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Abstract: Necessary and siu:t’ficient conditioms are ob-
tained for filters, nltreut‘ilgers2 and ideals over a free
monoid to be recognizable by finite branching automs ta.
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Recognizable families of formal langusges were introdu-
ced and studied in connection with formalization of certaim
aspects of state-space problem solving by means of finite
branching automata (see [1]). In that formelism languages
(sets of strings over a finite alphabet = ‘) represent
plans of behaviour incorporating branching. In an earlier
paper [2] we obtained a series of results concerning recog-
nizable families of languages as well as their int eresting
subclass, the well-recognizable families (recognizable fami-~
lies with recognizable complements).

In the present paper we focus on & particular problem
concerning the relationship between recognizable families of
languages on one hand and filters and ideals over the free
monoid S'* on the other hand. The concept of a filt er, and

- 251 -



its dual notion of an ideal, are important in various areas
_ of mathematics: filters over =¥ were discussed in [3] espe-
ciallyr in connection with concatenation of families. '

Here we shall obtain necessary and sufficient conditioms
for filters and ideals over =* to be recognizable. We
shall also show that a recognizable filter is well-recogniz-—
atle iff it is an ultrafilt er. Thus concepts approached from
comple tely different directions appear surprisingly interre-
lated.

In the present context an alphabet = is an arbitrary
finite non-empty set of objects called letters (usually deno-
ted &,b,C.a.). We denote by =* the set of all finite sequen-
ces of letters (the free monoid generated by = * under conca-
tenation). The elements of =* are called strings end usually
denoted u,v,w... The unit element in =* is the empty string
A e =", We denote X = ZufA} . Foru e =*, 1g(u)
denotes the length ‘of u (the number of oceurrences of letters
in u). In partieular, 1g(A) = 0, For u,v € &* | usv =
=(dw 6 =*) (uw = v). P (=*) is the set of all subsets
of =* , &£ (X ) is the set of all non-empty subsets of ='* ,
elements of & (= ) are called languasges (usually denoted L). .
Any Xe & (= ) will be called a family of langusges (over = ).
Note that we admit empty family of languages but not families
with empty element, We shall use the usual set-theoretical
operations, union (u ), intersection (A ) and complement (X =
=4L; Le L ()& LéXi:Forue =¥ end Le £ (=) we
define:

1) the derivative of L with respect to u
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Byl = 4v; v ¢ Z*& uve L };
2) the prefix closure of L

Pref(L) = {u; (3vel) (ukv)};
3) the set of first letters of L

Fst (L) = Pref (L) A =
4) Fet, (L) = Pref (L)n =, .

Definition 1, The derivative of a family X with res-

pect to u is the family
8,X= 48,L; Lex3-4ig3,

We denote D(X) = 49 X; ue £*} and we say that X is fi-
nitely derivable if D(X) is finite.

Definition 2. C-closure of a family X is the family
C(X) ={L; (Yu ¢ =*) (31 eX) [Fst, (3,L) =

=Fot ) (9,L)]%.
We say that a family X is self-compatible if C(X) = X.

Recognizable families of languages were originally de-
fined in terms of finite branching auvtomata (hence the at-
tribute "recognizable"). Here we shall need only their struc-
tural characterization (see (11), which we shell use, there-
fore, as a definit.on.

Definition 3. A family X is recognizable if X is self-
compatible and finitely derivable,

Iet us note that, as it is known from classical automa-
ta theory, a language L is regular (i.e. recognizable ly a
classical finite automaton) iff the set {aux.; ue 3*} is

finite. The reader unfamiliar with the automata theory may
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consider this fact as a definition of a regular language.
(Note that in the classical smtcmata theory @ is also a regu-
lar language.)

For the definition and basic properties of filters, see
e.g.[4] 1Iv,8, p. 193-196.

Definition 4. A filter F over =* is a non-empty sub-
set of P ( =*) satisfying:
1) ge¢F;
2) it A, Be F then AnBeF;

3) if AeF and AS B then Be F.

