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CORVENIENT CATEGORIES FOR TOPOLOGISTS

H.L. BENTLEY, H, HERRLICH and W.A., ROBERTSON

Abstract: The category Top of R ~topological spaces
is nlceﬁ emBedded in Grill and Conv, two cartesian closed
topological categories of nearness spaces. Grill is a qua-
si-topos which, although constructible from Top in a natu-
ral way, contains the contiguity and proximity spaces as
bireflective subcategories. Conv, bicoreflective in Grill,
is isomorphic to the category of symmetric convergence
spaces.

Key Words: Topological category, cartesian closed ca-
tegory, quasi-topos, merotopic spaces, gnll-determmed
spaces, convergence spaces, products of quotient maps.
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Since the category Top of topological spaces and con-
tinuous maps fails to have some desirable properties (for
example products don’t commute with quétients and there ies
in general no natural mapping space topology; that is, Top
is not cartesian closed), there have been various attempts
to replace Top by more convenient categories. Unfartunately
most of these categories suffer from other deficiencies. So-
me are tco small (e.g. sequential spaces [28]), some too
large (e.g. quasi-topological spaces [23]). Others like the
category of compactly generated spaces [25], a large subca-
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tegory of Top, and the category of epitopological spaces
{11, a small supercategory of Top, have not been described
directly by suitable axioms.

‘ In this paper the authors propose in the realm of near-
ness structures [10, 11] categories Grill and Conv, which
satisfy the criteria for convenient topological categories
set up by N.E. Steemrod (24] and are free from the above-
mentioned deficiencies. Furthermore, Conv is intimately re-
lated to such cartesian closed categories as the convergen=—
ce spaces [17), the limit spaces (8, 18] and the pseudotopo-
logical epaces [6], yet its spaces have structures which are
1“; point-bound. Grill contains Conv, and also some impor-
tant topological categories not embeddable in the convergen-
ce spaces, Categories equivalent to Grill and Conv were in-
troduced as early as 1965, but in a different context, by
M, Katstov [15, 16].

§ 1. The category P-Near

1.1, Definition. Iet X De a set. For (Ic PX =
={A| Ac X}, let stack (L = stacky (¢ ={BcX| &< B for
some Aell.If $c PX, B corefines (X iff & c stack (I .

1.2, Definitioms. A subao{ g of PPX is called a pre-
nearness structure on X if it satisfies the following condi-
tions:

(N1) If & corefines O end (L &€§ , then He§ .

(N2) If NUL+d , then (L e § .

(M3) 1o ¢; $e§ .
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If § 4is a prenearness structure on X, then (X,§ ) is cal-
led a prenearness space. A map f: (X,f )—> (¥, 7 ) between
prenearness spaces is called nearness preserving if (f e §
implies £ (4 ={fA|A€c (L} e 7 ., The category of prenear—
ness spaces and nearness preserving maps is denoted by P-Near.
l.3. Remarks. The category P-Near was introduced by H.
Herrlich [11]. It is a properly fibred topological category
[11] and as such has a number of pleasant properties (c.f.,
for example, P. Antoine [1), H. Herrlieh [11], R.E. Hoffman
(131, M, Hudek [14) and O. Wyler (26, 27]). In particular,
P-Near is complete, cocomplete, wellpowered and cowellpower-
ed, embeddings = extremal monomorphisms = regular monomorph-
isms, quotient maps = extremal epimorphisms = regular epi-
morphisms, any object with non-empty underlying set is a se-
parator, and the forgetful functor P-Near — Set has a full
and faithful left adjoint and & full and faithful right ad-
Joint. Embeddings, quotient maps, limits and colimits are
characterized as follows:
(a) A map £: (X,§ )—>(¥,7) between two prenearness spa-
ces is an embedding in P-Near iff f is injective and § =
= {dcPX|then} . ffis an embedding, (X,§) is
called a (prenearness) subspace of (¥,7 ). f is a quotient
map in P-near iff £ is onto amd 7 = {% c PY| £l <
= {tB(BeHie§} ., If £ is a quotient map, (Y,n) is
called a (prenearness) quotient of (X,
(b) A non-empty source (p;: (X,§ ) —> (X;, §3))5.7 in P-Near
is a limit of some diagram in P-Near iff (p;: X—>X;); 7 is
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a limit of the underlying diagram in Set and

§ =4t c PX|p; L € §; for each ie I},

(c) A non-empty sink (g;: (X3, §4) — (X, § My 1 in P-Near
is a colimit of some diagram in P-Near iff (g;: Xi--> X)iEJ;
is a colimit of the underlying diagram in Set and

f={cdc PX}gElO‘LEfiforsomeiéI}.

i

l.4. Theorem. In P-Near any product of quotient maps
is a quotient map.

