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A NOTE ON STRONG DIFFERENTIABILITY SPACES

K. JOHN end V. ZIZLER, Praha

tract: It is shown that if X* is weakly compact-
ly generafeg (WCG) Banach apace or if X i1s WCG and for any
separable subspace YcX Y is separable, then any convex
function on X 1is Fréche€ differentiable on a G4 dense
subset of its domain of continuity, i.e. X 1is a strong dif-
ferentiability space (SDS).

Key words: Convex functions, differentigbility, Asplund
spaces.

ANS: 46B99 Refe Z.: 7.972.22

A Banach space X is weakly compactly generated (WCG)
if X = 8pK - the closed linear hull of some weakly compact
set KcX . Given a convex function £ on a Banach space X ,
we say that £ 1s continuous at a point aeX , if £ is
finite valued and continuous at a . Similarly for the case
of differentiagbility. X 1is called a strong differentiabili-
ty space (SDS) if any convex function £ on X which is
(1) continuous at some point of X and (ii) with values in
(~c0,+ 0>, ig Fréchet differentisble on a G, dense subset
G of the domain of continuity C .of £ ( C = Intdomf , whe-
re domf = {xeX ; f(x) <20 ? ). Any convex function f on
X with (1) and (ii) will be called, following [ 1], a conti-

nuous convex function on X .

-]_27_



R denotes the reals and for a function - £ on X j epif =-
= {(x,r)e XxR , £f(x)4r ? . The Fenchel ‘dusl funection £*
on X* 1g £¥(x¥) = sup (x*(x) = £(x) )o-A sot KcX*
is called w* dantablq if for any &€ > 0 4 there 18 a pe€Kk
such that pé&w¥ cleonv (K\ B¢ (p)) ;, where w¥*elconv means-
the w*=-closed convex hull-operétion and Bg (p) 4s the clow
sed € =ball centered at p « A point peKcX is & w¥* strong=
1y exposed point of K 1if there is an- xe€ ¥ sueh that p(x)=
>f£(x) for each feK , and whenever 1lim ((rn-p) (x)) =0
£,e K, then lim £, - pll =0 . WOG spaces were introduced -
by D. Amir, H. Corson and J. Lindenstrauss (see [11]), SDS spa~
ces by E. Asplund ([1])e SDS were originally known to inelude
e.g. the spaces with separable dual ([1]) , then e.g. WCG spa~
ces with Fréchet smooth nmorm ([{17] and [7]), spaces X , for
which X , X* are both subspaces of WCG spaces ([8]) . It is
known that SDS property of X implies X* to have the Radonw
Nikodym property ([2],[19],(15])‘ Proving our results, we ans~-
wer the question of R.R. Phelps in [14], p. 86«

In the sequel, the following will be suitables

Definition. We say that a convex funetion £ on X pos-
sesses the property P if it is bounded on some ball Bg (0) ,
£ Bg (0  ontinuous and equals + o outside B¢ (0) ,

Lemms 1. A Banach space X 1is SDS provided eaeh convex
function £ on X with the property P is Fréechet diffez"on—
tiable at some point of X . ’

Proof, Let £ be a continuous convex functionon X ,
xeIntdomf and € > 0 is so that 1£(z)| £ K for zeB_ (x)c
€ Intdom £ . We will first show that there is a point
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Yelnt B, (x) at which £ i1s Fréchet differentiable. For
it let us define a funetion g on X by

g(z) = £(z + x) for zeB,(0) ,
g(z) =+ o0 for z¢Bg (0) .

Then g has the property P and thus is, by our assumption,
Fréchet differentiable at some point yeImt Bg (0) . Clear-
ly, y +x 1is a point of Fréchet di;ferentiability of £,

y+xeInt Bg (x) . Soy the set G of all points of Fréchet
differentiability of £ 1is dense in Intdom £ . Therefore, by
Lemma 6 of [1], p. 43, G 1is a dense G, set in Intdomf ,

Lemma 2. Let £ be a econvex function on ¥ with the
property P . Then epi £* is w¥* locally compact in X*x
%R = (XxR)*¥ and conteins no line.

Broof. Let |f£(z)I&K for ze&Bg(0) , £|Bg (0) con-
tinuous, £ =+ c0 outside Be(0) « ve first observe that
£* 4g finite on all of X*¥ : |f£*(x*)| =xgug‘m(x*(z) -
-2(z)) & zs‘usp‘m)l x*(z)| + ilipa'wlf(z)l< © . Furthermorey
we show that for any L>0 , the set epi £¥n X*x (~=o0,L > )
is w¥ locally compact. Clearly, epi £¥n (X¥x(-0,L)) =
= ({x¥; £¥(x*)£L3x(=c0,L>)nepl £* ., So, it suffi-
ces to show that the sets My = {x*e X ; £X(x*)2L are
bounded for each L>0 .

