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CDMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,1 (1976) 

CENTRALLY SPLITTING RADICALS 

L. BICAN, P. JAMBOR, T. KEPKA, P. NfiMEC, Praha 

Abstract: Recently, many authors studied centra l ly 
s p l i t t i n g tors ion theor ies and t h e i r appl icat ions . Here, 
we present a charac ter iza t ion of cent ra l ly s p l i t t i n g rad i ­
cals which covers almost a l l the r e s u l t s appeared in the 
l i t e r a t u r e . 

Key words: P re rad ica l , t o r s ion theory, central ly 
s p l i t t i n g preradical* 

AMS: 18E40, 1&A64 Ref. 2 . : 2.723.211 

In what follows, R stands **or an associative r ing 

with unit and R-mod means the category o* uni ta l lef t R-

modules. Recall t ha t a preradica l r **or R-mod i s a sub-

functor of the i den t i t y ^unctor, i . e . r assigns to each 

E 6 R-mod i t s submodule r(M) in such a way that every ho-

momorphism f: M—*N induces a homomorphism of r(M) in ­

t o r(N) by r e s t r i c t i o n . F i r s t of a l l , we sha l l l i s t seve­

r a l basic def in i t ions and r e s u l t s from C33,[43 and T5H which 

wil l be used in the sequel without any expl ic i t reference. 

A non-empty class OH of modules is called 

- hereditary i f i t i s closed under submodules and isomorph­

i c images, 

- cohereditary i f i t i s closed under homomorphic images, 

- stable i f every M € 'WL has an inject ive presentation 
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in fit f 

- costable i f every M e Itl has a projective presentation 

in % . 

For a preradlcal r 9 T ( 9^) means the class of 

a l l MeR-mod with r(M) * M (rCM) = 0 ) . Obviously Tv 

i s a coheredltary class closed under d i rect sums and ?T 

i s a heredi tary class closed under d i rec t products* A pre r a ­

d ica l r i s said to be 

- idempotent i f r(rfM)) « r(M) for a l l MeR-mod f 

- a r ad ica l i f r(M/r(M)) » 0 for a l l MeR-mod f 

- heredi tary i f r(N) = Nnr(M) for a l l Nf Me R-mod f N£ m f 

- superhereditary If i t Is heredi tary and 0"r is closed 

under direct products, 

- cohereditary i f r(M/H) * (r(M) • N)/N for a l l N, MeR~ 

mod f l £ M , 

- s table If every infect ive module s p l i t s (a module M s p l i t m 

i f r(M) i s a d i rec t summand of M ) f 

- costable i f every projective module s p l i t s , 

- s p l i t t i n g i f every module s p l i t s , 

- cosp l i t t ing i f i t i s both hereditary and cohereditary, 

- cent ra l ly s p l i t t i n g i f i t i s cohereditary and r(R) Is a 

r ing direct summand of R * 

I f r and s are pre rad ica l s , we define the preradi— 

cals r o s - r n s , r A s and r- * s by ( ros ) (M) =~ 

s r(s(M)> , ( rns) (M) =r(M)ns(M) f (r A S ) (M)/r(M) = 

a s(M/r(M)) and (r + s)(M) =- r(M) + s(M) . I f m s i s 

idempotent then r e s = - s o r - = r r \ s (133, Prop. 3 ( iv ) ) f i f 
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both r and a are hereditary then r © s - s a < . r = - P A S 

t[3J, Prop. 4 ( i i i ) ) , and i f both r and s are coheredi-

tary then r A s - 8 A r = * r + s ([3J, Prop. 13( l l i ) )« 

Let r be a preradical. Then 

- r i s hereditary i f f i t i s idempotent and tTr i s here­

ditary (C41, Prop. 2 . 1 ) , 

- i f r i s hereditary then 5Pr i s closed under infective 

hulls ( [ 4 ] , Prop. 2 . 2 ( i ) ) t 

- i f r is a radical and &r i s stable then r i s here­

ditary ([41, Prop. 2V2), 

- r i s cohereditary i f f i t i s a radical and &r i s co-

hereditary ( [43, Prop. 4«1), 

- i f r is idempotent and Tr i s cost able then r i s co-

hereditary ( [43 , Prop. 4 .3 ) , 

- i f . r i s stable then 7r i s closed under infective 

hulls ([51, Prop. 2 . 4 ( D ) , 

- i f r i s idempotent and £Tr i s stable then r i s stab­

l e ( [ 5 ] , Prop. 2 . 4 ( i i ) ) , 

- i f r i s costable then Tr i s costable ( [53 , Prop. 3.4 

( i ) ) , 

- if r is a radical and V is costable then r is co-

stable ([5], Prop. 3.4(ii)), 

- r is costable iff R splits (as a module) (£5], Prop. 

