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ON THE LOCAL ERGODIC THEOREMS OF KRENGEL, KUBOKAWA, AND
TERRELL ¥’

S.A. MCGRATH, Annapolis

Abstract: Let (X,Z,«) be a & -finite measure spa-
ce and I' ={T :t20} a strongly continuous semigriup of

positive Lp((u) operators, 14p < c© . We present direct

proofs of Krengel ‘s and Kubokawa’'s local ergodic theorems
using a method which easily extends to the case of n-para-

meter semigroups. The result obtained in the n-parameter
case generalizes a theorem of T.R. Terrell.
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Introduction. Let (X,=,«) be a 6 -finite measure
space and l4p £ o . Denote by Lp( @) the usual Banach
spaces of complex-valued functions. Let T =-§Tt: t>0% be
a strongly contimious semigroup of bounded Lp((u) opera-
tors. This means that (i) Hl T, "p‘ © 4, tz0; (11) T .=
=TT, ; (111) T f -T2 I —> 0 as t—> 8 for all f¢

+
€L,(@) . We say that Ty is positive if feLy(w) =>
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=»T.feli(wu) and that Ty is a contraction if
I T, I €1. We assume T, =TI, although the results ob-
tained hold when T°=l=I if appropriate modification is ma-
de. For a strongly continuous Lp( @) semigroup " and

feLp((u) , we set .
ale,De(x) = (1/e) [ mr(xat
o

for € > 0 . We say that the locsl ergodic theorem (L.E.T.)

holds for ' if
lim A( €,T)£(x) = £(x) a.e.
€-> 0+

for felL (w) . Let us clarify the definition of

A(¢ ,T)f(x) . The strong continuity of T ensures that the
vector-valued function t — th is Lebesgue integrable
over any finite interval (a,b) , O<a<b < o . It fol-
lows L[4, p.l1961 that for each feLp((L), l<p < oo , the-
re exists a scalar function g(t,x) on [0,0)x X , measur-
able with respect to the usual product & -field, which is

uniquely determined up to a set of measure zero in this spa-

ce by the conditions: )i) for a.e.t.20 , g(t,.) Dbelongs to
the equivalence class of T.,f , (11) there exists a @ -null
set E(f) , independent of t , such that x&E(f) implies
gl.,x) is Lebesgue integrable over every (a,b) , O<a<b <
<o , and Lﬂ‘g(t,x)dt belongs to the equivalence class of
f:’ T,fdt . The function g(t,x) 1s called the scalar repre-
sentation of T,f . We define T,f(x) = g(t,x) . This justifi-
es the definition of A(g ,T)f(x) . We note that for x & E(f),

4(e,T)f(x) is a continuous function of e > 0 .
In[6] U. Krengel established the L.E.T. for T a
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strongly continuous semigroup of positive Ll((w) contrac-
tions. This result was obtsined independently by D.S. Orn-
stein [11]. T.R. Terrell [12] generalized the Krengel-Orn-
stein theorem to the case of n-parameter semigroups of po-
sitive Ij(@) contractions, n>1 . The proofs given were
indirect and Terrell’s method was completely different from
Krengel ‘s. In [7, 81,Y. Kubokawa extended ¥rengel’s theorem
to the case where I' is a semigroup of positive Lp((w)
operators for some l&p < o . His proofs depended on a
maximal ergodic inequality for T which he derived in [7].
In this paper we obtain the theorems of Krengel, Ornstein,
and Kubokawa by direct proofs utilizing a technique which
easily extends to the n-parameter case. The n-parameter
result obtained generslizes Terrel’s theorem., We remark that
M.A. Akcoglu and R.V. Chacon [2] proved the L.E.T. for the
case when I' is a semigroup of positive Ll(t“') contract-
ions without assuming T° to be strongly continuous at t =
0 . Also Kubokawa [9] estahlished the L.E.T. tor T a semi-

group of not necessarily posgitive Ll((w) contractions.

Main resultg. We establish two preliminary lemmas. In
[13 , p.232]1 it is shown that if T" is a strongly continu-
ous semigroup then there exist M>C , a20 such that
KNP ,tZ0 . For T, €T weset S = ¢ bbp
t t t t
for some fixed b>a . We assume henceforth that gll semi-

groups are strongly contipuous for all tZO .

1. Lemma. Let T Dbe a semigroup oi positive Lp((u,)
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operators for some l&p < 00 . For fe Lp(@.) the follow~
ing are equivalent:

(1) v,l-}%+ A(e ,T)£(x) = £(x) a.e.

(i) i];i.mm A (e,9)2(x) = £(x) a.e.

Proof. It is sufficient to establish the lemma assuming
féL;(ﬂL) . Suppose (i) holds. Sinece Stf(x)eth(x) for
all t20 , we have

Jum sup Ale ,8)£(x) £ £(x) a.e.
Given 0 < © < 1 there exists o> O sufficiently small
that e P51 - ¢ for O<t< J° . Then

lim inf A(o,S)f(x)= (1 —€)f(x) a.e.
oo = O+
Since ¢ - is arbitrary we have 1lim inf A(ec,S)f(x)2 £(x) a.e.
o = 0+

Thus eliné+A(a,S)f(x) exists and equals f(x) a.e. So
-—’
(1) = (ii). Thus proof of the converse is similar. Q.E.D.

