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COMMEMTATXONES MáTHEMTICAB UM¥BRSITATXS CAROLIMAE 

17,2 (1976) 

COIfEIIBIT CATEGORIES FOR TOPOLOGISTS 

H.U BENTLEX, H® HBRRXJCH and W»A* ROBERTSON 

Abstract: The category Top of R-topological space® 
is nicely embedded in Grill and Conv, two cartesian closed 
topological categories of nearness spaces« Grill is a qua-
si-topos which| although constructible .from Top: in a natu­
ral way, contains the contiguity and proximity spaces as 
bireflective subcategories* Conv, bic©reflective in Grill, 
is isomorphic to the category of symmetric convergence 
spaces . 

Key Wordst Topological categoryf cartesian closed ca­
tegory , <£uasx-topost merotopie spaces, grill«-determined 
spaces, convergence spaces, products of quotient maps* 

AMS; 54C35, 54E99, 54B99, 18B99 Bef.'2.: 3,961 

Since the category Top of topological spaces and con­

tinuous maps fails to have some desirable properties (for 

example products don't commute with quotients and there is 

in general no natural mapping space topology; that is, Top 

is not cartesian closed), there have.been various attempts 

to replace Top by more convenient categories, unfortunately-

most of these categories suffer from other deficiencies. So­

me are too small (e.g. sequential spaces 1283), some too 

large (e.g. quasi-topological spaces [233)# Others like the 

category of compactly generated spaces [25.3 f a large subea-
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tegorgr of fop, and the category of epitopologice! space® 

C13, a small snpereategory of Topf nave not been described 

directly by suitable eaeioms* 

In this paper the authors propose in the realm of near­

ness structures [10, 11] categories Grill and Conv, which 

satisfy the criteria for convenient topological categories 

set rap by !•£• Steenrod £243 and are firee from the above-

mentioned deficiencies» Furthermore, Conv is intimately re­

lated to such cartesian closed categories as the convergen­

ce spaces {1?3, the limit spaces [8, 18] and the pseudotopo­

logical spaces [6], yet its spaces have structures which are 

less point-bound* Grill contains Conv* and also some impor­

tant topological categories not embeddable in the convergen­

ce spaces» Categories equivalent to Grill and Conv were in­

troduced as early as 1965, but in a different context, by 

H» Katgtov [15, 16]« 

S !• Hie category P-lear 

*•!• Definition, Let X be a set* For OLc PX -

« i A{ i d ] , let stack OL * stackj OL m i Be X | Ac B for 

some A & OL f • If ̂  c PX9 &> core fines CI iff &c stack 01 # 

1.2* Definitions^ A subset £ of PPX is called a pre-

nearness structure on X if it satisfies the following condi­

tions : 

(11) If *& coref ines (X and it e f , then & e § . 

(12) If n C I * ^ , then a * f . 

(13) -t4> > * f ; 4> * f -
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If £ is a preneamess structure on X, then (X,£ ) is cal­

led a preneamess space* A map f: (X,§ )—.> (Y9-^ ) between 

preneamess spaees is called nearness preserving if OL « § 

implies fC!t * itk\ A e OL} & *i 9 The category of prenear-

ness spaces and nearness preserving maps is denoted by P-Hear. 

1.3* Remarks. The category P-Near was introduced fey H# 

Herrlich [11]. It is a properly fibred topological category 

[11] and as such has a number of pleasant properties (c.f*, 

for example, P. Antoine (1], H. Herrlieh [11], R.E« Hoffman 

[131, M. HuSek [14] and 0. Wyler [26, 27] )• In particular, 

P-Near is complete, coeomplete, wellpowered and cowellpower-

ed, embeddings = extremal monomorphisms = regular monomorph-

isms, quotient maps = extremal epimorphisms = regular epi­

morphisms, any object with non-empty underlying set is a se­

parator, and the forgetful functor P-Near —*Set has a full 

and faithful left adjoint and m full and faithful right ad­

joint. Embeddings, quotient maps, limits and colimits are 

characterized as follows: 