3.6). 

Further, a hereditary preradical r i s stable i f f for 

a l l le f t ideals I £ K $ E with K/I » r(R/l) there i s a 

le^t ideal L with L4-I and LnK = I (see e .g . [ 4 ] , 

C7J,a41). 
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I f I i s a two-sided i d e a l , we sha l l say that I sa­

t i s f i e s the condi t ion (a) ( (b) ) i f x c l x (XE x l ) ^for*all 

x e I . This i s c l e a r l y equivalent to R/I being f l a t ap a 

r i g h t ( l e f t ) R-moduie. 

As i t i s easy t o see (cf. [ 41 , Th. 4-11) } coheredita-

r y r ad i ca l s are i n a one-to-one correspondence with two-si­

ded idea ls given by r %—> r(R) and I »~~> r , r(M) = IM 

for a l l Mc R-mod . S imi l a r ly , superhereditary preradicals 

are i n a one-to-one correspondence with two-sided ideals 

via r i—* r\ K , R/K e 3 ^ and I *—*- r , r(M) = im e 

6 M \ Im -» G } (see C4] , Th. 2 .12) . 

I f I i s a two-sided idea l , r i s the corresponding 

cohereditary r a d i c a l and s i s the corresDondin* superhere­

d i t a r y p re rad ica l then 

- s i s a r a d i c a l i f f I 2 * I , 

- r i s idempotent i f f I 2 * I , 

- r Is he red i t a ry i f f I s a t i s f i e s ( a ) , 

- i f I i s f i n i t e l y generated as a r ight ideal then r i a 

superheredi tary ( [43 , Prop. 4 . 8 ( i v ) ) . 

Now l e t & be a non-empty class of modules. We def ine 

an idempotent p r e r a d i c a l p ^ and a r ad ica l p by 

p ^ (M) * 2 l a f , fcHom-^A,!) , A e <L and p^(M) ~ 

« n Ker f , f 6 Hom-^MjA), A m & . Denote 75 = {M/N | M € 

£ R-mod and N i s an e s sen t i a l submbdule of M } , <C -

=r \ If eR-mod | N I s a small submodule in some module M? s 

<£ be a r ep resen ta t ive set of simple modules and define 

% =- p ^ ( the s ingu la r submodule), ^ » p , Soc = p ^ 

( the socle) and 4- a p (the Jacobs on r a d i c a l ) . 
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5 --• Main results 

Proposition 1: The following are equivalent for prera-

dicals r, a : 

(i) ros * zer and r A S = id , 

(ii) r is a radical, s is idempotent and &T = J"3 

(iii) r is a cohereditary radical and s is the su-

perhereditary preradical corresponding to r(R) • 

Proof: obvious. 

Proposition 2: Let r be a cohereditary radical and 

s be the superhereditary preradical correspoinding to I = 

=- r(R) . Then the following are equivalent: 

(i) s is stable, 

( i i ) r i s hereditary ( i . e . co sp l i t t i ng ) , 

( i i i ) I 2 -* I and tfr S #£ , 

(iv) I s a t i s f i e s (a ) . 

Proof: ( i ) implies ( i i ) . Obviously, &T • jT8 . How­

ever, s i s a rad ica l by C33, Prop. 2 .5 , so r i s idempo­

tent and consequently heredi tary . 

( i i ) implies ( i i i ) . If M € fp then melm for eve­

ry ieM , r being heredi tary, and so sCl) = 0 . 

( i i i ) implies ( i v ) . Let x 4p Ix and KEI he maxi-
2 mal with respect to x ^ K and IxS K • Since I ~ I > 

I/K e TT £ ?g and so Ix 4$. K , a contradiction. 

