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CENTRALLY SPLITTING RADICALS

L. BICAN, P, JAMBOR, T. KEPKA, P. NEMEC, Praha

Abstract: Recently, many authors studied centrally
splitting torsion theories and their applications. Here,
we present a characterization of centrally splitting radi-
cals which covers almost all the results appeared in the
literature.

ds: Preradical, torsion theory, centrally
split’Eing preradical. ’ ’

AMS: 18E40, 16A64 Ref. Z.: 2.723.211

In what follows, R stands for an associative ring
with unit and R-mod means the category of unital left BR=-
modules. Becall that a preradical r for R-mod is a sub-
functor of the identity functor, i.e. r assigns to each
MeR-mod its submodule r(M) 1in such a way that every ho-
momorphism f: M —>N induces a homomorphism of r(M) in-
to r(N) by restriction. First of all, we shall list seve-
ral basic definitions and results from (31,{4] and [5] which
will be used in the sequel without any explicit reference.

A non~-empty class M of modules is called
- hereditary if it is closed under submodules and isomorph-

ic¢ images,
= cohereditary if it is closed under homomorphic images,

- gtable if every M € M has an injective presentation
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in M ,
- costable if every M € M has a projective presentation
in M .
For a preradical r , ?’r
all MeR-mod with r(M) =M (r(M) =0) . Obviously T,

( ¥,) means the class of

is a cohereditary class closed under direct sums and 3'1.
is a hereditary class closed under direct products. A prera-
dical r 1is said to be

- idempotent if r(r(M)) = r(M) for all Me R-mod ,

a radical if r(W/r(M)) =0 for all Me R-mod ,

- hereditary if r(N) = Nnpr(M) for all N, Me R~mod , Nc M ,

- superhereditary if it is hereditary and J’r ic closed
under direct products,

~ cohereditary if r(M/N) = (r(M) + N)/N for all N, MeR~
mod , NeM ,

~ stable if every injective module splits (a module M splits
if (M) is a direct summand of M ),

- costable if every projective module splits,

- splitting if every module splits,

- cosplitting i 1t 1s both hereditary and cohereditary,

- centrally splitting if it is cohereditary and r(R) is a
ring direct summand of R .

I r and 8 are preradicals, we define the preradi-
cals res , rAs, TA8 and r+8 by (ros)(M) =
=r(s(M)) , (rnsdM =r(MnsM , (ras)M/r(M) =
= s(M/r(M)) and (r +s)(M) =r(M) + s(M) . I ras is

rns ({31, Prop. 3(iv)), if

"

jdempotent then res =ser
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both r énd 8 are hereditary then re¢s =sar =rns
([3], Prop. 4(iii)), and if both r and & are coheredi-
tary then ras =sAr =1r + 8 ([3), Prop. 13(iii)).
Let r be a preradical. Then
- r is hereditary iff it is idempotent and 31r is here~
ditary ([4], Prop. 2.1),
- if r is hereditary then 3’1‘ is closed under injective
hulls ([4], Prop. 2.2(1)),
-if r is aredical and &, 1is stable then r is here-
ditary ([41, Prop. 2.2),
= v 18 cohereditary iff it is a radical and Gﬂr is co-
hereditary ({41, Prop. 4.1),
if r 4is idempotent and Tr is costable then r is co-
hereditary ([4], Prop. 4.3),
- if . r is stable then ', is closed under injective
hulls ([5], Prop. 2.4(1)),
- if r is idempotent and ', is stable then r is stab-
le ([5], Prop. 2.4(ii)),
- if r 1is costable then ¥,

(1)),
if r 1is a radical and ¥, 1is costable then r is co-

stable ([5], Prop. 3.4(ii)),

r is costable iff R splits (as a module) ([5], Prop.

3.6).

Further, a hereditary preradical r 1is stable iff for
all left ideals ISKE R with K/I = r(R/I) there is a
left ideal L with L#*I and LnK=1I (see e.g. [4],
{73,0141).

is costable ([5], Prop. 3.4
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If I 1is a two-sided ideal, we shall say that I' sa-
tisfies the condition (a) ((b)) if xeIx (xe xI) ifoz;.all
xeI . This is clearly equivalent to R/I being flat as a
right (left) R-module.

