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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,1 (1976)

REMARKS ON THE SOLVABILITY AND NONSOLVABILITY OF WEAKLY
NONLINEAR EQUATIONS 1)
Svatopluk FUETK , Prahe

Abstract: The existence of the solution of the nonli-

near operator equation
Ax + «Sx™= 3Sx”" +Gx = £

(where A 1is a Fredholm linear selfadjoint noninvertible
operator in a regl semiordered Hilbert space X , S is g
linear completely .continuous operator in X , G is a non-
linear mapping in' X , for xe€X it is x+ = max (x,0) ,
x =x% - x— ) is studied.

Key words: Nonlinear operator equation, solvability
nonsolvability, multiplicity of solutions. ’ ’

AMS: 4TH15 Ref. Z.: 7.978.53

l. Assumptions, Notations. Until further comment,
X, Z will denote real Hilbert spaces with norms Ilx “X ’
l2ll, , respectively. The inner product in X is denoted
by (xl,xz.) .

A subset C of Z is called a cone if it is closed,

convex, invariant under multiplication by nonnegative num—-

bers, and if Cn(-C) = £0% .

1) The results contsined in this note were first presented
by the author at the Summer School on "Nonlinear Analy-
gis and Mechaniecs",September 1974, Stard Lesnd near Po-
prad,Slocvakia, and they are announced without the proofs

in the third part of the paper [71.
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Let C be a given cone in 2Z with the following
properties:

(Z 1) If zeZ then there exists a uniquely deter-
mined couple z¥, z"eC such that z =z% -2z~ ,

(Z 2) The mappings z +> z%*., z+>» 2z~ are lip-
schitzian, i.e., there exists e > 0 such that

llz:- z‘;llz £ @“zl - zznz y 2y -2z5 1y £ @llz - 22" 7

for each Zy, zst o

(Z 54 Xe2 and the identity mapping from X into
Z 1s contimious. Denote by # its norm.

(A1) Let A be a linear bounded selfadjoint opera-
tor from X into X with a closed range R(A) and finite-
dimensional null-space N(4) , dim N{A)21 .

Let P be the orthogonal projection from X onto
N(A) and let Q=I - P ( I is the identity operator in
X)), i.e., Q 1is the orthogonal projection from X onto
R(A) . Under our assumptions there exists a linear continu-
ous map (the so-called right inverse) M: R(A)—> R(A) sa-
tisfying

MAx = Qx (xeX) ,
AMy =y (yeR(A)) .
Denote by WMl the norm of M.

Let S be a linear continuous mapping from Z into
t with the norm W SH1 and suppose:
(S 1) The mappings x +—» Sx¥, x > Sx™ are comp-

letely continuous operators from X into X .
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2, FEipst result

Lemma 1. Let «, 3 be real numbers and suppose
that .

+ . J

(s2) inf  (xSh*: @Sh™,n)>0.
1A Ny =1

Then Jp(e,R)>0 , where

I («,B) ={sup Iz 0; inf (cs(h + v)* -

inf
v e R(AY A e N(A)
ﬂnrl!xéd' Ilﬁvllx=4

- Bs(h+9v)" ,n)>0} .

Proof. Suppose that there exists d;>0,”3‘l’i_-flmdvm,=
=0, and vyeR(A) , lvylly & d, , nena), Inily=

1 , such that
+ - - =
”&}’mm(&s(hn + v, RS(n, + v )" ,h)) =0.
Since N(A) 1is finite-dimensional, we can suppose that the
sequence hn converges in the norm topolngy of X to
hoeN(a) , In g =1 . The continuity of S and the

assumption (2 2) imply

+ . - -
(ecShy @shy ,h)) =0
which contradicts (S 2).

Theorem 1. Let o, 3 be real numbers. Suppose
(z1) -(z3), (A1), (s 1), (S 2). Moreover, suppose that

(¢ 1) G: X~>»X 1is a completeiy continuous opera-
tor such that |

(G 2) lext, <« @ .
xs:px x5
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Then the equation
(1) Ax + oSx¥T- RSx  +Gx=¢
is solvable in X for each feX provided

J; (e, B) -
[ o X P [
Cleel+ 131 le < T+ d, (o, O I M)

Proof. According to [4, Theorem 1] it suffices to
verify the following condition:

For any K>O we‘have tK>o such that

(2)  (es(t(h + v)¥) = Bs(t(h + v)7),h) +

+ (G(t(n + v)),h}ZK

for all tZty , heN@) , lnly=1, ver(a) , Ivliygsd,
where o < d(«,B) .

The assumptions (S 2),(G 2) and Lemma 1 immediately
imply (2).