(a) A map f: (Xf| )—*(Yfi£) between two preneamess spa­

ces is an embedding in P-Near iff f is infective and f « 

« i OL c PX | f OL a % } . Zt t is an embedding, (X,f ) is 

called a (preneamess) subspace of (I,^)« f is a quotient 

map in P-near iff f is onto and ^ * "*• & c ra I * & s 

« { f ^ l B i S f r J c f j • If f is a quotient map, (I, ̂  ) is 

called a (preneamess) quotient of (X, | )• 

(b) A non-empty source (p±i (X,f ) —* (%» fi^-ui *» P~Ne*r 

is a limit of some diagram in P-Near iff (p^: X—*• X^)^j is 
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a l imi t of the underlying diagram in Set and 

f » {Cfc c PX J p i OL e f ± for each i € I J • 

(c) A non-empty sink (g±% (X±9 f i ) —> (X, f ) > i € l i n p-Hea> 

i s a colimit of some diagram in P-Near i f f (git X ^ Y) . 

i s a colimit of the underlying diagram in Set and 

| -= { a c PX 1 gT1 a £ f i for some ±e 11 • 
1*^» Jfaeorei-U In P-Near a.qy product of Quotient maps 

i s a quotient map. 

Proof. Let lt±i (X±9 | ± ) — > ( i i f ni±))± j be a non­

empty family of quotient maps in P-Near, l e t (p±i (P, f )--*. 

—>(X i , f-i))^!-and (f^t (Q,1 ) — * ( I i f ^ i ) ) i € l be products 

in P-Iear, aM le t f « TT^: (pf f )—> CQS^ )• Since a l l 

t±z X±—> Y i are onto, so i s fs P—v Q. If *6* e. n^ , then • 

f . S - fi ! • for each i e l . Hence p ^ 1 ^ » f T ^ & * %^ 

for each i f e l . Consequently f Srfi f , which implies f: 

: (P, | )—^•(Qf't} i s a quotient map in P-Near. 

1.5. Bemark. In P-Iear products don't commute with co-

products, as the following example shows. Prom the characte­

r i za t ion of car tes ian closedness for topological ca tegor ies 

in £121, we conclude that P-Near i s not car tes ian closed. I n 

§ 2 and § 3 we w i l l turn our a t tent ion to nicely embedded 

subcategories of P- lear which have the -desired p r o p e r t i e s . 

1.6. Example. If X =- {1 ,2} , Y-ĵ  * {!?, Y2 » 42? f f * 

* { a c PX |n<X#£i and $ ± * 40t c Fl±\ n OL 4* <$>} tor 

i = 1,2, then X « (X,f ) , Jx » <Y1# %x) and Y2 « (Y2, %£ a^e 

prenearness spaces. But X x l l T± 4* 11 (X*Y±) s ince Ol =•' 

- { 4 ( 1 , l ) i , 4 ( 1 , 2 ) , (2,1)}} i s a near co l l ec t ion in 

X * J i Y, but not in i i (X xY., 
—— —i. — —x) 0 
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1.7» Remarks* (1) Several topological categories can 

be nicely embedded as subcategories of P-Near» (% subcate­

gory, we mean full, isomorphism closed subcategory*) Among 

these are 

(a) The category S-Near of semineamess spaces whose ob­

jects are those prenearaess spaces (X, J ) satisfying 

(N4) 01 v & --UUB |£, e OL and B e l i e f imp­

lies 01 £ | or & 6 f • 

S-Near is a bicoreflective subcategory of P-Near til] 

which is isomorphic to the category of merotopic spaces in­

troduced in a fascinating but little-known paper by M, Kat&-

tov [153. 

(b) The category Near of nearness spaces whose objects are 

those seminearness spaces (X, £ ) satisfying 

(N5) clcC& «-£clf A | A 6 Ol I € f implies 01 e f 

(where cl? A M x e X |-€-€ xffA I e £? ) # 

Near is a bireflective subcategory of S-Near Cl l l . , 

(c) The category whose objects are those nearness spaces 

(X, f ) such that 

OL e f iff A clf a 4- <J> . 

