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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,2 (1976)

STRUCTURE OF TRIABELIAN QUASIGROUPS
Tom48 KEPKA, Prsha

Abstract: A& quasigroup is called triabelian if every
its subquasigroup which is generated by at most three ele-
ments is abelian. In the present paper, some basic struc-
tural theorems on triabelian quasigroups are proved.

Key Words: Quasigroup, Moufang loop.
AMS: 20N05 ' Ref. Z.: 2.722.9

As it is well known, the class of distributive quasi-
groups has a large number of nice algebraic properties, It
is the purpose o: this paper to show that the structure of
triabelian quasigroups is very similar to that of distribu-
tive quasigroups. In certain sense, this paper is a continu-
ation of the last section from [1]. First we recall some de-
finitions .. A quasigroup Q is called an RF-quasigroup (LF-
quasigroup) if it satisfies the identity bec.a. = bf(a).ca
(a.bc = ab.e(a)e), where f£(a) and e(a) is the left and the
right local unit of a, resp. It is called an F-quasigroup
if it is both an LF and RF-gquasigroup. Further, a quasi-
group @ is said to be a WA-guasigroup if aa.bc = ab.ac amd
bc.aa = ba.ca for all a,b,ce& Q. If moreover ab.ca = ac.ba

then we shall say that Q is a WAD-quasigroup. Finally, =m
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abelian quasigroup is a quasigroup satisfying the identi-
ty ab.cd = ac.bd., Let Q be a quasigroup and xe Q. Then ]’..x
and I& is the left and the right translation by x, resp.
If Q is a commutative Moufang loop, then j is the identity
of Q, N(Q) is the nucleous of @ and a mapping g of Q into
Q is said to be meclear if x"l.g(x) € N(Q) for each xeQ.
The following lemma is implicitly contained in [21,
Lemma 1, Iet Q be a commutative loop and h be a map-
ping of Q into Q.v Then the following are equivalent:
(i) (a.h(a))(bc) = (ab)(h(a)e) for all a,b,c€Q.
(ii) Q is ‘a Moufang loop and h is nuclear.
Theorem 1. The following conditions are equivalent for
every quasigroup Q:
(i) @ is a WA-quasigroup and there exists ae€ @ such that
ab.ca = ac.ba for all b,c€Q,
(ii) Q is a WA-quasigroup and Q is isotopic to a commute~

tive Moufang loop.
(iii) Q is a m-quasigi-oup and Q is isotopic to a Moufeng
loop.
(iv) There are a commutative Moufang lopp Q(o ), g,h e
€ Aut Q(©o ) and x€Q such that gh = hg, gh"l is nuclear and
ab = (g(a)o h(b))o x for all a,beq.
(v) Q is 2 WAD-quasigroup.
Proof, (i} implies (ii). If b,ce€ Q then (aa.ab)(ac.aa) =

(am.aa) (ab.ca) = (am.aa)(ac.ba) =

(aa.ab) (aa.ca)
(am.ac)(aa.ba) = (aa.ac)(ab.aa). Hence (aa.x)(y.aa) =

"

(aa.y)(x.aa) for all x,ye Q and we can use [1, Propositi-

"

on 4.,8] and Lemma 1.
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(ii1) implies (iv). Let x€Q and aob = Eji(a). Igx(b)

for all a,bsQ.
As it is proved in [1], Propositions 4.1 and 4.8, Q(o ) is
& CI-loop. However, Q(o ) is & Moufang loop, and hence it
is c\ommutative. The rest follows from [1 , Proposition 4.8
and Theorem 4.9].

(iv) implies (v). Since gh'l is a nuclear mapping and
gh = hg, g2h~2 = gh~lgh™! is nuclesr. According to Lemms 1,
ab.ca = (((g%(a)o gh(b)) o g(x)} o ((hglc)o hZ(a))o h(x)))ox =
= ((g?(a)o gh(b))) o (ghlc)o h3(a))) o (glx) o h(x)))o x =
= ((Gsz(n)o gh(e)))o g(x)) o ((hg(b)o n(a))oh(x)))ox =
= ac.ba: for all a,b,ceQ.

Iet Q be a WAD-gquasigroup. 4 tetrad (Q(o ),g,h,x)is
called an arithmetical form of Q if the condition (iv) from
Theorem 1 is satisfied.

