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A NOTE ON GEOMETRIC CHARACTERIZATION OF FRECHET DIFFE-
RENTIABILITY

Josef DANES and Ji¥*{ DURDIL, Praha

Abstract: This note gives a direct geometric charac-
terization of Fréchet differentiability of mappings bet-
ween Banach spaces.
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l. In the paper [1]), the geometric characterization
of Fréchet differentiability in Banach spaces by means of
the notion of a tangent was given. The notion of a tangent
in a Banach space was introduced there as a generalization
of the Roetman’s definition of a tangent in a finitely di~
mensional space (see [2]), i.e. using an intersection of a
certain system of co-cones (see below).

Giving that geometric characterization of differentia-
bility, we can avoid the motions of a tangent and a co-cone
amnd deal with the intersection mentioned above as with an
only basic —otion. Of course, the principal ideas of that

mrocedure remain the same as earlier, however, the charac-
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terization will be obtained from new, say, the pure geomet-
ric approxi mation point of view. This is the aim of owr pa-

per.

2, For completeness, let us recall first the notions
of a co-cone and a circular co-cone that were introduced
in the paper [1]:

Definition 1. Let X be a normed linear space, C a
core in X with a vertex at O, H a linear subspace of
X of the co-dimension 1 and denote S; = {xeX: Ixl=
=1} . The number < = dist (CASy,H) is called the de-
viation of C from H , the set €’ =XN[Cu( -C)] is
called the co-core to C (in X ) and demting by ‘fﬁ,x
the system of all cones in X with o vertex at 0O and a

deviation o from H , the set
Choe = MACT: C” is a co-cone to some C e €y o3

(it is 2 co-cone in X , too) is called the circular co-co-
nz in ¥ with the vertex C and the co-deviation « from
H .

It is easy to see tnat
(1) Che + §Ax: A =0, xe3), dist (x,H) £ =3
nowever, this is just the formula by which a circular co-co-

ne was defined in {1] and hence, both the definitions of

circular co-cones here eand in (1] are equivalent.

Definition 2. Let X be a normed linear space, Z a
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lirear subspace of X and €& > O . The set
C(Z,e) = {xeX: dist (x,2) & ¢ x| ?

is called the g€ -cone of Z (in X ).
Note that any & -cone is 2 cone but it is not necesss-

rily convex. There is a simple relation between €-cones

and ciivular co-conese.

Temma 1, Let X be a Banach space, Z a closed li-
near subspace of X and € > 0 ., Denote by *# the sys-

tem of all closed linear subspaces of X of the co-dimen=-

sion 1 . Then
c(z,e) =MN{C’ :ZcHe %3 .
Hye
Proof. Let x€C(Z,e) be arbitrary and take an ar-

bitrary H € ¥ containing Z . Then dist (x,2) « eI x§

and hence

x
dist (—— , H) £ dist ( ,» 2)4 &,

hx I
i.e. xe¢ C;’& by (1). So we have proved that

C(Z,e)c NA c;'g :ZcHe % 3 .

On the other hand, let x, be an arbitrary point of

N4 C;’s : ZcH € ¥ 3 . We shall proceed similarly as in
the respective part of the proof of Theorem 1 in [1): Deno-
ting by X* the dual space of X , we set

z¥ = {x*¥ e X*: Ix*l =1, (z,x*) = 0 wvhenever
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zeZ 3

and ¥ = 4{H,:x%¢ z*3 where BE,={xeX: {x,x*)=
=03};itis XL={H:ZcEe«®} and N{H:HeX}=2,
By (1], Lemma 1 , we have

g o < Uy X

dist (ux* H oy )

(2) | Cx,x*> | £ RN

for all x*e 2% anm u . & X\E_, . According to Hahn-
Banach Theorem, there exist x: e X* such that le:l =

=1, (z,x¥) =0 whenever zeZ and

{x,,xd> =dist (xy,2)

It is xg‘ e 25 am hence, for every given J° > 0 , choos-

ing ux:eX\ng so that Iluxg“=1and

€
e +d"

dist (ux: ,ng) 2

(such u , exists by the well-known theorem of F. Riesz,
o

see e.g. [3]), we obtain from (2)

I<x,x*> lete+d) Ix U .

We conclude that

dist (x,2) = <x ,x* > & (e+ N Ix, I for an1 >0,

i.e. x, € C(Z,e) by Definition 2, The proof is completed.
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Definition 3, Let X , ¥ be normed linear spaces,

L: X—>Y a linear mapping and € > O . The set

c(L’s) = {(x,y)txxrz ly-Lxl £ £ I(x,y)l\}

is called the ¢ -cone of L (the norm om XxY is given
by l(x,y)0 = Ax| + lyll (or by any other equivalent
ome)),

So, if L is a linear mapping from X into Y , We
can consider two associated ¢-cones: C(L,e) according
to Definition 3 and C(G(L), &¢) according to Definition 2,
where G(L) denotes the graph L in XxY . Both these

€ -cores are in a close relation, a@s the follaring two le-

mmas show.