(iv) implies ( i ) . Obviously, s i s idempotent and 

^ s = ^T * s s , ta fe^e* 

Proposition 3: Let r be a cohereditary rad ica l and 

s be the suparhereditary preradical corresponding to I = 

=- r(R) . Then the following are equivalent: 
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(i) r is costable, 

(ii) s is cohereditary, 

( i i i) I 2 =- I and &Q & r r , 

(iv) I is a left direct summand of R . 

Proof: (i) implies ( i i ) . Since TQ. * $ is cost-

able, s is cohereditary* 

(ii) implies ( i i i ) . Since s is a cohereditary radi­

cal, I2 * I and for each F a !TQ , F/r(F) e & r A &a
 s 

- * . n r a = 0 . 
(iii) implies (iv). Obviously a is a radical, hence 

I»R/(0:I)r * R / ( 0 : I ) and I * (0:I) r = R . 

(iv) implies ( i) . Obviously. 

Proposition 4: Let r be a cohereditary radical and 

I = r(R) . Then the following ar̂ e equivalent: 

(i) r is super hereditary, 

(ii) I is a right direct summand of R , 

(iii) I satisfies (a) and it is finitely generated as 

a right ideal. 

Proof: (i) implies ( i i ) . Clearly, I • (0:K)r for so­

me two-aided ideal K with R/K e tf r . Hence I - R/K « R/K 

and so I + K =- R . However, KSj-O:!^ . 

(ii) implies (iii) and (iii) implies (i) trivially. 

Proposition 5: The following are equivalent for a pre-

radical r : 

(i) r is stable and cosplitting, 

(ii) r is splitting and cosplitting, 

(ii) r is costable and cosplitting, 

(iv) there is a preradical s with rn s -=- zer and 
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r + s « id , 

(v) r i s cent ra l ly s p l i t t i n g . 

Proof: ( i ) implies ( i i ) « Let J? e &T and T e TT . 

Then E(T)/f 6 CTr and Homj^FjEtTVT) • 0 , hence 

ErtR(i»,T) = 0 , as desired* 

( i i ) implies ( i i i ) t r i v i a l l y . 

( i i i ) implies (iv)« Let s be the superhereditary 

preradical corresponding t o r (R) . Clearly r o s =- zer , 

and since r i s heredi ta ry , r n s * zer . On the other 

hand, r(R) « Re , e = e , so r (R) ( l - e) = 0 and 1 € 

€ (s * r)(R) . 

(iv) implies (v) . Obviously r(R) i s a r ing d i rec t 

summand and for every McR-mod , M =- r(R)M ® s(R)M -* 

* r(M) <$ s(M) * Now the inclusions r(R)M£r(M) and 

S(R)MSS(M) show that r i s cohereditary* 

(v) implies ( i ) . r(R) s a t i s f i e s (a) since r(R) - R e 

for some cent ra l idempotent e and hence r i s hereditta~ 

ry . .Finally, M « eM <£> (1 - e)M » r(M) © (1 - e)M for 

a l l McR-mod . 

Theorem: Let r be a eohereditary radica l and s be 

the superhereditary preradica l corresponding to I =- r(R) • 

Then the following are equivalent : 

(1) r n s i s idempotent and r + s i s a r a d i c a l , 

(2) r © s = s o r and r A s » s A r f 

(3) 8« r = zer and s A r = id , 

(4) r i s heredi tary and s i s cohereditary t 

(5) r n s -» zer and r * s * id f 

(6) both r and s are s p l i t t i n g , 
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(7) both r and s are cost able, 

(8) both I and (0:I)r are left direct summands 

of R , 

(9) s is cohereditary and costable, 

(10) s is cohereditary and splitting, 

(11) s is centrally splitting, 

(12) s is cohereditary and stable, 

(13) I satisfies (a) and is a left direct summand, 

(14) I 2 « I and ?r =- PQ , 

(15) I s a t i s f i e s ( a ) and &a & Tr , 

(16) I i s a l e f t d i rec t summand of R and Tr £ 

& *> a * 

(17) v i s heredi tary and cost able , 

(18) r i s heredi tary and s p l i t t i n g , 

(19) r i s cent ra l ly s p l i t t i n g , 

(20) r i s heredi tary and s t ab le , 

(21) I s a t i s f i e s (a) and for every le f t idea l K 

with I + K-fcR there i s a left ideal L*K such that 

( I + K)nL a K , 

(22) both r and s are s tab le , * 

(23) r (R)ns (R) * 0 and r(R) • s(R) * R t 

(24) r is costable and r(R)n s(R) contains no non­

zero nilpotent ideal, 

(25) I satisfies (a,(b) and it is principal left 

ideal, 

(26) I satisfies (a),(b) and it is finitely genera­

ted as a left ideal, 

(27) I satisfies (a),(b) and it is principal right 

ideal, 
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(28) I satisfies (a),(b) and it is finitely genera­

ted as a right ideal, 

(29) I satisfies (b) and it is a right direct sum-

mand, 

(30) I satisfies (b) and r is superhereditary. 