Proof. Let (f;: (X;, £:)—> (I, "li))i 1 be a non-
empty femily of quotient maps in P-Near, let (pi: (P, §)—
— (X5, gi))ieI and (q;: (Q,7)—> (¥4, ni))iex be products
in P-Near, and let £ = Tf;: (P,§)—>(Q,7 ). Since all
f;: X;—> Y, are onto, so is £: P—> Q. If & & 7 , then
a; & e 7, for each ie I, Hence pif'le‘ﬁ' = f;lqi & e gi
for each ie I. Consequently £l e § , which implies f£:

: (P, )—>(Q,7n ) is a quotient map in P-Near,

1.5. Remark, In P-Near products don’t commute with co-
products, as the following example shows. From the characte-
rization of cartesian closedness for topological categories
in [12], we conclude that P-Near is not cartesian closed. In
§ 2 and § 3 we will turn our attention to nicely embedded
subcategories of P-Near which have the desired properties.

1.6, Exemple, If X =4{1,2}, ¥, =41%, ¥, = 2%, ¢ =
= {0c PX|NA+$} ana §;=4Uc PY; |0 AL+ } for
i=1,2, then X = (X,§), X, = (I, 7,) and ¥, = (I,, 1,) are
prenearness spaces. But gx.ﬂ._!’if? i (X=X;) since =
= £4(1,1)%, 4(3,2), (2,1)3% is a near collection in
X1l ¥; but not in U (XxX;y,
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1.7. Remarks., (1) Several topological categories can
be nicely embedded as subcategories of P-Near. (By subcate-
gory, we mean full, isomorphism closed subcategory.) Among
these are
(a) The category S-Near of seminearness spaces whose ob-
Jjects are those prenearness spaces (X,‘g‘ ) satisfying

(NM4) A v ={AUB|A €Ul andBeHle § imp-
lies e § or Hef -

S-Near is a bicoreflective subcategory of P-Near [11]
which is isomorphic to the category of merotopic spaces in-
troduced in a fascinating but little-known paper by M. Kat&-
tov [15].

(b) The category Near of nearness spaces whose objects are
those seminearness spaces (X,§ ) satisfying

(¥5) clng ==-[<:1g A|lAe Lie§ implies L & §
(where el A ={xeX [{{xt,A3 e} ).

Near is a bireflective subcategory of S-Near [11].

(¢) The category whose objects are those nearness spaces
(X,§ ) such that
OLeg irf ﬂclgdL#cb .

This category is isomorphic to the category of topolo~
gical R, spaces (topological spaces (X,cl) satisfying the
condition that xecl{y} implies yecclfix? ) and will be de-
noted by Top. The isomorphism identifies an R, space (X,cl)
with the nearness space (X,§ ), where § =1 (L c PX|Nc1Ci+
= Q% . Top is bicoreflective in Near [10].

(d) The categories of uniform spaces, contiguity spaces and
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proximity spaces, each of which can be embedded bireflec~-
tively in Near [10].

(2) None of the categories mentioned in (a) - (d) are
cartesian closed. This is well-known for the category of
topological spaces and the subcategory of Ro spaces. The
following example shows it for S-Near, Near, and the cate-
gory Unif of uniform spaces. A slight modification of the
example shows this for contiguity and proximity spaces,

1.8, Example. Let X be the set [0,1] with nearness
structure § induced by the usual topology on [0,1] (see
1.7(c)). For each ne N, let Y, be the (unique) nearness
space with underlying set {n¥ . In S-Near, each of
Xx U3 end U (XxX)) hes underlying set [0,1]x N, If
A=40}x N and B = {( i,n)! neN?, then {A,B} is a near

collection in X x LY , but not in U (XxX ). Since Near
and Unif are closed under the formation of products ani co-
products in S-Near, we obtain X x Il ¥, 4 L (XxY ) in eny

of these categories.