In this paper we assume = to be a fixed alphabet and
shall call filters over =* simply filters.

Since #4F every filter is a subset of £ (=) and we
can look at it as a family of larguages. For any L € £ (=)
the family {L°; LEL’Z is clearly a filter sver S ¥ . Over
an infinite set there exist also filters of other types (here
e.g. family of all languages with finite complements).

Definition 5. A filter of the type£{1’; LSL? is cal-
led principal and will be written F;.

It is easy to show that a filter F is priuncipal iff
N FeF, ) »

Tefinition 6. A filter F is called an ultrafilter if F
is a maximal filter, i.e. there exists no filter F’ such
that P F'.

Again it is easy to show that a principal filter over
S.* is en ultrafilter iff it is of the form Fi,3 for some
ue Z* .

Definition 7. A filter X is a recognizable (well-recog-
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nizable) filter if the family X is recognizable (well-re-
cognizable). Analogically we define a recognizable, resp,
well-recognizable ultrafilter.

Theorem 8. A filter over =* is recognizable iff it
is a principal filter of the form F; where L is a regular lan-
guage.

Proaf. TFirst we show that every principal filter is
self-compatible,
let L'e C(FL), for the sake of contradiction we shall assu~
me that L°¢ Fy,i.e. there exists ue L such that uél’. By
the definition of C-closure there must exist Ihé PL such
that particulerly A e Fst, (3,L°) = A € Fst, (3, L) and
thus ue€L'= ueL . But ue L because LSL and thus also
ueL’, which contradicts the assumption.

Furthermore, for any u € S* ,

8 _F 9,11 LeL’3 = 41" ; 8 LsL},

u L‘=
Thus O F; = O Fy = 8 L = 3L, i.e., Fy is a finitely
derivable family iff L is a regular language.

Now we have known that a principal filter FL is recognizab-
le iff L is a regular language. It remains to show that eve-
ry recognizable filter F must be principal, i.e. that NFe
€ F., Let F be a recognizable filter. First we show that if
N FSL and L is a complete language then LeF (for the de-
finition of a comple te language see e.g. [5],p. 47), In our
notation L is complete language iff (VY u € ¥)( =

£ Fsty (3,L)). For uel,

Fst, (9 L) = =, =Fst, (3, =*)
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and far ugl,
Fet, (d,L) = = = Foty (3,( X* - {ui)).

" But necessarily =*e€ F(F is non-empty) and if ug L then
by the assumption u € N F, i.e, there exists L’e F such
that u¢ L’ and since L's =™ -+{u} then by the property 3)
of fiter also S*- {uile F. Therefore L« C(F) and thus
LeF by the assumption about recognizability of F. Now it is
easy to choose arbitrary two complete languages I“l and 12

, for which I,n I, = NF.

We have shown that Lls F and 125 F and thus also Lln 1.2 =
= N PeF (property 2)).

Theorem 9, A principal filter of the form Fy, is well~-
recognizable iff it is an ultrafilter.

Proof. We have stated (cf. [4]1,p. 196) that principal
fill er is an ultrafilter iff it is of the form P{“} for ue
e E* , By the preceding theorem F-in} is recognizable.

Cle arly for every v € =* such that 1lg(v)>1lg(u), aj;;; =
= £ (=). Thus % is finitely derivable and furthermore
C(Fgyy) = Fgyy because for every LeFy ., , A« Fst,(3,L),
while for any L’e i‘:;; , N & Fst, (3,I). Thus also F{-u_i'

is recognizable and so F-tu} is & well-recognizable family.

Now let us assume, for contradiction, that FL is not an
ultrafilter, i.e. there exists v,we L such that wiv., Thus
by the definition of Fy we have S*- {vie P—L ma =* -
- {w}ei“L. But for eny u € =* we have uzxv —
=y Fst , (O, 2*) = =y =Foty (I (2* -~ {v1));
u=v=pFsty (§,5*) = =, =TFaty (9,( S*-f$wi)).
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Thus =*e C(‘l_?;) and since =* ¢ Fy we have C(F+F] ad
so Fp is not a well-recognizable filter.