2. Lemma. Let I be a semigroup of positive Lp((u,)
operators for some l<p < 0© . There exists O< heLp((u)
such that if we set m(A) = [y hPdw , 4 e = , end P £ =
= St(i’h)/h for fe Lp(m) then P, can be extended by con-
timuity to an I, (m) operator and T'/ ={P,: t20% becomes

a strongly continuous semigroup of positive Ll(m) contrac-—

tions.
Proof. We only sketch the proof since the lemma app-

ears in [10]. Since -(,S:'? is a weakly continuous semigroup
on Lq( @) , where q = p/Ap - I, and Lq((w) is reflexive,
it follows that {S:E is strongly continuous. Set g =

= [Tsferat 0<g’eL (@) . Th L

= J, si for some O<g’e L () . Then geq(a),
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g>0 a.e., and S:gég for all t20 . Set h ==gl/(p'1) .

Then '/ is a strongly continuous semigroup of positive
Lp(m) operators. Since P:‘ (1) =sX(g)/g<l it follows
that [|Py* |, €1 and, consequently, that P; can be ex-
tended by continuity to an IL;(m) contraction. It is easy
to show that I'’ , regarded a5 an L,(m) semigroup, is
strongly continuous. Q.E.Ds

We remark that the lemma in [10] is more general than
our lemma 2 in that it includes the case p =1 . It seems
best in this paper to consider the case p =1 in the proof
of theorem 4 since by so doing it is easier to see how to
prove the n-parameter extension of this theorem for the
case p =1 . We now prove Krengel's and Ornstein’s L.E.T.

and then use it to establish Kubokawa s theorems.

3. Theorem (Krengel,Ornstein). Let I" be a semigroup
of positive I;(@) contractions. Then the L.E.T. holds for
r .

-]
Proof. For O<gel (@) set h= fo Sga(x)at .

Then O<hel,(w) and
0 o
Sth=j; Spg dr = J; Sp& dr = h(x)

for all tzO0 . Setting m(A) = Jf, hdu amd Pyf =
= §,(fn)/h for feLl(m) » we have P, (1)41 a.e. which
implies [Py, £ 1, t20 . It is easy to check that
P, l;41 also. By [4, p. 6911 we have for fel,‘m) and
B0,

nit*>n3¢ (/p) [ £lan ,

- 53 =



where £* = sup | ACe,P)f(x)| and K>0 is independent
of f and TV = {PtZ .+ We see therefore that f£*« 0 a.e.
Now the class ¥ ={Alg ,P)f: 0 < e <1, felj(m} is
dense in Li(m) and the L.E.T. holds for T/ if feM [ 6],
As was noted above, A(€ ,P)f(x) depends continuously on ¢
for x outside some null set. Thus it follows from Banach's
convergence principle T4, p. 332] that el_i;uox_» Ale ,P)f(x) ex-
ists and is finite a.e. on X for all felL;(m) . Since
Ale ,P)f—> £ in norm, we have lim A(e ,P)f(x, = £(x)
€~y 0+

for fely(ml.

It is easy to check that for fe Ll((“’) and >0 we
have A(e ,S)f = [A(e,P)(£/h)]1. h . Thus by lemma 1,

lim A(e ,T)£(x) lim A(e ,S)rix)
e >0+ €—> 0+

lim [ACe ,P)(£/h)(x)] . h(x)
E->0+

(£/h)n(x)

1]

£(x) a.e. Q.E.D.

4. Theorem (Kubokawa)., Let I" be a semigroup of po-
sitive Lp((w) operators for spme l1l4p <« oo . Then the
L.E.T. holds for T .

Proof. Assume first that p>1 . Then by lemma 2 and
theorem 3 we have the L.E.T. holding ror the Ll(m) semi~
group I'’ =§{P;% , where P, 1is defined as in lemma 2.

For chp((u) we have f/he Lp(m)cLl(m) since mX)< o .
Thus

lim Aleg ,T)f(x) = 1lim A(g ,9)f(x)
E-> 04+ E->» 0+

= lim Cale,P){#/n)(x)] . h(x)
c. - N+
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= f(x) - Y- 1%

Now consider the case p =1 . Assume momentarily that
Mrgllem, ITgll &M, t20, and w(X)< o0 . It is ea-
sy to show that T' is a strongly continuous semigroup of po-
sitive Lp(&) operators for any given l<p < ® (see [4,
p. 689]). Since 1le Lq(<u.) we may set g = j;”s’;(l) dt. One

sees that geL_ (w) . We set h = (g)l/(p-]) and define m
and P as before. For feLl((a-) ’ f/heLl(m) since

Jle/mlwPag ¢lgl,.[lzlaun .