For it observe that if x¥ e My , then su o x*(z) =K. £
£e*(x*)eL , 80 Nx*lle el ., (K+1).
Since f 4s finite and M} are bounded, eﬁi £X* is easily

seen to contain no lines.

Lemma 3, Assume X 4s a Banacn space such that any
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w* compact convex Kc X* contains ¥ strongly exposed
points. Then for each convex function £ ‘om X with the
property P, epi £* has w* strongly exposed pointss

Proof, Easily, then any w* compact convex Kc (¥*xR)
has wX* strongly exposed points. So, Lemma 3 follows from The
4 of [18] .

Proposition. If X satisfies the assumption of Lemma 3,
then X 4s.SDS. '

Proofe If f 1is a convex function on X with the pro=
perty P and (b,£¥% (b)) 4is a w* strongly exposed peint of
epi £* (Lemma 3), exposed by some (a,~1)e X*x R , then it
follows that £ = (£*), is Fréchet differentiable at & &
€ Int Bg (0) , by Prop. 1 of [1]. Further use Lemma l.

Theorem 1. If X* is WCG, then X is SDS.

Proof. If X* is WCG, then the assumption of Lemma 3 is
satisfied for X by [13] and [14] Cor. 11 , Furthermore we
will need the following lemma, which is a variant of the re—
sult of H. Maynard ([12], p. 494).

Lemms 4, Assume X is WCG and KcX* is a bounded
subset of X . Then X 1s w>* dentable if any countable Cc
c K is such.

Proof. Suppose K 1is not w* dentable, Then there 1is

san € >0 such that for each xeK , xew clconv (K\

\ B¢ (x) = w* sequential cleconv of (K\Bg¢ (x)) - since X
is wee ( (111, Th.3.3). So, there is for each xe K a count-
able set K cKN\B(x) with xewclconvK, . So we can defi-
ne by induction a sequence Kn of subsets of K as follows,
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Pick an arbitrary zeK and set X, = {23 . Given Kn-l ’
put K = U-i.Kx 3 xeK 13 o Then the set an,J K-n is
clearly a countable subset of K which is not w* dentable..

Leppa 5. If X is WCG and for each separable subspace
¥cX , Y* is separable, then any bounded closed convex
subset of X* has w* strongly exposed pointss

Proof. By the results of [14) (see p. 86) and Lemma 4,
it suffices to show that any bounded countable CcX¥ is w¥*
dentable. Consider C’ = 8p C , 8, dense in ¢” and for each
n,tiex, | tgll =1, such that s;(tP)2 hsyl~1/5 . Put
T = §p ML,J& t? . Theq T 4s a separable subspaece of X and
if R: X* —> T* 4is the restriction mapy then R 1s an iso~
metry on ¢’ and an isomorphism with respect to the topology
of pointwise convergence on T . RC is w* dentable as a boun-
ded subset of separable T* (gee[13]), since w¥eleonv RC
has w* strongly exposed points ([1J,Prop. 5) and thus there
is a nonempty intersection of RC with a w>* open halfspace of
arbitrarily small diameter. Thus RC is w’ dentable in T
and thus C is a fortiori w¥ dentable in X* ,

Now we can summasrize some known results with the above
ones in the following statement, where another question of

(141 (p. 86) is answered for WCG spaceS.

Theorem 2, Let X ©be a WCG Banach space. Then the fol-
lowing conditions are equivalent:

(1) X 1is SDS,

(i1) X* nas the Radon-Nikodym property,

(1ii) for each sepsrable subspace YcX , Y* i3 sepas-

rable,



(iv) any bounded subset of X* is w* dentables

Proof. (i)=>(ii) - see [2],[19]1,(15]1.

(11)=» (iii) - see [16].

(iii) =» (iv) - see Lemma 5.

(4v)=> (1) :(iv) implies by [14], p.86 that the assump-
tions of Lemma 3 are fulfilled and (i) then follows by Propo—
sition.

We may state the following

Questions. (i) Is the conelusions of Theorem 1 true if

X* 1s a subspace of WCG?

(1i) 1Is the conclusion of Theorem 2 true without the
assumption on WCG of X 7

We finish with two remarks.

Remark 1, It is known that the separable Bsnach space
J, constructed by R.C. James ([5]) has the property that all
its even dusls are WCG while its odd duals are not WCG (see
[6], p. 220). Since J, 1s separable and J;‘ is not sepa~
rable, J: does not have the Radon-Nikodym property by the
Stegall’s theorem ([161) and so, J, 1is not SDS (see the In-
troduction). Nevertheless, J:‘ is SDS, since JX*  is WCG

{use Theorem 1).

Remark 2. After the paper had been prepared for publica=—
tion, the authors were learned that the results in it were al-
so proved by J.B. Colier, P.D. Morris, I. Namioka and R.R.
Phelps (to appear in Proc. Amer. Math. Soc. and Duke J. Math.).
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