As it is easy to see (cf. [4], Th. 4.11), coheredita~
ry radicals are in a one~to-one correspondence with two-si-
ded ideals given by T %> r(R) and I+sr , r(M) = IM
for all MeR-mod . Similarly, superhereditary preradicals
are in a one-to-one correspondence with two-sided ideals
via P>~ XK ,RK €T, and I+sr ,r(M) =4n e
eM|Imn=0% (see [41, Th. 2.12).

If I 1is a two-sided ideal, r 1is the corresponding
cohereditary radical and s is the corresponding superhere-
ditary preradical then
- s 1is a redical iff I =1,

- v 1is idempotent iff =1 s

- 1 1is hereditary iff I satisfies (a),

- if I 1is finitely generated as a right ideal then r 1is
superhereditary ({43, Prop. 4.8(iv)).

Now let @ be a non-empty class of modules. We define
an idempotent preradical Pa, and a radical pa’ by
Py (M) = = In £, feHomy(a,M) , 4 e.(L and p% (M) =
= N Ker £, feHomy(M,A), A € O . Denote B ={M/N|M e
€ R-mod and N 1is an essential submodule of M3, <=
={NeR-mod | N is a small submodule in some module M3,
3 be a represeﬁtative set of simple modules and define
Z =pg (the singular submodule), F = p€

y Soe = ps,
(the socle) and Jr = pg

(the Jacobson radical).
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§ 1. results

Proposition 1: The following are equivalent for prera-
dicals r, s :

(i) ros =zer and ras = id,

(11) r is a radical, s is idempotent and %, = T

(iii) r 4s a cohereditary radical and s is the su-
perhereditary preradical corresponding to r(R) .

Proof: obvious.

Propogition 2: Let r be a cohereditary radical and
s be the superhereditary preradical correspoinding to I =
= r(R) . Then the following are equivalent:

(1) s 1is stable,

(1i) r 4s hereditary (i.e. cosplitting),

(111) I =1 end TLo % ,

(iv) I satisfies (a).

Proof: (i) implies (ii). Obviously, %, = T’y . How-
ever, s 1is a radical by £3], Prop. 2.5, so r is idempo~
tent and consequently hereditary.

(i1) implies (iii). If M € :T'r then meIm for eve-
ry meM , r being hereditary, and so siM) =0 .

(iii) implies (iv). Let x & Ix and KEI be maxi-
mael with respect to x¢ K and IxEX . Since =1 s
I/Ke T,€% andso Ix§ K, a contradiction.

(iv) implies (i). Obviously, s is idempotent and

?s = 9"1. is stable.

Proposition 3¢ Let r be a cohereditary radical and
8 be the supzrhereditary preradical corresponding to I =
= r(R) . Then the following are equivalent:

- 35 =



(1) r is costable,
(1i1) s is cohereditary,
2 _
(111) I°=I amd Fge 7, ,

(iv) I is a left direct summand of R .

Proof: (i) implies (ii). Since Ty = ¥, is cost-
able, s 1is cohereditary.‘

(ii) implies (iii). Since & 1is a cohereditary radi-
cal, 12 = I and for each F e &g F/r(F) € Fondy=
= 3"5 'al gs =0 .

(111) implies (iv). Obviocusly s 1is a radical, hence

. =R . =
I.r/(0:1), = /(O’I)r and I+ (0:I), =R,

(iv) implies (i). Obviously.

Proposition 4: Let r be a cohereditary radical and
I = r(R) . Then the following are equivalent:

(i) r 1is superhereditary,

(4i) I 4s a right direct summand of R ,

(114) I satisfies (a) and it is finitely generated as
a right ideal. .

Proof: (i) implies (ii). Clearly, I = (O:K)r for so~
me two-sided ideal K with‘ R/K e T, . Hence I-R/K =R/K
and so I +K =R, However, KE}O:I)I v

(11) implies (1i1) and (1i1) implies (i) trivially.

Propogition 5: The following are equivalent for a pre-
radical r :

(i) r 4is stable and cosplitting,

(ii) = 1is splitting and cosplitting,

(i1) r 1is costable and cosplitting,

(iv) there is a preradical s with rns = zer and
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r+s8 =14,

(v) » is centrally splitting.

Proof: (i) implies (ii)., Let F e F, and Te T, .
Then E(T)/T € 3, and Homy(F,E(T)/T) = 0 , hence
Extp(F,T) = 0 , as desired.

(11) implies (iii) trivially.