§ 2. The category Grill

2.1, Definitions. (1) Gk c PX is called a grill in X
iff ¢ € JL and the following condition is satisfied:

For any A,BcX, AvBe (L iff AeCL or Be ¢f -

(2) If (X,§) is a prenearness space then ¢} is cal-
led a § -grill iff (4 is a grill and & e § - ‘

2.2, Remarks, The concept of grill was introduced by
G. Choquet [5]. The notion is dual to that of filter. The
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ultrafilters are the minimal grills; equivalently, they sre
the filters which are grills. Grills are precisely the uni-
ons of ultrafilters, and the union of grills is a grill.

2.3, Definitions. A prenearness space (X,§ ) is cal-

led grill-determined iff each (L € § is contained in some
§ -grill & . The subcategory of P-Near whose objects are
the grill-determined spaces is denoted by Grill.

2.4, Remarks., (1) If X is any set and G a collection
of grills in X satisfying the condition that for each xeX
there exists a grill ¢/ in G with {x} e ¢} , then § =
= {UlcPX|tc¢ forsome (e G} is a grill-determi-
ned prenearness structure. We say the collection G determi-
nes § .

(2) The category Grill was introduced by W.A. Robert-
son [22], It is isomorphic to the category of filter meroto-
pic spaces introduced by M. Kat¥tov [15]. It is still big
enough to contain the categories of contiguity spaces, pro-
ximity spaces, gmd topological Ro spaces,

(3) If (X,§ ) is a prenearness space, then the set § g
of all L e § whieh are contained in some § -grill is &
grill-determined prenearness structure on X, and the map
1g: (X, g‘s) —> (X §€) is a Grill-coreflection of (X,§ ).

As a bicoreflective subcategory of P-Near, Grill is a
properly fibred topological category with final structures
(and hence colimits) formed as in P-Near and initial struc-
tures (and hence limita) formed by forming them first in
P-Near and applying the Grill-coreflector. In particular,

any prenearness subspace of a grill-determined space is
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grill—c:etermined. Products are described explicitly in 2.6.
205- Lemma., Iet (Xi)iﬁI
(pj: T —> xj)a'él' the cartesian product and Q,Li a grill

be a non-empty family of sets,

in Xi for each ie I, Then there exists a largest grill in
TX;, denoted by @ ¢4;, with the property that
p;( @ &y) © ¢y for each jel.
(a) The following statements are equivalent for G c 1T X5
(1) ¢ce & ¢4,
(ii) If & is a finite cover of G, then there exists
Bey with p; B € (J, for each iel.
(iii) IfGc U< pElAjl jed}, where Jc I is finite,
€ ;.
o C#Jo
(b) In the case all X; are non-empty we have pj( ® Q,Ci) =
= (J—j for each jeI,

then there exists joe J with Aj

Proof, Conditioms (ii) and (iii) may be readily seen
to define grills with ith projection a subset of @-5_ for
each i€ I, Conditiom (ii) defines the largest such grill.
For suppose UL is a grill in T X; with Py L c C}i for
each icI, and A e & . If & is a finite cover of A, then
Be (UL for some B € ¥ . That means p;B € ¢ for each
ie I. Clearly (ii) implies (iii) and all the statements are
equivalent.

2.6, Remark. If (X;, § i) is a grill-determined space
for each i€ I, the collection 4 ® Q,‘Lll “41’5;1 is a fami-
1y of §,;-grills ¢, 3} determines the product structure on
T X; in Grill.

2.7, Remark. If ¢} is a grill in X and £: X—, v is
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eny Set-map, stack £Jf is a grill in Y. Notice that if &
is a gill in Y, £713%  need not be a grill in X.