Remark 1. The assumption (G 2) may be (without chan-
ging the proof) replaced by the growth condition |Gxlly £
€c) + oy ffx Hg , vhere & €4 0,1) . If the constant ¢,
is sufficiently small, then it may be & =1 and the

same agssertion as in -Theorem 1l is valid.
Remark 2. Suppose, moreover,
(A 2) dim N(A) =1
and N(A) is a linear hull of hyeX, ln lly=1.
If we suppose
+ - - -
(s 3) (Sho’ho) = (Sho,ho)*o

then dol( e, 3} = &,(1,0) and if ccd — 3 then the condi-
tion (S 2) is fulfilled.
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3. Second result

Lemma 2. Let o, 3 Dbe real numbers and suppose
(A 1),(a 2) and

(ecshy = BShy ,h )70
(s 4)
(@sSh} - «Shy ,h )40 .
Then d;(x,3)>0 , where

+ -
d; («c,8) =sup {0 ; ”ien.E(MFecS(ho + v)
ar i & O
Bs(n, + v)",h )>0 and

(psh_ + ¥ - «xsth. +v) ,h )<0% .
Arg‘%\pCA) (5 ° v ° *o
\Mﬂlxﬁa

(The proof is quite analogous of that in Lemma 1l.)

Theorem 2. Let «,(3 be real numbers and suppose:
(z1) - (2 3), (A1),(a 2),(S 4). Let G: X—>X be a lip-
schitzian mapping, i.e. there exists ¢>0 such that

(G 3) “le-zel\xéc ||x1-x2|\x.
for each x;, X,€X . Suppose (G 2).

it
(3) k=Ml (plislhng (lel + 131) +e)c1 ,

'y

(4)

=< d (e, 3,

then there exists a lower semicontinuous function T :

: R(K) —> (-0 ,00) , bounded from below on bounded sub-
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sets of R(A) @and with _tfhe following properties:
a) The equation (1) has a solution for the right
hand side feX if and only if
(£,n) 2 T (Qf) .
b} The equation (1) has at least two solutions for
the right hand side feX provided
(£,n,) > T Q) .

Proof of Theorem 2
Step 1. For fixed te(-co,00) =R) and feX define the
mapping
Fep* R(4) —> R(a)
by
Fy gt V> - BQ (xS(thy + )7 - BS(thy + v)7 +
+ &(thy +v) - 1) .
With respect to (3) the mapping Ft,f is lipschitzian
with the constant k<1l and thus according to the Bgnach s

contraction mapping principle there exists a unique fixed
point vt’feR(A) of M p .

Step 2. For all t,, t,eRy and £, f,€X we obtain
{by an easy calculation)
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fad M
"’Vt.pf,,— d’tz,lelX £ 1-k ,t."‘ tgl + ":1—_‘; I £,-% "X .

Step 3. Define
Epr t > Plaslthy + vy )7 = @BSthy + vy )7+
+ G(th, + vt’f)).
The equation (1) with the right hand side feX has a so-

lution xoeX if and only if there exists toeRl such
that

65) Q‘f(to) = Pf .
Step 4, Since Vi,p = Vi,Qe and N(A) is one-dimensio-

nal, the equation (5) is equivalent with

(6) Pas () = (f,ho) ,

where

(7 Pae s tH> ( @elt),n) .

Step 5. For fixed feX the function C_PQf is continuocus

on Hl and, moreover:

lim (t) = oo
It| —c0 Fer
(it follows from the inequalities

Vie (+ Vef -
Paplt) Et (¢ Shy + —;c-l-— )T = BSthy + —— ),h) -
- 3‘s1e1p)(|lGx ”X if t>0 ,

¥, : W -
Foe) 2=t (@sthy + —2E )Y o wstng » =55 )7 on) -
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- sup lloxlly if t<O
<eX X
and from (S 4),(4), Lemma 2 and Step 2).

Step 6. Define
Q) = mnin () .
te R1 ?Qf

The assertions of Theorem 2 follow now immediately from

Steps 5,3,4 .

Remark 3. If (Sh,h)? & (shj,h )% then there ex-
ist o, 3 € R) satisfying (s 4).

Remark 4. Note that the typical example of the equa-
tion (1) is the boundary value problem for nonlinear elli-
ptic partial differential equation of the order 2m (see
[71). In this case we put X = wﬂ’z(fl) (the well-known
Sobolev space) and Z = Lz(fl) . In the case of.second or=-
der partial dirferential equations it is possible to put
X=2-= W%’Z(IL) . In both cases C may be the set of all

almost everywhere nonnegative functions from 2Z .

Remar « The second order ordinary diriferential e-
quations of the type (1) are investigated in [6). The ge-
neralization or the results from [6] as well as the study
of periodic problems and partial differential equations

of second order is in [2, 31 .

Remark 6. The analogous result as in Theorem 2 is
proved in [1, 5] for partisl dirferential equations of the
second order in the case that ho is 2 nonnegative func-—
tion. In this note the condition " hoé(b " is replaced

by (S 4) (and, of course, the asbstract consideration is
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ugseful for higher order equaﬁions). A, Ambrosetti communi-
cated me that E. Podolak (Princeton University) prepares

the mamuscript in which the condition " hoéo " 1is repla-
ced in the case of second order partial differential equa=-

tions by
fn(h:(x))zdx + f.n. (ng (x) ax .

But in all previous papers (also in the present note) for
the method of proofs it is essential that dim N(a) =1 .,
The observation of the analogous problems as in Theorem 2
but in the case of dim N(A)>1 is a terra incognita by
the suthor’s best knowledge.
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