(1i1) implies (iv). Let s be the superhereditary
preradical corresponding to r(R). Clearly re s = zer ’
and since r is hereditary, rns = zer . On the other
hand, r(R) = Re , e = e s 80 P(R)(1 =-¢e) =0 and 1€
€(s +r)(R) . '

(iv) implies (v). Obviously r(R) is a ring direct
summand and for every M€ R-mod , M = r(R)M @ s(R)M =
= r(M) @ s(M) . Now the inclusions r(R)MEr(M) and
s(R)ME s(M) show that 1 is cohereditary.

(v) implies (i). r(R) satisfies (a) since r(R) = Re
for some central idempotent e and hence r 1is heredita-
ry. Finally, M =eM ® (L -e)M=r(M) ® (1 - e)M for
all Me&R-mod .

Theorem: Let r be a cohereditery radical and s be
the superhereditary preradical corresponding to I = r(R)I.
Then the following are equivalent:

(1) ras is idempotent and r + s is a radical,

(2) ro8 =8or and rAs =sAT ,

(3) ser =zer and sar =1id ,

(4) r 1s hereditary and s 1is cohereditary,

(5} rns =zer and r + s = 1d ,

(6) both r and s are splitting,

- 37 =



(7) both r and s are costable,

(8) both I and (0:I), are left direct summands
of R,

(9) s 1is cohereditary and costable,

(10) s is cohereditary and splitting,

(11) s 1is centrally splitting,

(12) s is cohereditary and stable,

(13) I satisfies (a) and is a left direct summand,

(14) 12 =1 and %, = F, ,

(15) I satisfies (a) and &g € Ty

(16) I 4is a left direct summand of R and 3§, &
e Fs

(17) r 1is hereditary and costable,

(18) r 4is hereditary and splitting,

(19) r 1is centrally splitting,

(20) r 4is hereditsry and stable,

(21) I satisfies (a) and for every left ideal K
with I + KR there is a left ideal L=#%K such that
(I+KX)AnL=XK,

(22) both r and s are stable, a

(23) r(R)As(R) =0 and r(R) +s(R) =R,

(24) r 4s costable and r(R)n s(R) contains no non-—
zero nilpotent 1deal,A

(25) I satisfies (a,(b) and it is principal left
ideal,

(26) I satisfies (a),(b) and it is finitely genera-
ted as a left ideal,

(27) I satisfies (a),(b) and it is principal right

ideal,
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(28) I satisfies (a),(b) and it is finitely genera-
ted as a right ideal,

(29) I satisfies (b) and it is a right direct sum-
mand,

(30) I satisfies (b) and r is superhereditary.

Proof: (1) implies (2). Obvious.

(2) implies (3). It is easily seen that ros = zer
and ras =1id .

(3) implies (4) and (4) implies (5) by Proposition 1.

(5) implies (1). Obvious.

(5) implies (6) by Proposition 5.

(6) implies (7) and (7) implies (8) obviously.

(8) implies (9) by Proposition 3.

(9) implies ((10), (10) implies (11) and (11) implies
(12) by Proposition 5.

(12) implies (4) by Proposition 2,

(12) is equivalent to (13) and (13) implies (14) by
Propositions 2 and 3. ‘

(14) implies (15) by Propoai,t:l,oﬁ 2.

(15) implies (16) and (16) implies (17) by Propositi~-
ons 2 and 3.

(17) implies (18) end (18) implies (19) by Proposition
5. ’ :

(19) implies (13). Obvious.

(19) is equivalent to (20) by Proposition 5.

(20) is equivalent to (21) by Proposition 2.

Thus the condiﬁiom (1) - (21) are equivalent.
Furthermore, (6) implies (22) trivially and (22) implies

(20) by Proposition 2. :
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(5) implies (23) trivially.

(23) implies (24) by Proposition 3.

(24) implies (19). There is an idempotent e with I =
=Re . If (1 - e)a =be for some &, beR then ebe =0
and be = (1 - e)be - Thus (1 - e)RARe = (1 - e)ReEs(R)n
Ar(R) and so (1 - e)Re =0 . Hence (1 - e)RER(1 - e)
and R(1l - e) 1is two-sided.

(19) implies (25) and (25) implies (26) trivially.

(26) implies (16) by Proposition 2 and the dual of Pro-
position 4.

(19) implies (27) and (27) implies (28) trivially.

(28) implies (29) by Proposition 4.

