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Introduction. We work through the paper only with

real Banach spaces. A Banach space X is said to be weak-
1y compactly generated (WCG) if there exists a weakly com-
pact set KcX which generates X , i.e. the closed linear
spanof K 1is X . '

‘Recently, Rosenthal [ 7] has shown that a closed subspa-
ce of a WCG space need not be WCG. Such a subspace (even
with an unconditional basis) was found in the space L;(@)
for a finite measure @ . We have remarked in this paper
some properties of WCG spaces which are hereditary to gene-
ral closed linear subspaces, e.g. a certain densitiea pro-
perty (Proposition 5).

We mention our notation. For a Banach space X we de~

note B; the unit ball of X* with the w* topology. For
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a topological (completely regular Hausdorff) space T
C,(T)} denotes the space of real-valued functions on T
under the supremum norm.

By a subspace of a Banach space we mean alwgya a clo-

sed linear subspace.

We quote at first a few marked properties of WCG spa-
ces which are (some of them less evidently) kept by general

subspaces of WCG spaces.

Propositiop 1. Let X be a subsbaco of a WCG space.
Then there holds:

(1) X has an equivalent norm which is LUR;

€11) X has an equivalent norm such that X* 1is
strictly convex;

(111) X has a MarkuSevi¥ basis;

(1v) 1ir ¢,©X then there exists a linear projection
P of X onto c, with IPI& 2, ‘

Proof: Properties (i) and (ii) are hereditary, (iii)
can be pro;ved using the method of [5] and the decomposition
of subspaces of WCG spaces in [3]. (iv) holds by the re—
sults of [8] and [3].

We use the following easy characterization of subspa—

ces of WOG spaces for the next.

Lempma., A Banach space X 1is a subspace of a WC& spa-
ce if and only if the unit ball of %* with the w* topolo-
&y is a continuous image of an Eberlein compact.

‘ . Proof: Let X be a subspace of a WCG space Y .:The
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restriction mapping R: Y¥—» X* defined by Rf = £/X

for feY* is w¥- w* continuous and R(B}) =B} by
Hahn-Banach theorem. The space B; (with the w* topology)
is an Eberlein compact ([1]) and B; is a continuous image
of 1it.

On the other hand, let X be a Banach space and Bf
& continuous image of an Eberlein compact. X . Then we can
suppose the inclusions Xc C(Bx’“ Jc c(K) and the latter spa-
ce is wee ([11) .

There is observed in [4) that if T: X—»Y 15 a line-
ar continuous mapping with the range dense in Y and X is
WCG, then so is Y . Indeed, if K 1is a weakly compact set
generating X , then T(K) i1s a weakly compact set generat—
ing Y . We make an analogy -to this within subspaces of WCG

spaces.

Proposition 2. ’Let both X , Y be Banach spaces and
T: X—>¥ a continuéus linear mepping with TX = Y . Sup-
pose X 4is a subspace of a WCG space. Then so is Y

Proof: The mapping T*: Y¥—» X* is w* - w*¥ con-
tipuous and one-to-one. Accordingly, 7¥ 48 a home omorph-
ism on By and we can assume the inclusion B; c ™.
. B; » Since the property "to be a continuous image of' an
Eberlein compact™ is closed hereditary, our assertion is a

consequence of the Lemma.

Remark. Each Eberlein compact K has the following
property due to Kaplansky: if AcK and xe€A , then there

exists a sequence -(xn}:;l in A4 such that x —»x . It
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is easy to verify that this property is kept by continuous
Hausdorff images of Eberlein compacts.

Proposition 3. Let X ©be a subspace of a WCG space and
KcX* a w¥* -gequentially closed set which is either bound-
ed or convex. Then K is w* -closed.

Proof: For any r>0 the set Kni{xeX*; Ixfl &£ r}

is w¥X=~=closed by the Remark and Lemma.

Corollary. Let f be a convex function on X* where
X 1is a subspace of a WCG space. Then f is w¥ -lower semi-

continuous if it is sequentially w¥ -lower semicontinous.

Proposition 4. Let X ©be a topological Hausdorff com-
pletely regular space. Suppose Cp(X) is a subspace of a
WCG space. Then there holds:

(a) X 1is pseudocompact;

(b} X is compact if it is normal. i

Proof: Suppose X 1is not pseudocompact. Then there ex-
ists an infinite discrete set T < X which is C-embedded
into X , i.e. the restriction mapping R: cb(x)-—» m(T )
(defined by Rf = £/T for fe (X)) 1is onto m(T) .
The space m(T") cannot be a subaspace of a WCG space by
Proposition 1. Consequently, the space Cp(X) cannot be a
subspace of a WCG space by Proposition 2 , a contradiction.
Let 'X be now moreoever normal. Denote Bé‘ the unit ball
of CX(X) with the w¥* topology. As for the Tech-Stone
compactification 3 X of X we can assume @ Xc Bg s BX
is a continuous image of an Eberlein compact by the Lemma.

Thus (X has the property of Kaplansky from the Remark.
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It implies easily (provided X 4is normal) that X mst be
compact.

D. Preiss and P, Simon have shown recently that if K
is a pseudocompact subset of an Eberlein compact, then K
is compact ([6)) . Consequently, if for a Hausdorff comple-
tely regular space X the space C,(X) is WCG, then X is
compact.

For a topological space X dX (density of X) is the
smallest cardinal number 4 such that there exists a sub-
set A dense in X with ecard A = & .

The next property and also Corollary 1 are proved in
[4] for WOG spaces, but the method used there cannot be uti-

1ized in our case.

Propogition 5. Let X be a subspace of a WCG spacee.
Then for the densities of X and X* we have the equali-
ty ax = d(x*, w¥) .,

Prooff: For any normed linear space there holds
a(X* , w*)£ dX , Thus for X separable our asgertion is
evident. So supposee X 1is a non-separable subspace of &
WCG space Y . We can assume dX = dY ([1]) . Suppose the
inoqualit}: d(X*, w*) =dX 4s falge, i.e. let A be a
w¥ ~dense subset of X¥* with card A<dX . Since X 1is
non-geparable we can assume that card A = £,

Let fe Y* be an extension of f for each fe A and
denote X =4F ; £6 A1 . By [3] there is a continuous line-
ar projection P: ¥—> Y with PXcX , P*% =T for Fek
and Aa(PY)4 card A . We define the projection S: X—> X
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by the restriction of P on X. Clearly, s¥Xp=f for fe
€A . Since A is w* -dense in X* and $*¥ is w¥- w¥
continuous we have S¥ = 1dx,; . Consequently, S = 1dx and
hence Xc PY . But for the densities we have da(PY)z card A<
<dX , thus d(PY¥)<dX , a contradiction.

Corollary 1. Let X be a Banach space such that X* is
a subspace of a WCG space. Then d¥X = dx*.

Progoft For any normed linear space there holds
a(X** w*)< ax«dX™* , and the first member of the inequa~
lity is equal to the last one by Proposition 5.

Corollary 2 (cf.[2]) . Let X be as in Corollary l.
Then X has the densities proprty, i.e. for each subspace
YcX there is daY¥*=dY . Thus X* has the Radon-Nikodym
property.

Progf: Suppose Y is a subspace of X . Then Y* is
a continuous linear image of X* and thus Y* is s subspa-
ce of a WCG space by Proposition 2. Consequently, d4Y = ay*
by Corollary 1.

If X has the densities property, then X* has the Radon-
Nikodym property, see e.g. [2].
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