- Q.e.d.
In the paper [2] we have shown that to every ﬁontrivial well-
recognizable family X there exists exactly one string uy € 2*‘
such that the families O X are trivial (i.e. § or L=
for all v4uy while they are nontrivial and mutually distinct
for all véux. We have called uy the characteristic string of
& family X because it uniquely determines X regarding the al-
gebraic decomposition of X to a finite number of basic fami-
lies and regarding the (minimal) number of states of a bran-
ching aatomaton recognizing X, It can be easily seen that
for an ultrafilter F{u}, the string u satisfies the above
conditions and thus “F = u (i.e. there exists finite bran-
ching automaton with (lg(u) + 2) states recognizing the fa-
mily Fy,q = cf. L21). X

The preceding theorems showed us an interesting rela-
tionship between recognizable families and filters, as well
as between well-recognizable families and ultrafilters.

We shall now turn to a dual notion to that of a filter,
namely the ideal. We obtain results analogical to those con~-
cerning filters, Our definition of an ideal is a slight mo-
dification of that from [6], p. 132,

Definition 10. A non-empty set I of subsets of ='™* is
an ideal over =* if
1) E*& I;

2) if A,BeF then AuBel;
3) if Ae I and BEA then Bel.
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Amin we shall call ideals over = * simply ideals.

| We want to talk about recognizable ideals. However,
since always $€ I no ideal is a "family" in our sense. We
shall therefore use the following definition.

Definition 11. We say that en ideal I is a recogniz-

able ideal if I - { #% is a recognizable family of langua-
ges.

Similarly as in the case of principal filters we have again
principal ideals of the form I, ={B; BEA}, where AE S* .
An ideal is principal iff U Iel.

Theorem 12 . An ideal I is recognizable iff it is =
principal ideal of the form I,, where A is a regular langua-~
ge (possibly empty), A 4 =* .

Proof. IfA=¢, I, - 483 =6 is a trivial recogniz-
able femily, If A = L € &£ (= ), then in the same way as in
Theorem 8 one can show that I} - £ #3 is self-compatible,
as well as that it is finitely derivable iff L is finitely
derivatle.

It suffices to show that a recognizable ideal is prin-
cipal, i.e. that UI€lI,

If UI=¢ thenI = I¢ is principal.

Otherwise we put UI = L and show that L is in the C=-
closure of I - £ 8% . Since for every L¢ I, L°c L and sin-
ce an ideal is closed under finite union, for every u € =*
there surely exists L, e I satisfying the conditions:

&) (Yve=2*)[lg(v) = 1g(u) + 1=> (vePref(L)=v €
€ Pref (L,))];
b) ueL=uel,.
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However, then Fst, (& L) = Fat, (9, L ). Thue LeC(I -

-4#3)=1-~ £63, i.e. I is a principal ideal.

Q.e,d.

Referenc es

(1] HAVEL I.M.: Finite Branching Automata, Kybernetika 10

(1974), 281-302.

(2] BENDA V., BENDOVA K.: On Pamilies Recognizable by Fi-
nite Branching Automata (in preparation).

[3] KATETOV M.: O zdkladech matematického vyjadBovéni plé-
nu, Mimeographed report, Faculty of Mathematics
and Physies, Charles University, 1974.

[4) MAICEV A.I.: Algebraileskije sistemy, Nauka, Moscow
1970.

[5] EIIENBERG S.: Automata, languages and Machines, Vol.4,
Academic Press, New York 1974.

(6] VOPENKA P., HAJEK P,: The Theory of Semisets, Academia,
Prague and North-Holland, Amsterdam, 1972.

V§zkumny dstav ZelezniZni Matematicky ustav GSAV .

U lu¥ického semindie 3 Zitng 25

11000 Prsha 1 . 11567 Praha 1

8eskoslovensko feskoslovensko

(Oblatum 16.2, 1976)

- 259 -



		webmaster@dml.cz
	2012-04-28T00:03:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