(29) implies (19). Obviously, I + (0:I); =R and (b)
yields In(O:I)l =0 .

(30) is equivalent to (28) by Proposition 4.

The proof is now complete.

Corollary: Let r, s be preradicals with ro8s =sor =
=2zer and ras = id = sAr . Then both r and s are

centrally splitting.

§ 2. Some preradicals sre centrally splitting

Proposition 6: The following conditions are equivalent
for a ring R @

(i) Every superhereditary radical is centrally split-—
ting,

i every superhereditary cohereditary radical for

‘mod-R is centrally splitting,
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(i1) every costable cohereditary radical is central-
ly splitting,

(i1°) every costable cohereditary radical for mod-R
is centrally splitting,

(4ii) every two-sided ideal which is a left direct sum-
mand is a ring direct summand,

(iv) every two-sided ideal which is a right direct sum-
mand is a ring direct summand.

Proof: (i) is equivalent to (ii) by Proposition 3 and
Theorem.

(ii) is equivalent to (iii) obviously.

(111) implies (iv). If I = fR is two-sided and £° =
=f then R(1 - £) =Re for some central idempotent e ’
and consequently f 1is central.

(iv) implies (iii) similarly. The rest is obvious.

Proposition 7: The following are equivalent:

(1) Z is centrally splitting,

(ii) 2% 1is cohereditary,

(1ii) % = zer ,

(iv) R is completely reducible,

(v} Soc = iad ,

(vi) every preradical is centrally splitting,

(vii) Soc is centrally splitting,

(viii) Soc is cohereditary.

Proof: (i) implies (ii), (iv) implies (v), (vi) imp-
lies (vii), (vii) implies (viii) and (vi) implies (i) tri-
vially.

(ii) implies (iii). Let K be a left ideal maximal
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with respect to Z(R)DAKX =0 .Then 2Z(R) ® K=R and
so Z(R)=0.

(1ii) implies (iv). Every left ideal is a direct summ-
and since no proper left ideal is essential.

(v) implies (vi). Since every module is completely re-
ducible, every preradical is splitting, hereditary and cohe-
reditary. Now it suffices to use Proposition S.

(viii) implies (iv). Clearly, I + Soc(R) =R for eve-
ry maximgl left idesl I . -

Proposition 8: The following are equivalent:

(1) 3} =14,

(11) "} is centrally splitting,

(1i1) 4§ 1is hereditary,

(iv) R is a V-ring,

(v) % 1is hereditary,

(vi) 7 = zer ,

(vii) 7 1s centrally splitting,

(viii) Z is cohereditary and costable,

(ix) j- is splitting,

(x) %(C)=0 <torevery cyclic module C.

Proof: (i) implies (ii), (ii) implies (1ii), (vi) imp-
lies (vii) and (vii) implies (viii) trivially.

(4i1) implies (iv). Let, on the contrary, M#4E(M) for
some simple module M . Then M is small in f(l) @md hen-
ce 7} (M) =0 . Further, if NEEM) and E(M)/N is small
in E(E(M)/N) then N#0 and so MEN . Thus M = 3 (E(M)),
hence 7} (M) = M , a contradiction.

(iv) impliea (v). Since 7= pg ’ 3;_ is stable.
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(v) implies (vi). If MeR-mod and x € 4 (M) then
4(R/(0:x)) = R/(0:x) , s0 x=0.
(viii) implies (ix). Since 4R =0, 4 = zer .
(ix) impiies (x). If C is cyclic then C =
= }(C) ® X and }(C) is a’ ?-torsion eyclic module.
(x) implies (i). Obviocusly, every left ideal is an in-
tersection of maximal left ideals, so R is a V-ring and
0 1is the only cocyclic module small in its injective hull.

§ 3. A cgti

From our characterization of centrally splitting radi-
cals, almost all the results concerning central splitting
from (2],081,091,0111,(121,013],[15] can be deduced as simp-
le corollaries. As an illustration, we present the descrip-
tion of n-torsion theories.

Recall that if Q;,..., Q, are non-empty classes of
modules, we shall say that ((j,..., Q) is an n-tor-
sion theory if (Q,, a’i-rl) is a torsion theory, i =1,
2y0eeyn =1 . @; is said to be a ttf-class if it is he-
reditary, cohereditary and closed under extensions and di-
rect products.

