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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROHNAE 

17,1 (1976) 

A NOTE ON GEOMETRIC CHARACTERIZATION OF FRĚCHET DIFFE­

RENTIABILITY 

Josef MNEŠ and J i ř í .DURDIL* Praha 

A b s t r a c t : This n o t e g ives a d i r e c t geometric charac­
t e r i z a t i o n of F r e c h e t d i f f e r e n t i a b i l i t y of mappings bet­
ween Banach s p a c e s . 
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AMS: 47H99, 58C20 Ref. Z . : 7.978.44 

1. In the paper [1] , the geometric characterization 

of Fre*chet differentiability in Banach spaces by means of 

the notion of a tangent was given. The notion of a tangent 

is a Banach space was introduce* there as a generalization 

of the Roetman's definition of a tangent in a finitely di­

mensional space (see C2]), i.e. using an intersection of a 

certain system of co-cones (see below). 

Giving that geometric characterization of differentia­

bility, we can avoid the notions of a tangent and a co-cone 

and deal with the intersection mentioned above as with an 

only basic notion. Of course, the principal ideas of that 

procedure remain the same as earlier, however, the charac-
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te r iza t ion wi l l be obtained from new, say, the pure geomet­

r i c approximation point of view. This i s the aim of our pa­

per. 

2. For completeness, l e t us r eca l l f i r s t the notions 

of a co-cone and a circular co-cone that were introduced 

in the paper t l ] : 

Definition !• Let X be a normed l inear space, C a 

cone in X m t h a vertex a t C , H a l inear subspace of 

X of the co-dimension 1 and denote S-, * i x « X : B x I = 

= 1J . The number cc « d i s t (CnS-^H) is called the de­

viation of C from H , the set C# = X \ [ C u ( - C)J is 

called the co-cone to C (in X ) and denoting by € H ^ 

the system of a l l cones in X with a vertex at 0 and a 

deviation cc from H , the set 

Cn = A ^ C ' : c ' is a co-cone to some C £ ^£H ^ J 

( i t is a co-cone in X , too) is called the c i rcular co-co­

ne in X with the vertex 0 and the co-deviation oc from 

H . 

I t is easy to see that 

(1) C#
H tf + < X x: X i 0 , x€Sx , d is t (x,H) £ oc I . 

however, th i s is just the formula by which a c i rcular co-co­

ne sras defined in t i l and hence, both the definit ions of 

circular co-cones here and in [13 are equivalent. 

Definition 2. Let X be a normed linear space, 1 a 
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linear subspace of X and e > 0 . The set 

C(Z, e ) * 4 X6 X: dist (x,Z) * e I x 1 j 

i s called the g.-cone of Z (in X ) . 

Note that any e -cone is a cone but i t is not necessa­

r i l y convex. There is a simple re la t ion between e-cones 

and cii^vular co-cones. 

Lemma 1. Let X be a Banach space, Z a closed l i ­

near subspace of X and C > 0 • Denote by ef£ the sys­

tem of a l l closed l inear subspaces of X of the co-dimen­

sion 1 . Then 

C(Z,e) = f U C* : Z c H « a e j . 

Proof. Let xe C(Z, e ) be arbitrary and take an ar­

bitrary H 6 36 containing Z . Then dist (x,Z) 4 e I x 8 

and hence 

x x 
dist ( , H) 4 dist ( , Z) 4 £ , 

i.e. x€ CM , by (1). So we have proved that 

C(Z,6 ) c O -C Cjj ^ : ZcH e 3£ ? . 