This category is isomorphic to the category of topolo­

gical R0 spaces (topological spaces (X,cl) satisfying the 

condition that x e cl i j } implies y £ cl i x 1 ) and will be de­

noted by Top. The isomorphism identifies an H0 space (Xfcl) 

with the nearness space (X, £ ), where f « i Ol c PX|nclCt4: 

4* 4> \ • Top is bicoreflective in Near LlOj. 

(d) The categories of uniform spaces, contiguity spaces end 
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proximity spaces f each of which can be embedded bireflee-

tively in Hear tl03« 

(2) Hone of the categories mentioned in (a) - (d) are 

cartesian closed* This is well-known for the category ©f 

topological spaces and the subcategory of H spaces* '.She 

following exaaple shows it for S-Hear, Uearf and the cate­

gory Unif of uniform spaces • A slight modification of the 

example shows this for contiguity and proximity spaces® 

1»8# Example« Let X be the set [0$11 with nearness 

structure f induced by the usual topology on E0sl3 (see 

1*7(e)). For each ncN-, let X toe the (unique) nearness 

space with underlying set in J • In S-Hearf each of 

X x 11 X and 11 ( X K J B ) has underlying set [0,13 * N. If 

A * 4,0}K I and B * 4( -,n) | i £ l } , then iAfBi as a near 
n 

collection inXxliX n, but not in H Q C x J ^ K Since Near 

and Uhif are closed under the formation of products an! eo-

preduets in S-Near, we obtain *X> 11 X a 4* H Q?*In) i» any 

of these categories. 

§ 2, The category Grill 

2*1* 3>sfinitions> (1) (§« c K is called a grill in X 

iff $ £ (£> and the following condition is satisfied: 

For any A»Bc X, Au B6(|. iff A.&C£ or B e Cjf. • 

(2) If (X, | ) is a prenearness space then ($* is cal­

led a. I -®*ili iff ty is a grill and C§. « f . 

2.2# Remarks.. She concept of grill was introduced by 

G. Choquet t5l. fhe notion is dual to that of filter* The 
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ultrafilters are the minimal grills; etuivalently, they aare 

the filter® which are grills• Grills are precisely the uni­

ons of ultrafilters, and the union of grills is a grill• 

2*3# Definitions* A preneamess space (Xff ) is cal­

led grill-determined iff each OL e f is contained in some 

£ -grill (#> * The subcategory of P-Mear whose objects are 

the grill-determined spaces is denoted by Grill* 

2*4* Remarks. (1) If X is any set and G a collection 

of grills in X satisfying the condition that for each 2 e X 

there exists a grill ($*. im G with {x! e ^ , then f * 

» *£ C£ c PX | C& c £$. for some (£ m 0 J is a grill-determi­

ned prenearness structure. We say the collection G determi­

nes f 

(2) The category Grill was introduced by W.A. Robert­

son [223. It is isomorphic to the category of filter meroto-

pic spaces introduced by M# Kat&tov £l5J« It is still big 

enough to contain the categories of contiguity spaces, pro­

ximity spaces, and topological 1 spaces. 

(3) If (XT£ ) is a prenearness space, then the set f 

of all 01 e I which are contained in some f -grill is m 

grill-determined prenearness structure on X, and the map 

lxs (X, fg) — > (X f ) is a Grill-eoreflection of (X, f ). 

As a bic ©reflective subcategory of P-Near, Grill is a 

properly fibred topological category with final structure© 

(and hence colimits) formed as in P-Hear and initial struc­

tures (and hence limits) formed by forming them first in 

P-Near and applying the Grill-coreflector. In particular, 

any prenearness subspace of a grill-determined space is 
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grill-determined. Products are described explicitly in 2*6. 

2.5* Lemma. Let (-%)£ej &e a non-empty family of sets, 

(p.s TTX^ — * xj'i6i tiie cartesian product and ^ a grill 

in X» for each ie I. Then there exists a largest grill in 

TTX^ denoted ^ ® <$.., with the property that 

Pj( ® gtj) c C^. for each j€ I. 