Proof: (1) implies (2). Obvious. 

(2) implies (3)* It is easily seen that ros -* zer 

and P A S = id • 

(3) implies (4) and (4) implies (5) by Proposition 1. 

(5) implies (1). Obvious. 

(5) implies (6) by Proposition 5* 

(6) implies (7) and (7) implies (8) obviously. 

(8) implies (9) by Proposition 3* 

(9> implies ((10), (10) implies (11) and (11) impliea 

(12> by Proposition 5. 

(12) implies (4) by Proposition 2. 

(12) is equivalent to (13) and (13) implies (14) by 

Propositions 2 and 3. 

(14) implies (15) by Proposition 2» 

(15) implies (16) and (16) implies (17) by Propositi­

ons 2 and 3. 

(17) implies (18) and (18) implies (19) by Proposition 

5. * - • ' 

(19) implies (13). Obvious. 

(19) is equivalent to (20) by Proposition 5. 

(20) is equivalent to (21) by Proposition 2. 

Thus the conditions (l) - (21) are equivalent. 

.Furthermore, (6) implies (22) trivially and (22) implies 

(20) by Proposition 2. 
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(5) implies (23) t r iv ia l l y* 

(23) implies (24) by Proposition 3. 

(24) implies (19). There i s an idempotent e with I » 

~ Re • I f (1 - e)a - be for some a, bcR then ebe =- 0 

and be * (1 - e)be » Thus (1 - e)RnRe = (1 - e)Re£s(R)r. 

Ar(R) and so ( l - e)Re « 0 • Hence (1 - e)R£R(l - e) 

and R(l - e) i s two-sided* 

(19) implies (25) and (25) implies (26) trivial ly* 

(26) implies (16) by Proposition 2 and the dual of Pro­

position 4. 

(19) implies (27) and (27) implies (28) tr iv ial ly* 

(28) implies (29) by Proposition 4. 

(29) implies (19)* Obviously, I + (0:1)-^ = R and (b) 

yields 1 0 ( 0 : 1 ) ^ * 0 * 

(30) i s equivalent to (28) by Proposition 4. 

The proof i s now complete* 

Corollary: Let r , s be preradicals with r * s =* s © r 

= zer and r A s - id » S A T . Then both r and s are 

centrally sp l i t t ing . 

§ 2* Some preradica ls are centra l ly sp l i t t ing 

Proposit ion 6: The following conditions are equivalent 

for a r ing R : 

( i ) Every superhereditary radica l i s cen t ra l ly s p l i t ­

t i n g , 

( i ' ) every superhereditary cohereditary radical for 

"mod-R i s cen t ra l ly s p l i t t i n g , 
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( i i ) every costable cohereditary radical i s central­

ly spli t t ing, 

( i i ' ) every costable cohereditary radical for mod-R 

is centrally spl i t t ing , 

( i i i ) every two-sided ideal which is a left direct sum-

mand is a ring direct summand, 

(iv) every two-sided ideal which is a right direct sum-

ma nd is a ring direct summand. 

Proof: (i) is equivalent to ( i i ) by Proposition 3 and 

Theorem. 

( i i ) is equivalent to ( i i i ) obviously. 

( i i i ) implies ( iv) . If I = fR is two-sided and f2 * 

•a f then R(l - f) - Re for some central idempotent e , 

and consequently f is central. 

(iv) implies ( i i i ) similarly. The rest is obvious. 

Proposition 7: The following are equivalent: 

(i) % is centrally spl i t t ing, 

( i i) % is cohereditary, 

( i i i ) 2 = zer , 

(iv) R is completely reducible, 

(vl Soc = id , 

(vi) every preradical is centrally splitting, 

(vii) Soc is centrally splitting, 

(viii) Soc is cohereditary. 

