§ 3, 4, the interaction bet-
ween properties of ® and those of .E -,~] indueed by the
adjunction. This time, however, we shall emphasize whatever
independence there is between individual couples vof corres-
ponding data or axioms and we shall go as far as péaaible
without normalization of the couple < Vi, L-,~1>. As for
the statements 1.2, 2.2, 3.2, and 3.3 of Section 1, this re-
sults in a certain restriction on the proof techniques avail~-
able end the proofs are, comsequently, longer than those in
[1]. Because, on the other hand, their ecomplexity is due on-
1y to complexity of the caleulus involved and they are based
on a very simple idea, we shall illustrate the idea by cerry-
ing out one of the proofs in question and omit all others,
The proofs of 1.1, 2.1, and 3.1 will be also omitted - the
reader can be referred to (1], Chapter II, Lemma 3.1.

Convention: The identity morphism of an object 4 will
often be also denoted by A. We denote by f the inverse of
an isomorphism f.

We shall constantly refer to diagrams MCl - MC4 on p.
472 and to diagrams CCl - CC4 on p. 429 in [1]1. When we say,
for instence, that some transformations a and £ satisfy MC1l
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it means that every diagram of the sort labelled on p.4T72
by MCl commutes.

1. Relations between data and axioms. Throughout this
section we shall deal with the following basic situation:
we assume given bifunctors
® : Vo Vy——> UV, and [==1: UFx V— VU,
together with a natural isomorphism
’ Mype : Yo(A®B,C) ~ V, (4, [BCI),
We shall also use the alternative description of o by
its unit: & ,p = wA,B,&@B(Ae’ B): A—>» [B,A® B1
natural in A and dinatural in B, agd
comit: e, = “[ABJ,A,B( LAB]): [aB1 91—* B

natural in B and dinatursl in A.
1.1. Given a Mfomtion
(1.1) & pat A®B)®@C—Aa®@(BOC)

natwral in A, B, C, the formula

A’ = ° e
(1.2) I = Tipoigrapl,a,B * Trecicas:cac tese

* ([BC1® e;p)* appycapat

defines a transformation

(1.3) 1IN, : [BC1—> [[4B1 [Ac1]

natural in B, € and dinatwral in A,
Conversely, given (1.3), the formula

(1.4) 8ps = T, 51,00 (B@C °
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*TA®B,c,A® (BO C) {Ech (c,p®@ (B®@C)ID -

c - )
* Ipe¢,4@ (B@C) an,wc;

defines a transformation (1.1).

Moreover, the procedures (1.2) and (1.4) are mutually
inverse and thus establiah a 1-1 correspondence between
(1.1) and (1.3).

(We shall speak about ¢ -corresponding couples of trans-

formations < &,L> ,)

l.2. Iet <(a,L> be a JIr-corresponding couple. Then
a satisfies MC3 iff 1L satisfies CC3.

Proof of CC3==> MC3 (a shortened version): We have to
show that under the assumption CC3 the equality

(1.5) (A® apop)* &y (pgc)p * (Bpc ® D) = &4pceD) °
* ®(A® B)CD

holds for all A, B, C, Deobj ¥ . Since s is an isomor-

phism we can as well prove (1.5) with
Ta,,icioEn - Taer,c,tE) © T (a@B)®C,D,E °

where E = A® (B ® (C® D)), applied to both sides. Now

[ ?
= 7xr {[D,(A®a)-al- [D,a@D1. o}

which by the naturality of & equals
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s ilD,(A®a) 2l 3,4 mec),p" %nct *
+[B[C,a)] . [B, 91®B,CJ © 9up .
We apply (1.4) for 8,pe and obtain

[BLC(D,(A®@a)+-all]l.(BCC,0l]

. c . .
[0, [C,A® (B®C)IT - Bec,ae (BaC) © a,BaC

By the naturality of © , the naturality of L (applied three
times), and (1.4) for &, ) (BoC)p® the 1ast line can be rewrit-

ten as
¢ .
[3pc[D,4® (BB (C® DI+ Ingg, i1, e((BOC)® D)