(a) The following statements are equivalent for GcTT X^j 

(i) 0 e ® g.v 

(ii) If IsO is a finite cover of G, then there exists 

B e ^ with Pj> B e C ^ for each i e I. 

{iii) If G c U *{ pT^A. | -je J } , where Jc I is finite, 

then there exists J € J with A- € ($>. . 
° «*Q

 Jo 

(b) In the case all X. are non-empty we have pA ® Ĉ f.̂ ) « 

» <^4 for each j e I. 

Proof. Conditions (ii) and (iii) may be readily seen 

to define grills with i projection a subset of C$*^ for 

each i€l. Conditio.® (i£) defines the largest such grill. 

For suppose CI is a grill in TTX^ with p. OL c ty. for 

each iel, and A 6 Ct . If & is a finite cover of A, then 

B e 01 for some B € & . That means p^B « C£.± for each 

iel. Clearly (ii) implies (iii) and all the statements are 

equivalent. 

2.6. Remark. If (X^, f ̂ ) is a grill-determined! space 

for each ie I, the collection 4 ® ^ I <<^i).££-. is a fami­

ly of f ̂.-grills C^i ? determines the product structure on 

TT Xi in Grill. 

2.7. Remark:. If Ĉ . is a grill in X and f: X > ¥ is 
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any Set-map, stack £ty i s a g r i l l in I . Hot ice that i f 96 

i s a grill in X, £ X need not be a g r i l l in X. 

2«S« Lemma,« Let (£±z X±—> *±)±mT ** a aoo-empty fa­

mily of Set-maps, (p^: P ~ * ^J- tg^ wad (q±z ^""^Wex 

products in Set s and f » TFf^s P —> Q, Let <$* be a g r i l l . 

in X. for each i e I , Then 

(a) ® stack ^ C$*± * stack f( ® <&±)« 

(b) If K * 4ie 1 | ̂ i * ^ } is finite and « ± is a grill 

in Yi with fT
1 %i± c ^ for eaeh i« If then f""

3^ © ^ i ) c 

c ® C^±# 

Proof® (a) is straightforward* 

(b) Assume f~Ti £ ® C§*± for some H « 0 SP^. Lemoa 

2®5 implies that there exists finite Jc 1 and'A.s # (JC* for 

each j ® J so that f"% c U •£ P4 A. I J € J } « If B. is the lar-

gest subset of A* with £*^£M. « B.f then B. ̂  ($.. and 
J d «J j J 4 * 4 

fmJn c U "C p7 B* I j c J I , since for each ycH s f (y) c 

c U i p T 1 ^ I j c J I implies that T H f T ^ y ) ) -= f 1 ^ ) c 

c pl^k* for some j € J9 and hence f (y)c pT 04 2for that j . Л̂ 
>mlH c U -í fpTXB. | j e J ? and H c U -f fp"^1 B. | j c S o f t T c U - J f p . AB. j j e J ? and H e U -C fp4

xB. | j c J I u 
u U 4. q^ (Xk^ fjJ-fc) I k« K? . Then some member of th is f i n i ­

te coirer must be in 0 %€±9 But q^CX^N f - ^ ) ^ ® #€ ± tOT 

any kg K. since - ^ ^ ( q ^ C X ^ f^)) s 4> * fyk$ *»<* -te^Bj t 

4 ® 36j, for any j € J since fjXq^ (fp^B..) a * j l f j B j s B j * 

4r (£** (contradiction)® 

2,9« Remarks The condition that K be f in i te is neces­

sary. For suppose K is i n f in i t e , and l e t <$-. * ^X±\ •{§} , 

W± = -fBc X̂^ I B n f ^ t $ ? for each its I* Then fT1 X £ c 

c Oy± for each i £ I , but Qxfp € <g> 3 ^ and f ^ Q ^ f P ) -= 
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* $ • © <s?v 
2«1 0» -®-»®orem. In Gri l l any product of quotient map® 

is a quotient map. 