2.8, Lemma., Let (:Ci: X.——> Ii)ieI be a non-empty fa-
mily of Set-maps, (pyj: P—>X,); y and (q;: Q— ¥, )151
products in Set, and £ = 'TT:ti. P—>Q. Let ¢ be a grill
in X; for each ie I. Then
(a) @ stack £; U4y = stack £( @ ;).
(b) IfK =4ieI] £;X;%Y;} is finite and ¥, is a grill
in Y; with f;l #,; < Cfs for each i€ I, then 1 ® #,;)c
c @ .

Proof. (a) is straightforward.

(b) Assume £7lH & ® ¢4 for some H &€ @ ¥;. Lema
2,5 implies that there exists finite Jc I and‘A & C/,(—J for
each jeJ so that £ H ¢ U -‘pa | deaz. L’.B is the ler-
gest subset of AJ with lefJBsJ Bj, then Bj¢ Cg_ and
g cU4{ p}lBj | jed?, since for each yeH, £ (y) c
c U4 p:.j'l&jl jedt implies that Tr(leqi(y)) = f"l(y) c
c pEJ‘A. for some j&J, and hence £ 1(y)c pslB for that j.
So f£THe U4 pr BJ[;)SJ} andHcU{prB | jeds v
viUd q;]'(Yk\ kak)l k€ X} . Then some member of this fini-
te cover must be in @ ;. But q (!k\ £X) ¢ ® ¥, for
any k€K since £ qk(qk (TN X)) =0 ¢ o, andfp #
€ ® '52 for any je€J since f’lqj(f 'lB ) = f.)lf.l j = BJ ¢
€ Q,'!—J- (contrad:.ctlon).

2.9, Remark. The condition that K be finite is neces-
sary. For suppose K is infinite, and let }; = PX;\ {¢? ,
¥, =4BcY;|BALX;+ ¢! for each ie I, Then £f]’ %, c
¢ O for each ic I, but QNfP e ® ¥, and T 1(0\:1:) =

- 215 ~



-9 &0,

2.10. Theorem. In Grill any product of quotient maps
is a quotieni map.

Proof. Let (f5: (X;, ?i‘)—-» (X35 M3))je1 be @ non-em-
pty family of quotient maps in Grill, let (pj: (P,§f) —
—> (X3, F3))je7 and (q3: (Qym )—> (Y3, 4));, 1 be products
in Grill, and let £ =T £;: (P, §)—*>(Q, ). Since all f;:

: Xy—>Y; are onto, so is £: P—*>Q. If & € 7 , then

& c ¥ for some m -grill % . Then q; % & 7; and hen-
ce f;lqi?& € ?i for each i€ I. Consequently for each ie I
there is a §;-grill @4 with f;lqige c. %i‘ @ 0013 is
a §-grill, and 2.8(b) implies that £ (® qq ¥;)c ® ;.
But £ ¢ £l%e ¢ £H® g5 W50t B e §

2.11, Theorem. In Grill finite products commute with
direct limits,

Proof. Consider a commutative diagram in Grill

5%
RS gk) @, §) ie I, I finite, non-empty.
ke K, (K,£) a directed

p.
pik * set.,

ik

where the columns (for fixed k) represent finite products
and the bottom rows (for fixed i) represent direct limits in
Grill. To see that the top row represents a direct limit in
Grill, observe that it represents a direct limit on the Set
level. It remains to show that for any § -grill L there
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exists ke K with f;lClL € § o For each ieI, piUL e €5
Consequently for each i& I there exists k(i)& K such that
Lir)Pi 4 € §ip(y)e Since I is finite and (K,4) is ai-
rected, there exists k € K with k(i)éko for each ie I. The-
refore, f'{iopi d e ¥ ik for each ie I. 2.8(b) implies

-1

b Sl ¢, AN .

X, ¥ x,

2.12, Theorem. In Grill .LL(_gixzj) ~ U X; = u_gj.