Since the L.E.T. holds for {P;} we have

lim A(e ,T)£(x) = (£/h)h(x) = £(x) a.e.
€0+

for fel(w) .
In the general case when p =1 , we pick 0<geLl((«,)
(4
and define h = [ Sig dt . Setting m(a) = [, hdw ,
Pyf = S;(fh)/h , £€L;(m) , we have
NPy llyem, NP )l €1, t20, and nX)<co . The sped al
case considered in the preceding paragraph can now be applied

to i{P;3 and we have
lim Ale ,T)£(x) = £(x) a.e.
€0+

for rsLl((w) . Q.E.D.

Ihe N=-parameter case . The following theorem is an ex-

tension of Terrell’s result. In order to 8implify the nota-
tion we consider the case where I" is a semigroup depending

on two parameters. The extension to the general case is imme-
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diate. For tcL’((u,) and T & 2-~parameter semigroup of
LP((u) operators, we set

Ae ,Dex) = (/e fo"_/;‘ T(s,t)£(x) dadt ,

where T(s,t)f(x) 4is a scalar representation of T(s,t)f .
The definition of A(e ,T)£(x) in the n-parameter case is
completely analogous. As in the one-parameter case there

‘exist M>0 , a2 0 such that (IT(a,t) || éMea("*t) , 8, t2

20 . For fixed b>a , we set S(s,t) = e_b(s"'t)i‘(s,t) .

5. Theorem. Let ' be an n-parameter semigroup of
positive LP(‘“') operators for some 1l<4£p < co . Then the
L.E.T. holds for T , i.e. A(g ,T)f(x) —» £(x) a.e. as
¢ —> 0+ for feLp((a«) .

Proof. We first establish Terrell’s result. For 0 <
<gelj{w) set h= _{;wj;'”s(s,t)g(x)ds dt . Then O<he
€L;{(w) and S(s,t)h&€h for all s, t20 . Defining
m(4) = f, hdw and P(s,t)f = S(s,t)(h)/h for fely(m ,
we have lIP(s,t)ll;41, IP(s,t)ll, €1, s, t20 . By
{4, p.697] we have for >0,

mif*> 3£ 0,/p) [ £lan,
where f*=£sgpo | ACe ,P)f(x) | and K, is independent of
£ and 4P(s,t)3 . Thus f£*< o a.e. Since the class M =
={ale,P)f: O< e < 1, fel,(m)} is dense in L;(m) eand

the L.E.T. holds for feM (see [12] for a proof), we may

apply Banach’s convergence principle again to obtain

lim A(e ,P)f(x) = £(x) a.e.
€ >0+
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for fe Ll(m) . Since lemma 1 clearly extends to the n-pa-
rameter case, we have
lim A(e ,P)f(x) = 1lim A(g ,S)f(x)
€ = 0+ €-» 0+
(£/n)h(x)

= £(x) a.e.

for feLl((w) . This proves the theorem ror the case p =1
and [[T(s,t) Il & 1 .

We now consider the case where T(s,t) is not necessa-
rily a contraction. We assume p>1 . Set g =

@ peo ° ’ ,
= x
g fo. fo S* (s,t)g dsdt for some O<g eLq((u,) . Then

o 00 ,
s¥*¥(x,t)g = j;[b S* (u,v)g’ dudv< g

for any 8, tZ0 . We set h =gl/(p-D , m(a) = & waw ,
and P(a,t)f =[S(s,t)(fh)I/h for fe Lp(m) o As in the 1-
parameter case, we have [l P(s,t)fll, £ Il £ |11 for any fe
€ Lp(m)' from which it follows that P(s,t) can be extended
to a positive Ll(m) contraction. It is easy to show that
{P(s,t)} , regarded as a Ll(m) semigroup, is strongly con-
timious. For fepp((o), f/heLp(m) . So

lim A(e ,T)£(x) = (£/h)h(x) = £(x) a.e.
et > 0+

The case p =1 may be handled as in the proof of theo-

rem 4. This concludes the proof.

A _conjecture. As a final remark we make the following
conjecture concerning an extension of theorem 5. We state
our conjecture for the case n =2 to simplify the notation.

For ¢, d >0 and feLp((a,) , set
-57-



| s
M, D) = A/ed) [ [ 2s,)s00aat
0

where {T(s,t)} is a semigroup of positive Lp((u,) opera-
tors. We conjecture that if 1l<p < 0, then

Ale , 0", T)f(x) —> £(x) a.e. as €, —> O+ indepen-
dently. If M =1, i.e. Il (s,t) llpeea(s*t) then the con-
jecture is true since then | S(s,t) \lp &1, for 8, t20
and consequently || f*l!pt_-(p/@ - £ IIp , where f£¥*=
=, 52, |A(e,0",S)E(x) | . This estimate for £* can be
obtained using a result in [1]. Upon applying Banach's theo~
rem to A(¢,d",S)f(x) , we get

lim A(e ,o0%,T)f(x) = 1im 4ACe ,d",S)f(x) = £(x) .
€, d50+ e, d>0+

It is well known (see [3,12]) " that the conjecture is false
if p =1 . Thus it does noi: aprear that the problem may be
resolved by using ‘the main technique of this paper, l.e. by
introducing the semigroup {P(s,t)} of L;(m) contractions.
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