Proof: (i) implies (ii), (iv) implies (v), (vi) imp­

lies (vii), (vii) implies (viii) and (vi) implies (i) tri­

vially. 

(ii) implies (iii). Let K be a left ideal maximal 
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with respect to % (R)nK = 0 . Then % (R) © K » S and 

so £ (R) » 0 • 

(iii) implies (iv). Every left ideal is a direct summ-

and since no proper left ideal is essential. 

(v) implies (vi). Since every module is completely re­

ducible, every preradical is splitting, hereditary and cohe­

red it ary* Now it suffices to use Proposition 5» 

(viii) implies (iv)* Clearly, I • Soc(R) - R for eve­

ry maximal left ideal I • 

Proposition 8: The following are equivalent: 

(i) > = id , 

(ii) *3* i s centrally splitting, 
( i i i) 2- ^ hereditary, 
(iv) R is a V-ring, 
(v) ^ is hereditary, 

(vi) $* ~ ZBT 9 

(vii) $> is centrally splitting, 

(viii) $* is cohereditary and costable, 

(ix) ^ is splitting, 

(x) %> (C) ss o for every cyclic module C 

Proof: (i) implies (ii), (ii) implies (iii), (vi) imp­

lies (vii) and (vii) implies (viii) trivially. 

(iii) implies (iv). Let, on the contrary, M#E(M) for 

some simple module M • Then M is small in E(M) md hen­

ce '$> (M) a 0 . .Further, if NSE(M) and E(M)/N is small 

in E(E(M)/N) then N+0 and so M £ N . Thus M B $» (E(M)), 

hence ^ (M) = M , a contradiction. 

(iv) implies (v). Since ^ = p , ?1 is stable. 
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(v) implies ( v i ) . I f McE-mod and x € ^(M) then 

^(B/(0:x)) « R/(0:x) , so x = 0 . 

( v i i i ) implies ( i x ) . Since $ (R) = 0 , £ = zer . 

(ix) implies (x ) . I f C i s cyclic then G -» 

-- ^(C) ® X and ^"(O i s a ^--torsion cyclic module. 

(x) implies ( i ) . Obviously, every lef t ideal i s an in­

tersection of maximal l e f t idea ls , so R i s a V-ring and 

0 is the only cocyclic module small in i t s infective hull . 

§ 3 . Applfrca îQMf 

From our characterization of centrally sp l i t t ing radi­

cals, almost a l l the results concerning central sp l i t t ing 

from [21 fC8} fC93 fCm fC122 fCl33,Cl5] can be deduced as simp­

le corollaries. As an i l lus trat ion , we present the descrip­

tion of n-torsion theories . 

Recall that i f & ^ , . . . , &n are non-empty classes of 

modules, we shal l say that ( d ^ , . . . , Ctn) i s an n-tor­

sion theory i f ( 0,^, &i<f-^) i s a torsion theory, 1 = 1, 

2 , . . . , n - 1 . Cl-̂  i s said to be a t t f -c lass i f i t i s he­

reditary, cohereditary and closed under extensions and di­

rect products. 

Proposition 9: The following conditions are equiva­

lent for a torsion theory ( T9&) : 

( i ) (T9T) i s centrally sp l i t t ing , 

( i i ) IT,T) i s cosp l i t t ing and stable, 

( i i i ) (T,T) i s cosp l i t t ing and costable, 

(iv) {T,T) la cosp l i t t ing and s p l i t t i n g , 
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(v> ( :F,T') i s a t o r s i o n theory, 

(vi) there i s a r ing d i r e c t summand I of R such 

that T =-{M€R-mod j IM = MJ and f = iMe R-mod | IM 5: 0 ? t 

(v i i ) ExtR(T,F) = ExtR(F,T) for a l l T e T and $e 

e T . 

Proof: The equivalence of Conditions ( i ) - (vi) and 

the implication ( i ) implies ( v i i ) follow immediately froc* 

Theorem. I f (v i i ) holds then obviously (?9&) i s s p l i t t ­

ing, fur ther , suppose that there are T e T , F e & , 

A ! | C£F , N£T with r(N)=*=N and with C/A = r(i?/A) ( r 

is the idempotent r ad i ca l corresponding t o (T9^) )• With 

respect t o the hypothesis, the exact sequences 0—>R/r(i-)-> 

—^T/r(N)—> T / N - ^ . 0 and 0 - > A—> C—> C/A —> 0 s p l i t , 

a contradiction* 

Proposition 10: The following are equivalent : 

( i ) ( Ct̂ j. &2> QO i s a 3-torsion theory, 

Cii) &2 i s a t t f - c l a s s , CI-, « a | and &3 « a
2 # 

( i i i ) there i s an idempotent two-sided idea l I such 

tha t <XX » 4 Me E-mod | IM = M } , &2 « 4 Me R-mod | IM * 0 } 

and d 3 -» 4M 6 R-mod | lm#0 for a l l O^m^Ml . 