Proof. First consider a commutative diagram in Grill

'IH
X, = (X, 23) > (I,n) = Uy
P
i 1 xmg sz
EIrX, = (XxYy, ;) > (XxX,p) =X = UZ,
X= () N = (X,§) =X
X

in which the top row represents a non-empty coproduct and
the columns products :m Grill. To see that the middle row
represents a coproduct, observe that (lxx m;3 XxY; —>

— x"!)ieI represents a coproduct in Set. Hence it re-~
mains to show that for L& 7, (1xxma-)-101 € 7 for so-
me jeI, Now (f is contained ina ¢y -grill ¢ . py@Fe§
and py ¢ en are grills. For some jeI, mglpI &G = 1 5 -
that is, xn",}]'j;)x G c# for some 7 ;-grill ¥ . But 2.8(b)
implies that (lxmnj)'l% < py @ @ ¥ & yj. Therefore
(lx:nj)'la € ;- This proves X x Ly = L(XxX,).
Apply this formula twice to get the desired result.

2.13. Theorem. Grill is a quasi-topos in the sense of
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Penon, i.e.
(1) Grill is cartesian closed.
(2) In Grill, for each X there exists an embedding
‘X —> X" with the property that for each embedding ¥ —>X~
and each morphism ¥ — X there exists a unique morphism
¥’—» X’ making the diagram
I—

4

—_—

e

<<

X
i
X
a pullback.

Proof. (1) Immediate from 2,10, 2.12 and the charac-
terization of cartesian closed topological categories in
[12].

(2) For a grill determined space (X,§ ), let x’ be &
new point not in X, X’ = XU 4 x’3, and §" = { c PX’|
|{Ae U |AcXte§? . Then (X,§)—> (X', §') is the de-
gired embedding.

2.14. Remarks., (1) Grill is a cartesian closed topo-—
logical category satisfying Steerrod’s criteria for conve-
nient topological categories. Being a quasi-topos, Grill
has several other pleasant properties, e.g. colimits are
universal, i.e. preserved by pullbacks.

(2) Theorem 2.13 says that if X and Y are grill-deter-
mined spaces Hom(X,Y), the set of all nearness preserving
maps from X to I, has a natural grill-determined structure
® , called the power structure of Hom(X,Y). _Z-)S =
= (Hom(X,Y),® ) will be called a power. "Natural"™ means that
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the evaluation map °x,y* g{_ng—-»; defined by ex’Y(x,g) =
= g(x) is nearness preserving, and for any grill-determined
space Z and nearness preserving map f: XxZ—> Y in Grill
there exists & unique nearness preserving map f: Z— 11 80
that £ = ey y ° (1gx ).

The next theorem explicitly describes the power struc-
ture @ , thus providing an alternate proof for Theorem 2.13.

2.15. Theorem. If X = (X,§) and ¥ = (¥, 7) are grill-
determined spaces, the power structure on Hom(X,Y) is the
structure © determined bty those grills ¢ in Hom(X,Y)
for which eX,Y( L ® C4)e7n for every §-grill & .

Proof. Let geHom(X,Y). Then g = { BcHom(X,Y) | geB}%
is a grill and fg}% € g. If (X is a §-grill,
eX,Y( X ® &) = stack g . In view of Remark 2.4(1),
is a grill-determined structure.

The evaluation map is clearly nearnes preserving. Sup-
pose Z = (2,§ ) is a grill-determined space and f: Xx2Z —X
a nearness preserving map. If we define F: Z —» Y* by P(z) =
= g,, where g;(x) = f(x,2z), then f = ex,Y° (1y=xf). To show
that T is nearness preserving, choose & € § . Then % c
c¥ for some §-grill ¥ . If UL is a §-grill,
ex’Y( L ® stack T¥#) = ex,Y stack (LyxE)( L @ %) =
= stack ex’r(lxx?) (U ® ¥ ) = stack £( X @ ¥ ), a nen-
ber of m . Hence stack ¥ % « & , and since ¥ ¥rc stack T¥
Fo eo .

§ 3. The category Conv

3.1, Definitions. A grill-determined prenearness space
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(X,f ) is called a convergence space iff for any non-emply
member (! of § there exists xeX with (RU4i{x3te § .
The subcategory of Grill whose objects are the convergence
spaces is denoted by Conv.

3.2, Rémarks. (1) The category Conv was introduced
by W.A. Robertson [22]., It is a bicoreflective subcategory
of Grill with coreflector described as follows: For emy grill-
determined space (X, § ) the set fe={idc | there ex=~
ists xeXwith - A U{{x}¥ e §tU{¢p? is a structure
making (X, §,) & convergence space and l;: (X, gc)—> (%,§)
a Conv-coreflection of (X,§ ).