The following lemma is implicitly proved in [1], Theo-
rem 4.9,

lemme 2, let @ be a WAD-quasigroup and x& Q. Then the-
re exists an arithemtical form (Q(o ),g,h,y) of Q such that
XX XX = Jo

lemma 3, lLet Q be a WAD-quasigroup with an arithmeti-
eal form (Q{e ),g,h,x). Then xeN(Q(o )) and aoc g(a), aoh(ale
€KN(Q(o )) for every aeQ, provided at least one of the fol-
lowing conditions holds:

(i) Q is en LF-quasigroup.
(ii) Q is an RF-quasigroup.
(iii) (a.aa)(be) = (ab)(am.c) for all a,b,ce Q.

(iv)  (be)(am.a) = (b.aa)(ca) for all a,b,ceqQ.
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Proof. (i) As it is easy to see, he(a) =
= (a o‘x'l) ° g(a’l) for each ae Q. Since Q is an LF-quasi-
group,
(g(a) o ((hg(b) ohzx(c))o h(x)))o x = a,be = ab.e(a)c =
= (((g%(a) o gh(d)) 0 g(x)) o ((((gla) o g(x™ 1)) o g?(a™1)) o
o n2(x)) on(c)))o x,
and hence
(1) ao((boe)oh(x)) = ((gla)o blo glx))o ((((aoglx1))e
o gla™))o e)o h(x))
for all a,b,c,e Q. If we substitute a = j in (1), we obtain
the equality

n(x)o (boe) = (bogx))o ((coglx™))oh(x)).
Multiply ing the last equality by h(x 1) o g(x) and teking in-
to account that this element belongs to N(Q(o )) (since gh =
= hg and gh'1 is nuclear), we get the equality (boec)og(x) =
= (bo g(x))o ¢ for all b,ce Q. Thus g(x)s N(Q(o )), and con=-
sequently h(x), xe N(Q(o )}, Now the equality (1) yields
ao(boc) = (ga)ob)o ((mag(a t)yoec) and
(aob)o ((e~1o g"l(a))c c) = g'l(a) o(boe) =
= (ao(a”to g71(a)) o (ba¢) for all a,b,ce Q. By Lemma 1, PP
a~lo gl(a)e N(Q(o )). However ac ac aeN(Q(o )) (since Q(o )
is a commutative Moufang loop), 8o that ao g'l(a)e NQ(o)).
As N(Q(o )) is invariant under automorphisms, aoc g(a) &
€ N(Q(o )). Finally, a~1lo gh™l(a) is contained in N(Q(o )),
and therefore g(a)o gh™ (a)e N(Q(o )), ach™t(a)e N(Q(0 ))
and ao h(a)e N(Q(o )).

(ii) Similarly as for (i).

(iii) After some arrangements (using lLemma 1 and the

fact that gh'l is nuclear), we can write the identity
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(a.aa)(be) = (ab)(aa.c) as (aoh((aohg ™ (a))og(x))) o
o(boe) = (aob)e (h((aohg ™ (a))o g(x))e c).
If a = j then hg(x) o(boc) = bo(hg(x)oc), and hence
xeN(Q(o )). Then (amo h(a)ahg’l(a))) o(boec) =
= (aob)o ((h(aohg-l(a) oc) and & Lo h(ac hg';(a)) €
€ N(Q(e )) by Lemma 1., However, gh"l is nuclear, therefo-
re hg ! is 8o and h(ao hg t(a~Y))e N(Q(o )). Thus
alo h(aoa)e N(Q(o )). Finally, n(a o &% a~t)e N(Q(o ),
so that ac h(a) e N(Q(o )). Similarly as in the proof of (i),
we can show that ao g(a)e N(Q(o )).

(iv) Similarly as for (iii).

Lemma 4. Let a WAD-quasigroup Q have an arithmetical
form (Q(e ),g,h,x) such that xe N(Q(o )) and &o g(a),
ao h(a)e N(Q(o )) for every me Q. Then
(i) Q is an P-quasigroup.
(ii) If a,b,c,d€Q and ab.cd = ac.bd then ab,(c(dd.dd)) =
ac.(b(dd.dad)).

Proof. (i) It is an easy exercise.