+[B®C[D,A@ a]]- [asgc,n“}"g ((B®Cc)e 1)1l -

D
* YBoc)®@D,A@ ((BeC)e D) ' °A,(B@C)@D *

Next we use the naturality of L, dinaturality of & , again
the naturality of L (three times), then (1.4) for &pqy app-
lied in the first variable of [-,-J, and the dinaturality

of L, and obtain
D .
L9g(cgn)rtd « €1, L3013 - [ pg(cap)eld

1 D,c81] . D
LI B@(C@D)J [D,A® (B®(C®D))] "A®(B®C),A® (Ba (C3 D)

LC]

ABE®(C®D)
By CC3, this equals

D
(2,201 [3¢p211 ¢ [ 1,155 40 @B (o) *
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®D ’
. Ing@(cabm,m(s@(c@n)» "8
Using three times the fact that [-,-] is a functor emd by
(1.4) for 8)\B(c® p) ¥e obtain '
(B [9gp1]l.[B,11. [BECO®D,ap0pp) )

=]

' [B, ®peB,c0p" ° 4B

which, by the naturality of L applied in the second variab-
le of [-,-1 , the description of &t via & , and by (1.4)
for ‘(A@B)CD’ Iiﬁlds

w4 LCIDpcen) ' 2uenen 17" [% Cueni@c,n?
) al@B,C} = Txaiepcen) 2aen)cn’

2.1, let Teobj ¥,. Then the formulas

(
(2.1) 4 = Ay 6) =[I,r, )08,

(2.2) ry = Fynly) =ep (1,00

establish a 1-1 corresponience between natural transforme-

tions

(2.3) T:A®I—A
and )

(2.4) 41 A—>[TA]

Moreover, r is an isomorphism iff i is.
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2.2, Given or -corresponding couples <a,L ) and
{ r,i>. Then a, r satisfy MC4 iff L,i satisfy CC4,

3.1, Ilet Ieobj V. Then the formulas

(3.1) a= Tpald) =4, 2,0,

(3.2) £y = T p463y) =y, (3,0 1)
establish a 1-1 correspondence between

(3.3) natural transformations £,: I® A—> A

and
(3.4) dinatural transformations I L&A

3.2. Given af-corrasponding couples <{a,L> and
<AZ,j>. Then a, £ satisfy MC1l iff L,j satisfy CCl.

3.3. Given 4 ~-corresponding couples <a,L},<r,i) ,
and (£, > . Then a, £ ,r satisfy MC2 iff 1,i,j satisfy CC2,

3.4. Given or-corresponding eouples { r,i) and
(£ ,§> . Then rp = I«I iff i = ji.

4.1, Given a tramsformation (3.4) put for any §: A—
—> B in ’U‘o

We obtain a nmatural transformatiom
ypt Vo(4,B) —> Vo1, [4B1).

4.2, Let {(.2,j> be a Ir-corresponding couple and
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let © be defined by (4.1). Then
a) if £ is an isomorphism, so is = and its inverse

is determined by
(4.2) Typ(1) = epe (7@ A) < 2

vhere 7 : I— [ AB] in V.
b) If ~ is an isomorphism, so is £ and we have *

(4.3) T4y = Tyreaton)

Proof: All the verificatiors are straightforward ex-
cept perhaps that of 4.2 b, Assume 7 is an isomorphism and

put
A _
(4.4) £y = Ty 104

~ .
We show that ’&A is inverse to zA. For every A e ’U’o we ha-
ve

$ o =

IR ANRE n

?&,MA

(by the naturality of T ) = {:EAA‘. . 770(1, Ca, LAJ)E =
= &M 'itA.aeAJ‘ QM‘&

(by (3.1)) = 'EAA{ jA} =

(by (4.1)) = 1.

To complete the proof it now suffices to show that each

A

—3A is an epimorphism. Suppose that

EA gpo

A —> I®@A—>B

1

commutes, Then

Tip Yo =LA 9ol gy = LA, 91 [4,2,1.5, =
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= 08,9104 2,15, = [, 91 8, = T 09
whence ¢, = Fy.

-

The comparison theorem.

Proposition., In the basic situation of Section 1, the

2,

following statements are equivalent:

() @ ecan be extended to a structure on U, whose defi~
nition is obtained from the concept of a monoidal catego=-
ry as defined in [1] by weakening the associativity of @
to &, pa being Just morphisms in v, netural in A, B, C,

(B) [ =,-] can be extended to a closed category structure
on UV, as defined in [1].