A 'As a bicoreflective subcategory of Grill, Conv is a pro-
perly fibred topological category with final structures (and
hence colimits) formed as in Grill (and hence as in P-Near),
and initial structures (and hence limits) formed by forming
them in Grill and applying the Conv-coreflector.

(2) Conv is isomorphic to the category of localized
filter merotopic spaces introduced byAM. Katdtov [15]. It is
also isomorphic to the category of convergence spaces in the
sense of D, Kent [17] (which contains the category of limits
spaces, introduced independently by H.J. Kowalsky [18] and
H.R, Fischer [ 8], the category of pseudotopological spaces,
introduced by G. Choquet [6], and the category of topologi-
cal spaces as subcategories), provided we assume (as we shall)
the following symmetry condition: If # is a convergent fil=-
ter with x e N & , then & converges to x. All T, conver-

gence spaces satisfy the condition, and for topological spa-
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ces it is precisely the R, axiom. The embedding of topo-
logical spaces is precisely the embedding described in
1.7(c). In fact Top is a bireflective subcategory of Conv,
and the Conv-reflector is the restriction of the Near-re-
flector on S~Near. Hence Top is the intersection of the ca=
tegories Conv and Near.

3.3. Theorem. Conv is closed under the formation of
products in Grill.

Proof. Let ((X;, gi))iel be a family of convergence
spaces and (py: (P, §) —>(Xj, §;)); 1 the product of this
family in Grill. If (L€ § is non-empty, (f is contain-
ed in some f-grill ¢4 . For each ieI, p; ¢4 & i+ Thus
for each ie I there exists x;€ X; with p; &4 U {4x3%ef,.
If X is the element of P with pi(x) = x5 for each ie I, ¢fL v
U x (where x ={fAcX|xeA} ) is a §-grill, Hence (L U
Uid4x3ie€ .

Immediate consequences are

3.4. Theorem. In Conv the following hold:

(a) Any product of quotient maps is a quotient map.
(b) Finite products commute with direct limits.

(e 1l (gixgj) 2 Ul X = .Ltzj.

(d) Conv is cartesian closed.

3.5. Theorem. Powers are formed in Conv by forming
them in Grill and applying the Conv-coreflector.

Proof. If X and Y are convergence spaces, denote the
Conv-coreflection of Lz by ;!‘x. Since products in Conv are
formed as in Grill, ex,y* l{_x}_% —>»Y is a nearness preser=-

ving map, Let Z be a convergence space and f: XxZ— XY a
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nearness preserving map. Then there exists a nearness pre-
serving map T: g-»_ﬂ‘- such that £ = eX,Y(lx*?)‘ Applying
the Conv-coreflector, we conclude F: g-»_g%— is nearness
preserving,.

That powers in Conv are in general distinct from those
formed in Grill is shown by the following example.

‘3.6, Example. Let X be the rationals with prenearness
structure induced by the usual topology and Y the ratiomls
with prenearness structure induced by the topology with sub-
base for closed sets consisting of the set A =-i-1]§\neN %
together with all sets closed in the usual topology. The
grill ¢4 = {GcHom(X,Y) | for each € > O there exists fe @
with FXNA = ¢ and|x = £f(x)|< & for every xeX } is in
the power structure in Grill but not in Conv.

3.7, Remark, Conv is not the smallest cartesian closed
category containing Top and indueing the usual topological
limits. We mention here three subcategories of Conv. All are
cartesian closed categories with powers formed as in Conv,
and all are bireflective in Conv.

(a) The category Lim of limit spaces has as obJjects those
convergence spaces (X, g ) satisfying the condition
AU {ixite ¢ and $UL4 x}ite§ impliea oL v
v e £ .

Lim, introduced in [22], is isomorphic to the category
of limit spaces in the sense of H.J, Kowalsky [18] and H.R.
Fischer [8] (see 3.2 (2)).