(ii) Since ab.cd = ac.bd and xe N(Q(e)),

() (g%(a)o gn(b)) o (ng(e)o n2(a)) = (g%(a)o gh(c)) o
o (hg(b)o h2(a)).
Put u = (g%(a)o h%(a)}o (hg(d)o hg(d)). We shall prove that
alo ueN(Q(o)). Indeed, a 1o gla™l), gla)o gn(a),
g(a)o 82(a), a2 n(a™l) ana n(a)o h?(a) belong to N(Q(e )).
1, gz(d), a™lo gn(a) and 4 o n2(a) are contained
in N(Q(o )). Since dododeN(Q(o )), do (gh(d)o gh(d)) e
e N(Q( o)), However, a”1o ((ded)o (gh(d)e gn(d))) =
= do (gh(d)a gh(d)) by the diassociativity of Q(o ) and

Hence 4~
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alo g2@), a1 n2(a)e N(Q(o )). Thus ™Yo ueN(@(o )),
and so h2(a Lo u) e N(Q(o )). Multiplying (2) by h2(d™Te w),
we obtain the equality
(g%(a)e ga(b)) o (he(e)o h2(w)) = (g2(a)o ghlc)Yo (hg(b)e h(w)),
and it is not.so difficult to see that ab.c(c(dd.dd)} =
= ac.(b(ad.ad)).
Lemma §.v Let Q be an IF-quasigroup (RF-quesigroup) and
x,a,b€ Q. Then
(1) ef(x) = fe(x),
(if) LR, = R Ty iff e(b) = £(a).
Proof. (i) =x(ef(x).e(x)) = f(x)x.ef(x) e(x-) =
= f(x).xe(x) = x = xe(x).
(ii) If LR, = RL then ba = RL (e(b)) = LR (e(b)) =
= b.e(b)a. Conversely, if e(b) = f£(a) then b.ya = by.e(bla =
= by.a for each ye€ Q.

Lemma 6. ILet Q be an P-guasigroup smd a,beQ. Suppose
that LR = RL =md Rgl(x).l.;]'(y) = R;l(y).lgl(x) for all
x,y€ Q. Then Q is = WAD-quasigroup.

Proof. Put xoy = R;]‘(x) .L;l(y). Clearly, Q(o ) is a
commutative loop. Iet k(x) = Rallf(a)nzl(x) and t(x) =
= LbLe(b)L;l(x) for every xeQ. As it is easy to see,

R (xoy) = H,(a)ngl(x).n‘x.;l(y) = k(x)o B (y) md Ly(xoy) =

= Ly(x)o t(y) for all x,ye Q. Hence k(xo y)o R (§) =

= k(x) o (kly)o R () end L (i)o t(xoy) = (I.b(j)o t(x)}o t(y).
Now we can write

R (x)o (Lb%(y)otlb(x)) = R 0o L (R (y)o L (2)) = x.32 =

= xy.e(x)s = R (R (x)o L(y))o L (R (e(x)) e L (2)) =

= (xR, (x)o RIL,G)Ye (LbR‘e(x)o tLy(2))
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for all X,¥,ze Q. Hence

xo(¥o2) = (k(x)eylo (LR e(R (x))o2),

(xoy)o (LbRaeR';lk”l(x)o 2} = X (x)o (yoz),

K 1x) = xoL R R xL(x)
for all X,¥,z€ Q. According to Lemma 1, Q(o ) is a commta-
tive Moufang loop, LDRaeR;lk-l(x) = x 1o ¥ 1(x) ana

l° x-l

x o kK™ 1(x)e N(Q(©0)), Therefore xo k™l(x)e N(Q(o ))
for every Xe Q. Similarly we can prove that xo t1x) e

€ N(Q(e )) for every xe Q. Further, k(x)o Ry (y) = Ry(xoy) =
= R,(yo x) = k(y)o R (x), xo0 R&k'l(y) = yoRak-l(x) and R () =
= k(j)o Ry (j). Hence k(j) = j, Rak-"' is a middle regular
permutation of Q(¢ ) and R (J) = Rak-l(j)e N(Q(o )). Simi-
larly, Ly(j)e N(Q(o)). Now it is obvious that both k and t
are automorphisms of Q(o ) and xy = (k(x)o t(y))o (R,(J) o

© L (j)) for all x,ye Q. Since 1o k(x“l), Kk(x)o kt™(x) «

€ H(Q(o )) for every xeQ, kt™> is a nuclear mapping. Fin-
ally, tk(x)o tR (j)o L, (j) = iR, (x) 0 L (§) = LR (x) =

R L (x) = kt(x)o kL (J)o R (§). Thus tR (§)o Ly (J) =
kLb((j)o Ra(j) and tk = kt. An application of Theorem 1

completes the proof.