On the other hand, let x be an arbitrary point of 

n«CC' : Z c H c ^ 6 ] .We shall proceed similarly as in 

the respective part of the proof of Theorem 1 in tl3 : Deno­

ting by X* the dual space of X , we set 

Z* = 4x* e X* : II x*B = 1, <z,x*> » 0 whenever 
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z e Z l 

and £ « { H ^ t x * * 2+? where IT^ =* f x e X : < x f x * > * 

= - 0 ? « i t i s X = i H: ZcK c »d ? and H * H: H € X j = Z , 

By LU, Lemma 1 , we have 

(2) , < x 0 , x » > U £ *** \ . Ix0 i 
dist < V ,H^ ) 

for all x * c 2 + and « ̂  c I S I -, » According to Haha-

Banach Hieorea, there exist x* e X* such that llx*! * 

= 1 , C -5»x*> = 0 whenever z c Z and 

<xo*xo'> = d i s t (V Z ) • 

It is x * c Z and hence, for every given <f >- 0 , choos­

ing ti.* € X\ H ^ so that II Uyjj- ft = 1 and 
0 0 o 

6 
diet ( u ^ fHx#) 2 

*o o £, -fr <P 

(such u -j exists by the well-known theorem of F, Hiesz, 

see e#g. L31), we obtain from (2) 

l <x 0 , x *> U U + a T ) I ac0 » . 

We conclude that 

dist (xQfZ) « < x 0 > x * > * ( e + <f)l-x0« for all d*> 0 , 

i . e . xQ€ C(Z, e ) by Definition 2 . The proof i s completed. 
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.Definition 3 , Let X , X be normed linear spaces, 

L: X—*I a l inear mapping and e > 0 » The set 

CCL, e ) = •£ (x,y) * XxX: l y - k U e l ( x , y ) H 

i s called the e -cone of L (the norm on XxX i s given 

by 11 (x,y) l * l x | + 8 y l l (orby any other equivalent 

one)) • 

So, i f L i s a linear mapping from X into X , we 

cam consider two associated £ -cones: C(L, e ) according 

to Definition 3 and C(G(L), £,) according to Definition 2 , 

where G(L) denotes the graph of L in XxX • Both these 

e -cones are in a close relat ion, as the foliaring tw l e ­

mmas show* 

Lemmi 2> C(L, e ) c C(G(L), € ) for each e >• 0 « 

Proof » Let (x,y) be a point of C(L,e) • Then 

d i s t ( (x ,y ) , G(D) * i (X ,y) - (x,Lx)ll = 

* i y - Lx II '* e 1 (x,y) II , 

i . e . (x ,y)e C(G(L), e ) • 

J^SiaJL* ^(L, t )3C(G(L) , e ' ) for each e , *' > 0 

whenerer e ' (1 + 1 L H) << c . 

J^opfi Let (x,y) be in C(G(L), e ' ) and l e t cT> 0 

be such that (e'-foT) ( i + ) L I ) £ e « Take u eX so 

that 

ft (x,y) - (u,Lu) I . fl (x - u , y - in) \ £ 

* (&'+</) II (x,y) li -
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Then 

I y - lac II £ 1 y - I« Il + Il L(x - u II £ 

± \ (x - u,y - In) Il + | L | . H x - u II é 

6 (fc' + oT) || (X .y) H + H L H . |1 (X - U .y _ ïn)!/* 

£ (C-'+cT +BLII (t ' + oT)) . H(x,y) | | = 

« (e' + < 0 ( l + Il LU) * <x,y) I A e I (x,y)| | , 

i . e . the point (x,y) i s in C(L,e ) . 

3. We are going now to our main theorems. These theo­

rems can be derived (in Banach spaces) .from [11, Theorem 1 

and our Lemma 1; however, we prefer to present here the di­

rect proofs of them. 