Proof: Easy. 

Proposi t ion 11: The following are equivalent : 

( i ) ( Cl-p &2 , &3, 4..) i s a 4- tors ion theory, 

( i i ) both & 2 and d^ are t t f - d a s s e s , A^ = # 2 , 

A 3 » a* and a 4 = a* , 

( i i i ) there i s a two-sided ideal I which i s a r ight 

d i rec t summand such that d-^ = ^Me R-mod | ( 0 : 1 ) ^ = M | , 
d 2 = (Me R-mod j ( 0 : 1 ) ^ = 0} = £M£ R-mod ] IM -= M \ , &3 = 

=- 4 Me R-mod ] IM = 0^ and CL = ^M* R-mod J- Im + 0 for a l l 
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O + m e M } , 

(iv) t he re i s a two-sided ideal K which i s a lef t 

d i rec t summand such that CL^ =-1M e R-mod | KM = M } 9 &2
 = 

=* 4.M eR-mod J KM =-= 0} = iM€ R-mod | (0 :K)jl ~ M ? , & 3 » 

-*4.McH | (0sK)rM = 0} and &4 *{Me R-mod ) (0:K)rm%0 for 

a l l O^rmeM? f 

(v) t ^ , flg) i s cos table cohereditary tors ion theo­

ry , id%9 ftj) i s a superhereditary cohereditary torsion 

theory, ( d^$ &&} i s a s t ab le superhereditary tors ion t he ­

ory and &g & &* • 

Proof: ( i i ) implies ( i i i ) . I t suffices t o put I =-

- r(R) f where r i s the superhereditary cohereditary r a d i ­

cal corresponding to ( (L^9 dJ) • 

( i i i ) implies (iv)# Take K = ( 0 : I ) 1 f 

(iv) implies (v ) . Since K i s a l e f t d i rec t summand, 

(0:K) r i s a r ight direct summand. Hence ( d^t &>) i s co-

s table by Proposit ion 3 and ( d^t d*) i s s t ab le bj Propo­

s i t i o n 2. 

The r e s t i s obvious. 

Proposit ion 12: The following are equivalent for eve- . 

ry n > 5 » 

( i ) ( & £ , . * • ! & n ) i s an n-torsion theory, 

( i i ) ( d^9 Q+y) i s a centra l ly s p l i t t i n g tors ion theo­

ry , &i = d~ = d-. a . . . and {i2 - d* =- d^ = . . . f 

( i i i ) there i s a r ing direct sumiranci I of R such 

that i l l € R-mod j IM =- E | -a fl^ = d^ » . . . gnci -(.Me R-mod ) 

| i i s oI =a a ? = ^ 4 = • . • . 

Proof: Obviously, only the implication Ci) implies 
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( i i ) needs the proof. However, ( Q^» &-) i s s table here­

d i t a r y by Proposit ion 11 and consequently s t ab le cosp l i t t i ng , 

Q/* being cohered i t a ry . 

Corollary: There are only four types of n- torsion t h e ­

o r i e s , namely 

(i) t o r s ion theor ies which cannot be extended to a 3 -

to r s ion theory, 

( i i ) 3- tors ion theor ie s which cannot be extended to a 

4 - tors ion theory, 

( i i i ) 4 - to rs ion theo r i e s which cannot be extended t o a 

5- tors ion theory, 

( iv) cen t ra l ly s p l i t t i n g t o r s ion t h e o r i e s . 

Corollary: There i s a one-to-one correspondence between 

- 3- tors ion theor ies and t t f - c l a s s e s , 

- 4- tors ion theor ies and costable t t f - c l a s s e s , 

- cen t ra l ly s p l i t t i n g to r s ion theor ies and s t ab le costable 

t t f - c l a s s e s . 
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