Theorem 2., The following conditions are equivalent
for every quasigroup Q:
(i) Q is a WAD-quasigroup and Q is an LF-quasigroup,
(ii) Q is a WAD-quasigroup and Q is am RF-quasigroup.
(iii) Q is a WAD-quasigroup and Q is an F-quasigroup.
(iv) Q is a WAD-quasigroup and (a.aa)(bc) = .(ab)(aa.c)
for all a,b,ceQ. ‘
(v) Q is a WAD-quasigroup and (be)(aa.a) = (b.aa)(ca) for
all a,b,ce® .
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(vi) There are a commutative Moufang loop Q(e ), g,h e

€ Aut Q(o ) snd xeN(Q(o )) such that gh = hg, ao g(a),
aoch(a)e N(Q(o )) and ab = (g(a)e h(b))o x for all a,be Q.
(vii) If a,b,c,d€Q &and ab.cd = ac.bd, then the subquasi~
group generated by these elements is abelaan,

(viii) Q is a triabelian quasigroup.

(ix) Every subgroupoid of Q which is generated by at most
three elements is abelian.

(x) Q is an F-quasigroup and there exists ze Q such that
£(z)a.be(z) = £(z)b.ae2(z) for all a,be Qe

(xi} Q is an P-quasigroup and there exists z € Q such that
£2(z)a.be(z) = £2(z)b.ae(z) for all a,beqQ.

Proof. The implications (i) implies (vi), (ii) implies
(vi), (iii) implies (vi), (iv) implies (vi) and (v) implies
(vi) follow from Lemma 3 and Theorem 1.

(vi) implies (vii). As it is easy to see, gx'l
lear mapping. By Theorem 1 and Lemma 4, Q is an F-quasigroup

is & nuc~

-nd a WAD-quasigroup. With respect to Lemma 2 and ILemma 3, we
may assume that j = dd.dd. Then (by Lemma 4(ii)) ab.cj =

= ac.bj and (g2(a)o gh(b))o ghle) = (g2(a)o gh(e)) o gh(b).
Iet G(o ) be the subloop of Q(e ) generated by N(Q(o)) v

U {g%(a), gh(b), gh(e)} . According to the well-known Mou-
fang theorem, G(o ) is an abelian group. Since x € N(Q(e ))
and z o g(z), zo0h(z), zo g'ltz),‘ zoh z)e N(Q(o )), g(@) =
= h(G) = G, G is an abelian subquasigroup in Q and a,b,c& G.
Finally, (g2(a)e gh(d))e (gh(d)e h2(d)) = x Lo glx" ) on(x"Le
€ N(Q(o )) and g2(@ 1o a1, n2(a™ 1o a1, gn(a™1)o a7,
dodode N(Q(c ). Thus a”te N(Q(o )) and deG.
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(vii) implies (viii). This implicatiomn is obvious, sin-
ce ab.be = ab.bc. The implications (viii) implies (ix) and
(ix) implies (iv), (v) are trivial and the implication (vi)
implies (i), (ii), (iii) follows from Theorem 1 and Lemma
4(i).

(x) implies (i), Put x = fe(z) and y = e?(z). By Lemma
5, e(x) = £(y) amnd %I'x = LR According to the hypothesis,
f(z)fs;l(a).b = f(z)R;l(b).a 'fo? all a,be Q. Hence
Bl @) I5Hb) = Igh, y (£(2)E; (a)ub) = KH(b).Ig (a) and we
can use Lemma 6,

Similarly we can prove that (xi) implies (i).
The remaining implication (viii) implies (x),(xi) is trivial,

Corollary 1. A quasigroup Q is triabelian iff it se~
tisfies the identity ((as.be)(xy.z2))((uv.wu)((r.er)(st))) =
= ((ab.ac)(xz.y2z)) {((uw.vu){((rs)(rr.t))) for all a,b,c,x,y,z,
u,v,w,r,8,t€ Q.

Corollary 2. Triabelian quasigroups are finitely based.