Moreover, the structures on 7, mentioned in (T) and
(H), respectively, determine each other (up to some :freedom
we have when defining the basic ﬁnctor V in the transitiom
from (T) to (H)) uniquely. -

Proof: a) (H)r—> (T). Given a closed category struc—
ture <V, [-,-1,I,L,i,§> on 7, use (1.4), (2.2), and
(3.2) to obtain tramsformations a,r, £ satisfying MC1l -
MC4; r is an isomorphism. By Propositions 2.4 and 2..'7 of
Chapter I in [1],

ViEABJ = ’t‘m, ,

where T is defined by (4.1), holds for any A, Beodbj 7,
and

11 = jIQ

Hence £ 1is an isomorphism and ry = 21 (MC5 in [1]).
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- b) (T) —> (H). Given <(® ,I,a,r,£)> such that
a,r,£ satisfy MCl - MC5 and r,.£ are isomorphisms, use
(1.2), (2.1), (3.1) and (4.1) to obtain transformations
L,i,j»* such that L,i,j satisfy CCl - CC4, i,> are iso=-
norphisms and iI = ‘iI' It remains to normalize the couple

{ Vg [=,=3> (82, [11,p. 491). To this end, we prove the
following '
lemma. Given i,j such that iy = jr and T is an iso-

morphisw.For any Ceobj 7y ,
{ii’ C=[AB] put VC = V_(4B), Lo = ¥,p

otherwise put VC = V (I,C), Lo =1 7,(1,0)°

For eny £: C — D in 7/, define a mapping Vf: VC—> VD by
vt = tp ’U’o(I,f) c Lg

We obtain a functor V: U —> Set and a matural isomorphism
(€CO) (1)  VWel-=1 = U (-,=)
(ii). Vig,py = T,p holds for any A,Be obj U, in
particular,

Proof: (i) is clearly true on objects, Next, for any

§

’

g
A > A > B > B in’l/‘o'

we have ’tA,B,{V [f,g]?} = -i‘?.’A,B{'?A,B,- VO(I' [ng ).
. As}g = 4V (I, [£g1) » ¥yp3§ = [fg1.LAE] - J) =
= [f,g?]o 5A - [A’,gg]n [f,AJ-J'A = [A’,g&] .[A’,,{].jx =
SLAEI gy = ke S 0 = T (U087,
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hence VI(fgl§ = ’Vo(f,g)f .
(ii) For any A—$5 B in U, we have

Vigpi§ = ¥p e ¢ YolTipg) ¢ pdf =
= Tom digpy c [A§T-3,3 = Typupy (LTI, 8=

= EI[AB]{[Iﬁﬁgll « [I,3,1 i:[;: ;EICA.BJ{EI[AEJ] .
‘I5,3,1 38 = Troam {trm T%p88Y = v € -

Example. To satisfy ourselves that there exist closed
Zategories in which the internal hom-functor has a non-asso-
ciative adjoint, let us turn to the following special case.

Consider a partially ordered set (i.e. a small thin ske-
letal category) ( P,£ > . A closed category structure on
{P,£% boils down to a couple {[=,~] ,I > , vhere I¢ P and
{-,-1:PxP—>P is an operation order reversing in' the
first and order preserving in the second variable, such that

Ly,z2] ¢ [(xy1Cxs1]
x= [Ix]
I£&£[xx]
x<y iff T £« [x,y)
hold for eny x,y,z€P. _

Now take the closed category structure {[-,~1 ,3> on
4 = ./'/'Z::“\ﬁ
e 1N 2 73
where [-,-] is defined by Table 1, Table 2 shows the value
of its adjoint ® - ‘

the category
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3[3[3[3]3 3[e1]z2]3
213|313 2 2|]0|la@|1] 2
1]3]1312|1 l1|10j0|1]1
o|3|1|zx|e e(lojJofofo
e 1 2 3 0o 1 2 3
Table 1 Table 2
Observe that 2@ 2)@ 2 =1®2=20<1=22@ 1 =
=20 (2@ 2). '
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