Proof, .det (f^: (X±f f ±)-~* (I±$ f ^ ) ) ^ *>® a non-em­

pty family of quotient maps in Gri l l 9 l e t (p^s (Pf f ) —* 

—* *Xi* . f i l i a l aa3wl ^ i * *Q»^ *~~*r *yi» ^ i ^ i c l b e products 

in Gri l l , and l e t f » TTf^s (Pf f ) —*• (Q, ri ) • Since a l l f±t 

: x^—*1 ± are onto, so i s f: B—*-Q. I f &r* e ^ f then 

$#* c *#£ for some ^ - g r i l l 3£ • Then q^ #£ & <*i± and hen­

ce f j i^<fd c f i * 0 r eaeh i € I . Consequently for each ±m 1 

there i s a f ^ g r i l l €^± with f J 3 ^ 3£ c <£ ±m ® ^ i s 

a f - g r i l l , and 2.8(b) implies that f ^ t ® q i %e±) c ® C£ i # 

But f"1^ c f^ae c f"*1^ qi *e±)i s o f ^ e f . 
£•11 • ^heoyem. In Gril l f i n i t e products commute with 

direct l imi t s . 

Proof. Consider a commutative diagram in Gril l 

-ì-
(i>k» ? k } *" < p » f * 

Pik Pi 

i c I , I f i n i t e , non-empty. 

keK, (K,.£ ) a directed 

s e t . 

«tt.?ik }
 7—•"O-І.FІ' 

f i k 

where the columns (for fixed k) represent finite products 

and the bottom rows (for fixed i) represent direct limits in 

Grill. To see that the top row/ represents a direct limit in 

Grill, observe that it represents a direct limit on the Set 

level. It remains to show that for any £ -grill 'OL there 
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exists kc £ with fj 1 01 e f k. For each i£ I, p^ Ct- e f ̂ . 

Consequently for each le I there exists k(i)e K such that 

*ik(i)pi ̂  € ^ik(i)# Since * is fia^t® **& (K»~) is di­

rected, there exists tQe K with k(i).£k0 for each iel. The­
refore, fT1 p^Ct c f ±k for each i£ I. 2.8(b) implies 

-i o o 
f'1 cX e ? k . 

o o 

2.12. Theorem. In Grill lLiX±* Yj) ̂  JLL J^x JLiX.. 

Proof. First consider a commutative diagram in Grill 

li * <*i. V 

"t 
x*Z± » (^iif rp 

PX 

x - (X, | ) 

-X*"1! 

in which the top row represents a non-empty coproduct and 

the columns products in Grill. To see that the middle TOW 

represents a coproduct, observe that Cl^xi^s X X Y ^ —** 

— > ^*^igT represents a coproduct in Set. Hence it re­

mains to show that for Ct a y , (lx*mj)~ OL e *f. for so­

me jel. Now 01 is contained in a y-grill ty. . p^C£& f 

and p~ (̂  e ̂  are grills.. For some j e I, n£ p^ C£ m ^ .; 

that is, a^Pj- tycZl tor some ^ .-grill 3f£ . But 2.8(b) 

implies that (l^xwu) ty c p^ C§> <& &£ e y .. Therefore 

( I j H i . r 1 ^ c ^.. This proves X x Ji X% » Ji ( X * ^ ) . 

Apply this formula twice to get the desired result. 

2.13. Theorem. Grill is a quasi-topos in the sense of 
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Penon, i.e. 

(1) Grill is cartesian closed. 

(2) In Grill, for each X there exists an embedding 

X—>-X* with the property that for each embedding X—>X" 

and each morphism X—>JC there exists a unique morphism 

X.'—* &* making the diagram 

X ^ X 

X' s^xf 
a pullback. 

Proof. (1) Immediate from 2.10, 2.12 and the charac­

terization of cartesian closed topological categories in 

E123. 