Theorem 1. Let X , I be normed linear spaces, F: 

* X----vY a mapping Fr£chet differentiable at . 0 , F(0) = 

= 0 . Denote by L = F'(0) the Fr<§chet derivative of F at 

0 , by E = F - L the remainder and set 

cT( e,) s= sup •{ c/> 0: II Rx II & & II x 8 whenever 

Ixl 4 cT , xcX 1 

for & > 0 . Then for each e >- 0 , 

G(F)nBXxY (0, bT(e ))c C(G(L),e ) 

where BXxI(0,r) = 4 z e Xxl: J z ft *& r 5 * 

Proof. Let 6 > 0 be arbitrary, let (0,0)4= (x,Fx) € 
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* G(F)o Bx>tX(0, oT( e )) . Then II (x,Fx) II * OT( g ) and 

II x II 6 II (x,Fx) H * cT(e ) , so that II Bx II £ £ II x i . Set 

% » I (x,Fx)H and (u ,v) = A~1 (x,Fx) . Then I ( u , v ) | a 

= 1 and 

dist ( (u ,v) , G(D) 4 R(u,v) - (u,Ha) 1 = 

s I (0, ? - Iu) I = R v - In 1 = 

• A T 1 ! * * - 1*1 « ^ I l H x II * 

-4 r % J x i u ^ 

As (x,Fx) « A (u,v) , we have 

dis t ((x,Fx), G(L)) £ A e = e I (x,Fx) II > 

i . e . (x,Fx)6C(G(L),e ) . 

Theorem 2. Let X , X be normed linear spaces, F: 

: X—»X a mapping continuous at 0 with F(0) » 0 . Let 

L: X—>T be a continuous linear mapping such that for 

each B> > 0 there i s cF > 0 such that 

G(F)nBx^r(0,oT')c C(G(L),6. ) . 

Then F is Fr^chet differentiable at 0 and L = F'(0) • 

Proof* Let e' > 0 be given and take e > 0 such 

that 

1 2 6(1 + || L | ) 2 

£ -c and *< e • 
2(1 + | L l t ) 1 - 2 e ( l + ilLlI) 

Take cT > 0 so that 
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G(F)nBx><x(0,<r)cC(G(L),e) • 

As the mapping F i s continuous a t 0 , there ex i s t s <f e 

€ (0,d") sttch tha t x c X , |i x II 6 <f implies II (x,Fx) II -t 

6 cT . 

.Let x e X with 1 x II ^ d" be given» Then 

II (x,Fx) II * o^ , hence 

(x,Fx) 
dist ( G ( L)) ^ e , 

ll(x,Fx)II 

and so we can find x € X such that 

ii (x,Fx) „ - - (xtf ,Lxtf ) | <r 2 £ * 
" fl(x,i*) II * £ ' 

I t follows now tha t 

1 x - x^ U 2 e I (x,Fx) II 

and 

1 L(x - x^ ) + »r 1 * II Fx - Lx& II £ 2s. II(x,Fx)|| 

where * B « F ~ L • fhen 

lax U i K x - x e ) | + 2 t > H (x,Fx) II 4s, 

£ II L | . I x - x f c I + 2 e II tx,Fx) II £ 

* 2 ft (1 + I L I ) 1 (x,Fx) 1 = 2 6 ( 1 + 1 L | ) ( 

+ I Re I ) £ 2 ^ ( 1 + 1 L l M i x I + 1 LA llx ii + 

+ IHX 1 ) 

and hence, 
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« ., 2 e ( 1 * , L , I ) i . ,. "Y 
iHzl ^ . 1x11 £ e' II x I . 

1 - 2 6 ( 1 + I I I ) • 

We haTe proTed that for each s' > 0 , there is <?'> 0 

such that x€X , | x l * 4 " implies II Rx I * II Fx - LxU 

& &' if x II , which means that L is the Frechet derrratiTe 

of F at 0 . 

4«» At the end, the second author wishes to use his op­

portunity to make the following corrections of his paper L1J: 

In the definition of a tangent on p. 526, the condition 

w (iii) The mapping F is continuous at xQ
 n 

would be added; a similar correction is needed in the defi­

nition on p. 532. The proof of the formula (10) on p. 532 

(starting from the choice of a cf on p. 531) is incorrect; 

howeTer, that formula follows easily from the continuity of 

F at x . Some other misprints occured in Lll are not essen­

tial and they ©an be corrected by the reader without any dif­

ficulties. 
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