Corollary 3. Every commutative F-quasigroup is triabe-
lian.

" Proof. Let Q be a commutative F-quasigroup and zeQ.
Then f(z)a.be’(z) = e(z)a.e>(z)b =.e(z).ab = e(z).ba =
= £(z)b.ae?(z) fou all a,beQ.

Corollary 4. Every triabelian quasigroup is isotopic
to a totally symmetric triabelian guasigroup with at least
one idempotent element. ;

Corollary 5. Every totally symmetric quasigroup isoto-
pic to a Mouwfang loop is triabelian.

Proof. Let Q be a totally symmetric quasigroup isoto-~
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pic to a Moufang loop, 2€Q, g = I.z and aob = g(a).g(b) for
all a,be Q. Then Q(o ) is a commutative Moufang loop (Q(o )
is clearly commutative and every loop isotopic to a Moufang
loop is Moufang) and h(a)o h(h(a)o h(b)) = b for all a,beQ
and h = g”1, For a = g(3) we obtain the equality n%(b) = b,
Hence h(a)o hz(a) =h(a)o a = h(a)o h(h(a}oh(y)) = y for all

1 and we can write

acQ and y = g(j). Thus h(a) = yoa~
xo (a~1o (x71o (sob))) = a.ab = b for all a,be Q and x =

= yoy. Now it is visible that a~lo (x"1o (aa b)) =

= x"1o (&'lo (aob)) and xLle N(Q(o )). Consequently x €

€ N(Q(e )) and we can use Theorem 2(vi).

Let Q be & quasigroup. A mappiﬁg g of Q into Q is cal-
led left regular if there is a mapping h such that g(xy) =
= h(x).y for all x,ye Q.

Theorem 3. Let Q be a triabelian quasigroup. Define a
binary relationr on Q by a r b iff a = t(b) for some left
regular mapping t. Then
(i) 1f (Q(e ), g,h,x) is an arithmetical form of Q and a,
beQ then a » b iff b = moy for some y & N(Q(o )).

(ii) 1 is a normal congruence relatiom of Q.

(iii) The factorquesigroup Q/r is an idempotent totally sym~
metric triabelian quasigroup.

(iv) The set {z|z r a? is an abelian subquasigroup in ¢
for every a€Q.

Proof. (i) Iet a = t(b) for a left regular mapping t.
Then there is a mapping s such that t((g(c)o h(d)o x) =
= (gs(c)o h(d))o x for all c¢,de Q. Substituting h-l(x'-l) for
d we obtain the equality tg(c) = gs(c). Hence t({(ced)ax) =
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= (t(c)od)ox for all c,de’Q, so that t(cox) = t(ec)o x,
Consequently t(d) = t(jlo d and t(‘j)eN(Q(‘o }Yo The rest '
is obvious,.

(ii) can be proved easily using (i).

(iii) Iet (Q(e ),g,h,x) be an arithmetical form of Q
end ae Q. Then (Lemma 3) mog(a), aoh(a), x& N(Q(o )). Hen-
ce the elememts s~ ((asc gla)yo {aoc hial))) =
= a3 ((aoa)o (gla)o gla))) = a~ e (gla)o h(a)) and k(a) =
=a"lo ((g(a)e h{a))o x) belong to W(Q{o )}. Further,

ao k(a) = as, & = aa2o (e and & v ag by (1), Thus Q/r
h is an idempotent quasigroup. Tﬁe rest is an easy consequence
of the fact that @c ac asN(Q(e )) for every aeQ.

(iv) follows from (i), (iii) and Lemm’ 2,

Corollary 6. Every simple triabelian quasigroup is abe-
lian.

Proaf. Let Q be a simple triabelian quasigroup with an

arithmetical form (Q(o ),8,h,x). Consider the normal congru-
ence relatiom r defined in Theorem 3., If r = QxQ, then Q is
abelian by Theorem 3(i.v). Iet »+Q=»x Q. Then r is the identi-
¢cal relation (since Q is simple) and Q is idempotent and to=
tally symmetric as it follows from Theorem 3(iii). In this

case, gla) = h(a) = a~l for every a and x = j. It is easy to
see that every congruence of Q(o } is a congruence of Q, and
consequently Q(o ) is simple. Howevef, every simpl commute-

tive Moufang loop is a group.
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