Proposition 9: The following conditions are equiva-
lent for a torsion theory (T,%F) :

(1) (7,%) 1is centrally splitting,

(11) (7,%F) 1is cosplitting and stable,

(111) (7,F) 41s cosplitting and costable,

(1v) (T,%F) 1s cosplitting and splitting,
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(v) (%,7) is a torsion theory,
(vi) there is a ring direct summand I of R such
that T ={MeR-mod| IM = M} end 3 ={MeR-mod |IM=0%,

(vii) Extp(T,F) = Extp(F,T) for ell Te I ang Fe
e ¥ .

Proof: The equivalence of Conditions (i) - (vi) and
the implication (i) implies (vii) follow immediately from
Theorem. If (vii) holds then.obviously (7,%) is splitt-
ing. Further, suppose that there are T € & , Fe ¥ ,
A§ CEF , NET with r(N)$N end with C/A = r(F/A) (T
is the idempotent radical corresponding to (3°,%) ). with
respect to the hypothesis, the exact sequences O-——>N/r(n)~>
—> T/r(N)— T/N—>0 and O0—> A—> C—> C/4—> 0 split,
a contradiction.

Proposgsition 10: The following are equivaleri:

1) (&, 4, Q) is a 3-torsion theory,

(i1) Q, 1s a ttf-class, O, = @ and Qg = az ,

(iii) there is an idempotent two-sided ideal I such
that O, ={MeE-mod| IM =M}, @&, ={MeR-mod| IM =0}
and O3 ={MeR-mod | Im#0 for all O%meM%.

Proof: Easy.

Propogition 11: The following are equivalent:

(1) (4, a,, Q3, OL4) is a 4-torsion theory,

(11) both @, end @y are ttf-classes, (&, =d§ ,
&3=a,’; and a4= 0.’3 N

(iii) there is a two~sided ideal I which is a right
direct summand such that @; = {MeR-moq | (0:1),M =M%,
a, f{MER-mod [ (0:1),M = 0} ={MeR-mod | IM = M%}, Q5=

=§MeR-mod | IM = 0% and a4 ={MeR-mod | Im+0 for all
- 44 -



OfmeM?,

(iv) there is a two-sided ideal X which is a left
direct summand such thet (Q; ={M€R-mod |KM =M}, 04, =
=4{MeR-mod | KM = 0} ={MeR-mod | (0:X) M =MZ, Q3=
=4{MeR | (0:K) M = 0% and Ry =4Me R-mod | (0:K) .m#0 for
all OfmeM},

(v) (‘al' Q,) 1is costable cohereditary torsion theo-
Ty, (CLZ, G.E) is a superhereditary cohereditary torsion
theory, ( a3, 0'4) is a stable superhereditary torsion the-
ory and a,z, =3 @4 .

Proof: (ii) implies (iii). It suffices to put I =
= r(R) , where r is the superhereditary cohereditary radi-
cal corresponding to ( a?, &3) .

(111) implies (iv). Take K = (0:I); ,

(iv) implies (v). Since K 1is a left direct summend,
(0:K),, is a right direct summand. Hence (Q,;, Q,) 1is co-
stable by Proposition 3 and ( (., Q4) is stable by Propo-
sition 2.

The rest is obvious.

Proposition 12: The following are equivalent for eve-
Ty nzZ5 .

(1) (Qy,..., @) is an n-torsicn theory,

(i1) (Q«l, az) is a centrally splitting torsion theo=~
Y, CLl_= Q,3= Ov5=... and Q2=a4: af6=...,

(iii) there is a ring direct summsnd I of R such
that {MeR-mod | IM = M}= @) = (3 = ... eand {MeR-mod
m=0%=Q, = 0,=... .

Proof: Obviously, only the implication (i) implies
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(ii) needs the proof. However, ( 03, 0,4) is stable here-
ditary by Proposition 11 and consequently stable cosplitting,
Q,‘ being cohereditary.

Corollary: There are only four types of n-torsion the-
ories, namely

(1) torsion theories which cannot be extended to a 3-
torsion theory,

(i1) 3-torsion theories which cannot be extended to a
4~torsion theory,

(iii) 4-torsion theories whick cannot be extended to &
5-torsion theory,

(iv) centrally splitting torsion theories.

Corollary: There is a one-to-one correspondence between
- 3-torsion theories and ttf-classes,
= 4-torsion theories and costable ttf-classes,
- centrally splitting torsion theories and stable costable

ttf=-classes.
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