Lemma: 2, C(L,e )c C(G(L),€) foreach € > 0.
Prof. Let (x,y) be a point of C(L,e ) . Then

dist ((x,y), 6(L)) &« | (x,7) - (x,Ix) | =
sly-xll « ¢ V&, I,

i.e. (x,y)ecC(G(L),e) .

lemma 3. C(L, €£)>5C(G(L), e’) for each ¢,e’ > 0
whenever ¢’(1 + L) <c ¢ . -

Proof. Iet (x,y) be in C(G(L), &') and let "> O
be such that (e'+J") (1 + JLWH )< ¢ , Take ueX so
that

“(xty) - (uvl‘u)a = | (x - 0,y - Iu) I <

& (e’+N I x,y)1 .
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Then
ly~xlgly-Iul + ILix-ull 2
£lx-uy-m)ll + Il . 0x-ull 2
& (¢+") L (x,p)ll + Ll o N(x=~uy-~ )4
£ (e'+d + ULl (¢+0)) . I (x,y) I =

= (4@ + ML) KN {x, )0 & e I ()

i.e. the point (x,y) is in C(L,e) .

3. We are going now to our main theorems. These theo-
rems can be derived (in Banach spaces) from [1], Theorem 1
and our Lemma 1; however, we prefer to present here the di-

rect proofs of them.

Theorem 1. Let X , ¥ be normed linear spaces, F:

: X—»>Y a mapping Fréchet differentiable at 0 , F(0) =
= O . Denote by L = F’(0) the Fréchet derivative of F at

O, by R=F - L the remainder and set
S(e)=8sup 4 >0: Irx l«e x| whenever
lxh e &, xeX 3

for g > O, Then for each ¢ >0,

G(F)n By y (0, (e ))c C(G(L), &)

where BXxY(O’r) = {zeXx¥: fzl£r3 .
Proof. Let € = O be arbitrary, let (0,0)# (x,Fx)e
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¢ G(F)n By y(0, o(e)) , Them N(x,Fx)ll £ &"(e) end
fx e d(x,Fx)l £ (e), so that IRx | £ ellxh. Set
A= | (x,Fx)} and (u,v) =2~ (x,Fx) . Then |(u,v)} =
=1 and

aist ((u,v), G(L)) & f(u,v) - (w,Im) | =

lv-m]) =

A | €

1, v-1m)h

e - x I

£« xTelxlhse .
As (x,Fx) = A (u,v) | we have
dist ((x,Fx), G(L)) ¢ ae = e M (x,F) Il

i.e. (x,Fx)eC(G(L),e) .

Theorem 2. Let X , Y be normed linear spaces, F:
: X—>Y a mapping continuous at O with F(0) = 0 , Let
L: X—>Y be a continuous linear mapping such that for

each € > O there is d" > 0 such that
G(F)n B}M(o,d')c c(a(L),s ) .

Then F is Fréchet differentiable at O and L = F'(0) .
Proof. Iet &° > O be given and take € > O such
that

1 2e(1+ 112 ,
£ < ——————— and < €

21+ L) 1 -2 +4LHK)

Take J > O so that
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G(F)n By (0, deccla(n),e) &

As the mapping F is continuous at O , there exists Se
€ (0,0) such that xeX , fx |l € &7 implies [(x,Fx)I &

e d .

let xeX with Ix Il £ o’ be given. Then
I (x,Fx) | £ o, hence

, (x,Fx)
dist (———2 " G(L) 4 €
I (x,Fx) I

and so we can find x, € X such that

“ (x,Fx)

—_— - (x, ,Ix, )| < 2 & .
Il(x,Fx) I e 10 |
It follows now that

Ix-x, be2e (x,Fx) |

Ix-x )+ Rl = IFx-1x, | 2 2¢ i(x,Fx)
where "R =F -~ L , Then
IRl e T x-xg )l +2e W(x,B)H £
£l hx-x I +2¢e I (x,B) 0 4
£2e(Q+ 1L I(xF)l =2e(1+ LT (Pxll+

+ Irxli)e2e@+ ULW)(hxi + LU Wxh +

+

i1k il )

and hence,
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2e (1 + lI.ll)2
Irx | < « Ixl) 2 e’ ixlh .
1=-2e(1+ h1l)

We have proved that for each ¢’ >0, there is J’'> 0
such that x€X , Ix | & &’ implies [ Rxl = Il Fx - Ix|¢
4 ¢’ llxll , which means that L is the Fréchet derivative
of F at 0.

4, At the end, the second author wishes to use his op-
portunity to make the following correctioms of his paper [1]:

In the definition of a tangent on p. 526, the cornditiom

" (iii) The mapping F is continuous at x, "
would be added; a similar correction is needed in the defi-
nitiéon on p. 532. The proof of the formula (10) on p. 532
(starting from the choice of a d on p. 531) is incorrect;
however, that formula follows easily from the continuity of
F & X, . Scme other misprints_ occured in [1] are not essen-

tial and they can be corrected by the reader without any dif-

ficulties.
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