(2) For a grill determined space (X9f ), let x' be a 

new point not in X, X' = XV i x*lf and f' « i OL c px' | 

I i.& € m [ Ac X } € £ } , fhen (X, f ) — » (x\ f *) is the de­

sired embedding. 

2»14. Sectaries. (1) Grill is a cartesian closed topo­

logical category satisfying Steenrod's criteria for conve­

nient topological categories. Being a quasi-topos., Grill 

has several other pleasant properties, e.g. colimits are 

universal, i.e. preserved t$r pullbacks. 

(2) Hieorem-2.13 says that if X, and X are grill-deter­

mined spaces Horn(X,"J), the set of all nearness preserving 

maps from X to X, has a natural grill-determined structure 

& , called the power structure of Hom(X,X). ]p « 

=- (Hom(X,X), 8 ) will be called a power. "Natural* means that 
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the evaluation map e x y*. X * 2 ^ — > j defined by e x Y(x,g) « 

= g(x) is nearness preserving, and for any grill-determined 

space Z and nearness preserving map ft X x Z — > x i& < - r i l l 

there exists a unique nearness preserving map f i Z—> J* so 

that f « e x j ° (lx*f )* 

The next theorem explicitly describes the power struc­

ture 9 , thus providing an alternate proof for Theorem 2.13# 

2*15. .Theorem. If X = (X, f ) and Y = (Y, <% ) are grill-

determined spaces, the power structure on Hom(XfY) is the 

structure S determined by those grills (Q. in Hom(X,Y) 

for which e x x( VI ® (£•)*?& for every f -grill OL . 

Proof. Iiet geHom(X,Y). Then g * { BcHom(X,Y) | g«&B? 

is a grill and igi & g« If Ot, is a f -grill, 

e x Y( OC ® g) - stack gOC . In view of Bemark 2.4(1), 

is a grill-determined structure. 

The evaluation map is clearly nearnes preserving. Sup­

pose Z - (Z,$ ) is a grill-determined space and f: XxZ—**• J 

a nearness preserving map. If we define fs f - > ^ b y f(z) « 

- g2, where gg(x) - f (x,z), then f = ex Y © (l xxf). To show 

that f is nearness preserving, choose & « £ . Then S^ c 

c2£ for some $ -grill 32 . If Cl is a £ -grill, 

e x j( Ot ® stack ?86) =- e x y stack (lx*"?)( OL ® ft ) ** 

« stack e £ y(l xxf) ( Ct <g> 36 ) * stack f( Ct €> 36 ), a mem­

ber of ̂  . Hence stack t S s 0 , and since ? t &c stack ?36 

f £r * e . 

§ 3# The category Conv 

3.1. Definitions. A grill-determined prenearness space 
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(X9f ) is called a convergence space iff for any non-empty 

member 0t of £ there exists xe X with • OCUKixli * f * 

Tlie subcategory of Grill whose objects are the convergence 

spaces is denoted by Conr. 

3.2. .Remarks, (i) Th® category ConT was introduced 

by W.A* Robertson [22J. It is a bicoreflectiTe subcategory 

of Grill with coreflector described as follows % For any grill-

determined space (X, £ ) the set f Q 9 iOL c FX | there ex­

ists x e X with OL U4i x \ i e f } U < <j>f is a structure 

massing (X, f G ) m convergence spaee and l%z (X9 §Q)—>(Xtf ) 

a Gonr-eorefleetion ©f (Xff ). 

As a bicoreflectiTe subcategory of (frill, ConT is a pro­

perly fibred topological category with final structures (and 

hence colimits) formed as in Grill (and hence as in F-Near), 

and initial structures (and hence limits) formed by forming 

them in Grill and applying the Conr-eorefleetor. 