(b) The category PSTop of pseudotopological spaces has a
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objects those convergence spaces (X,g ) satisfying the fol-
lowing condition:

If ¢4 is a gill, and there exists x& X such that for
every ultrafilter W c & , UULE{x33 e § , then
Cg € § o .

PsTop, introduced in [22], is isomorphic to the cate=
gory of pseudotopological spaces in the sense of G. Choguet
6] (see 3.2 (2)).

(e) The category EpiTop of epitopological spaces has a8 ob=-
jects those convergence spaces (X, § ) for which § is ini-
tial in Conv with respect to (X,(fi),(@gi)c))iﬁl, where A;

=i
Set-map for each ie I (e¢.f. P. Antoine [ 1] and A, Machado
t9ld.

and B; are topological spaces and fj: X—> Hom(4;,B;) is &

§ 4. Comstructing Grill from Top

We have noted that the category Grill has smong its ni-
cely embedded subcategories not only Top, but alsc the cate~
gories Cont of contiguity spaces and Prox of proximity spa=-
ces, neither of which is embeddable in Top or even Conv. On
the other hand, every grill-determined space arises natural-
1y from elementary comstructions on topological spaces in
P~Near.

4.1, Theorem., The convergence spaces are precisely the
prenearness quotients of the topological spaces. Thus Conv
is the coreflective hull in P-Near of Top.

Proof. If (X,§ ) is a convergence space, there exists

a family ( (Jy)s,p of § —grills which determines § and
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such that for each ie I there exists x;€ X with -ixi t e

€ Cfj. For each ieI, let §; =il c PX|CL & ¢}, or
NU =+ ¢3¢ . Then (X, §;) is in Top and 1y: (X, §;) —>
—> (X, § ) is a nearness preserving map. Let (Y, ) be the
coproduct of ((X,gi))id. Since Top is closed under the
formation of coproducts in P-Near, (Y¥,7 ) is in Top. The
map £: (¥,7)—> (X,§ ) induced by (1y: (X, §;) —>

—> (X, § ))iel is a quotient map.

The converse is immediate from Remark 3.2 (1).

4.2, Remark., Since each of the categories Conv, Grill
and S-Near is bicoreflective in P-Near, we conclude that
Conv is the coreflective hull of Top in each of these cate-
gories, in particular in S-Near,

4.3. Theorem. The grill-determined spaces are precise-
ly the prenearness subspace of the convergence spaces,

Proof. If (X,§ ) is a grill-determined space, let X’ =
={QcPX|Q isa § -grill § and define a mep i: X —
— X’ by i(x) = X. The structure § on X induces a structu-
re § on X’ as follows: Define
§/ =i c ' |U{Nwlwelief} . (x°, §) isa
convergence space and i: (X,§ ) —> (X", §) is an embedding.

The converse follows in view of Remark 2.4 (3).

4.4, Remarks. (1) 4.3 and 3.3 imply that Grill is the
epireflective hull of Conv in Grill. As has been shown by
M. Shayegan Hastings [9] the epireflective hull of Grill
(and thus Conv) in S-Near is S-Near.

(2) 4.1 and 4.3 imply that the grill-determined spaces are

precisely the subspaces of quotients of topological spaces
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in P-Near (or S-Near or Grill). Next we show that the grill-
determined spaces are precisely the quotients of subspaces
of topological spaces in P-Near.

4.5, Definitions. A prenearness space is called sub-

topological iff it is a prenearness subspace of a topologi-
cal space. The subcategory of P-Near whose objects are the
subtopological spaces is denoted by SubTop.

4.6, Remarka. (1) The category SubTop was introduced
by H.L. Bentley [3]. It is the intersection of the catego-
ries Grill and Near. SubTop is bireflective in Grill, and
the SubTop-reflector is the restrictiom of the Near-reflec-
tor on S-Near.

(2) Top is bicoreflective in SubTop and closed under
the formation of products in SubTop. Since Top is not carte-
sian closed, this implies SubTop is not cartesian closed
(see L,D. Nel [20]).

4.7. Theorem. The grill-determined spaces are preci-
sely the prenearness quotients of the subtopological spaces.
Thus Grill is the coreflective hull in P-Near (or S-Near or
Grill) of SubTop.

Proof. Similar to the proof of 4.1,
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