(2) Conr is isomorphic to the category of localized 

filter merotopic spaces introduced by M. KatStoT [15]* It is 

also isomorphic to the category of conTergence spaces in the 

sense of B. Kent [171 (which contains the category of limits 

spaces, introduced independently by H.J. KowalsJsy tl&l and 

H.E. Fischer [8], the category of pseudotopological spaces t 

introduced by G. Chotuet £61, and the category of topologi­

cal spaces as subca t ego r i e s ) . ! provided we assume (as we shall) 

the following symmetry conditions If T is a conTergent fil­

ter with x € r\ T f then f converges to x. All T^ conTer­

gence spaces satisfy the condition, and for topological spa-
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ces it is precisely the 1 Q axiom* The embedding of topo­

logical spaces is precisely the embedding described in 

1.7(c). In fact Top is a bireflective subcategory of Convf 

and the Conv-refleetor is the restriction of the Near-re­

flector on S-Near. Hence Top is the intersection of the ca­

tegories Conv and Near* 

3*3* Theorem. Conv is closed under the formation of 

products in Grill* 

Proof. Let ((X^t f-s^iel be. a family of convergence 

spaces and (p^ (P, f ) —* (Xj, f ^ ) ) ^ the Product of this 

family in Grill* If 01 c § is non-empty f OL is contain­

ed in some £ -grill ty * For each iel, P^ty s f ^. Thus 

for each iel there exists x^c Xi with P^ty U ii x ^ H e %±. 

If x. is the element of 3? with p. (x) * x^ for each ic I, (£. u 

u x (where x » < A c X | x£Af ) is a f -grill. Hence (I U 

IK-tx J* c f . 

Immediate consequences are 

3«4. Theorem. In Conv the following hold: 

(a) Any product of quotient maps is a quotient map. 

(b) Finite products commute with direct limits. 

(c) Jl (X^Y,-)^ ii^x HYy 

(d) Conv is cartesian closed. 

3*5» Theorem. Powers are formed in Conv by forming 

them in Grill and applying the Conv-coreflector. 

Proof. If X and Y are convergence spaces, denote the 

Conv-coreflection of X* fcy Xjj. Since products in Conv are 

formed as in Grill, e^ ^z XxX^ —>-X is a nearness preser­

ving map* Let Z be a convergence space and f: X ^ Z — * > ! a 
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nearness preserving map* Then there exists a nearness pre-

serving mp ?: Z _ * # such that f = % y U x * ? ) . Applying 

the Cbnv-eoreflector, we conclude f: Z—> In is nearness 

preserving@ 

That powers in Cbnv are in general distinct from those 

formed in Grill is shown by the following example* 

'3*6* Example * let X be -the rationale with prenearness 

structure induced by the .usual topolo®r aid J the ratiomls 

with prenearness structure induced by the topology with sub-

base for closed sets consisting of the set A «€jjln€i } 

together with all sets closed in the usual topology« The 

grill tjj, » 4 GcHoa(X,X) | for each e > 0 there exists f e G 

with fXflA = <J> and | x - f(x) |-< e for every xe X $ is in 

the power structure in Grill hut not in Com* 

3»7» Bemark® Gonv is not the smallest cartesian closed 

category containing Top and inducing the usual topological 

limits. We mention here three subcategories of Conv« All are 

cartesian closed categories with powers formed as in Gonvs 

and all are bireflective in Conv* 

(a) The category Idm of limit spaces has as objects those 

convergence spaces (Xj, ̂  ) satisfying .the condition 

^ U - C ^ x i i c f and ^ U -£ <£ x H 6 f implies Cfc u 
u & e ^ * 

Idij introduced in £223 f is isomorphic to the category 

of limit spaces in the sense of H.J-, Kowals-ky [18] and H.R* 

Fischer £8 2 (see 3*2 (2)). 

(b) The category PSTop of pseudotopological spaces has a 
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objects those convergence spaces (X, g ) satisfying the fol­

lowing conditions 

If (X ie a g?illt and there exists x £ X such that for 

evexy ultraf ilter % c ty f U U i t i i i e f , then 

t$. e f . 

PsTops introduced in t223$ is isomorphic to the cate­

gory of pseudotopological spaces in the sense of G@ Choquet 

£61 (aee 3.2 (2)). 

(e) The category EpiTop of epitopological spaces has ae ob­

jects those convergence spaces (X, f ) for %hieh f is ini~ 
A. 

tial in Conv with respect to (Xl{fi)f((Si )c))i€lt where k± 

aid B* are topological spaces and t±t X — ^ Hoa(A^sB^) is a 

Set-map for each ie I (c.f. P* Antoine £13 and A* Maehado 

[193). 

§ 4® Constructing Grill f^om fop 

We have noted that the category Grill has among its ni­

cely embedded subcategories not only -Cop, but also the cate­

gories Cont of contiguity spaces and R?ox of proximity spa­

ces^ neither of which is emfoeddable in Top or even Conv«» On 

the other hand? every grill-determined space arises natural­

ly from elementary constructions on topological spaces in 

P-Bear* 

4®1# Theorem* The convergence spaces are precisely the 

preneameas quotients of the topological spaces• Thus Conv 

.is the coreflective hull in P-lear of Top* 

Proof • If (Xff ) is a convergence space, there exists-

a family ( ̂ i ) £g j of C-grills which determines § and 
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such that for each iel there exists x*e X with <x^ % e 

€ Cfc^. For each ic I, let f ± * i CI c PX | CI c ^ i or 

H6t+ # ? • tteB *x> ? p i«.ia T°P ®*& lx: ^Xf £i^ —* 
— * (X,£ ) *s a nearness preserving map. Let (X, % ) be the 

coproduct of (CX, ̂  i^icl* S i n c e ^°P *s c l o 8 e<* usder the 

formation of eoproducts in P-Near, (Xt^ ) is in Top. The 

map f: ( X , ^ ) — * (X, f ) induced by (lx: (X, f ±) — > 

— ^ ( X , f ))j^x *s a t^otient map. 

The converse is immediate from .Remark 3.2 (I). 

4.2. Bemark. Since each of the categories Conv, Grill 

and S-iear is bieoreflective in P-Near, we conclude that 

Conv is the coreflective hull of Top in each of these cate­

gories, in particular in S-Near. 

4»3# Pieoren# The grill-determined spaces are precise­

ly the prenearness subspace of the convergence spaces. 

Proof. If (X,f ) is a grill-determined space, let X' » 

* i C§* c PX I C$* is a | -grill J and define a map i s X —> 

— * X' by i(x) * x. The structure f on X induces a structu­

re f on X* as follows: Define 

§' *<& c tt' \ U <n c* \ <* € SLl m $ } # (X#, f') is a 

convergence space and i: (X, | ) — > (X'f c') is an embedding. 

The converse follows in view of Eemark 2.4 (3). 

4.4. Stemarks. (1) 4.3 and 3.3 imply that Grill is the 

epireflective hull of Conv in Grill. As has been shown by 

Um Sh^yegan Hastings £93 the epireflective hull of Grill 

(and thus Conv) in S-Near is S-Near. 

(2) 4.1 and 4.3 imply that the grill-determined spaces are 

precisely the subspaces of quotients of topological spaces 
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in P-Near (or S-Near or Grill). Next we show that the grill-

determined spaces are precisely the quotients of subspaces 

of topological spaces in P-Near. 

4.5» Definitions. A prenearness space is called sub-

topological iff it is a prenearness subspace of a topologi­

cal space. The subcategory of P-Near whose objects are the 

subtopological spaces is denoted by SubTop. 

4.6. Remarks. (1) The category SubTop was introduced 

by H.L. Bentley [3]. It is the intersection of the catego­

ries Grill and Near. SubTop is bireflective in Grill, and 

the SabT op-reflect or is the restriction, of the Near-reflec­

tor on S-Near. 

(2) Top is bicoreflectiTe in SubTop and closed under 

the formation of products in SubTop. Since Top is not carte­

sian closed, this implies SubTop is not cartesian closed 

(see L.D. Kel L20]). 

4«7» Theorem. The grill-determined spaces are preci­

sely the prenearness quotients of the subtopological spaces. 

Thus Grill is the corefleetive hull in P-Near (or S-Near or 

Grill) of SubTop. 

Proof. Similar to the proof of 4.1» 
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