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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,4 (1975)

NONCONFORM FINITE ELEMENT PROCEDURE FOR SOLVING OF THE
SIMPLY SUPFORTED PLATE PROBLEM

Vladimfr JANOVSKY, Praha

&mm: This paper contains hybrid variational
formulation of the simply supported plate problem and one
example of finite element method based on this variatio-
nal formulation. There are not imposed too strong conti-
nuity requirements upon the "test" functions.

Key wordg: Finite elements.
AMS: 65N30 Ref. Z.: 8.33

§ 1. Introduction. Let us solve the following va-
riational problem: Find wew?2(2)n Vi’z(ﬂ.) such that

(1) alu,g) = (£,¢9)

for all g € Wz’z(ﬂ)n Wg’z(.ﬂ.) where fe Iaz(ﬂ.) is a
given function, £l is a Lipschitz domain on the plane and

2
a(u.g)- {——-3-——2+2(1 -6) 2y 0% .
x] xlaxz 6x13x2
a%u 599 d%u g
rr il S =
3% 52
+ 6 ax§ 3. } dx, dx, for fixed €€ (0,1) .
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Remgrk: The problem above is a simple model of &
simply supported plate.

Theorem 1. There exists the unique solution u of
the problem (1) for arbitrary given fe€ L) .

Proof: see [3].

Notations and definitions:
1) Notation of all functional spaces see [3].

2) Let G be a domain of the plain. Then

B

df df 2
I V'“O,G = “W”LZ(G) . “"k,G= 1(«,5&1 I D“'HO,G)

df 2 2 4;
lw 'k,G = (1 wllo,G + "’k,G) )

for sufficiently smooth function w and for an integer
k Ld
Let G be the boundary of G . Then

af

m{)

3) Let R, =4Q..3 " be a division of fL defined

- mih)
for each fixed he€(0,1) . This means: L =.\J Q. ,

4=1
D™ Dyp =@ for all 14§, he(0,1) .
4) Let wr2(0y) ={fuel,(N)|uevr2(2;,) , 1=
=1l..,0m 3, WHQ) =ire(r2(ny))

where ('2’2(.0.‘"))' is the dual space to 12’2(.0%) 3
Flg) =0 for all @ e W'2(Q)nw2(0)3.

§ 2. Hybrid varistional formulation,
Hybrid problem: Find iuh,l’h} € '2’2(.().‘») »
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= WD () guch that
(2)  aptu 7y 59,0 = (£,9)

for all 49,6} e Wr2(0,) x WH2(0y) , where

Byplup,Fy 59 ,0) = :"ié:” '&u.{ :2:21%*
s21 -6y 2n % | &

9%y 8x, Bx,0x, Ox5 Ix5
’6%% ?“li‘szdxldxz’Fh(?’*
+ Gluy) .

Remark: About origin of the hybrid variational for-
mulation see e.g8. [ 4],

If we define u, =u, Fh(.) =(f,.) - aplu,.) ,
where u is the solution of the problem (1), then it is
easy to verify that {u,,F,% solves the problem (2).

It may be proved the uniqueness of this solution, never-

theless it will not be necessary further.

2 . =
Theorem 2. Let uew?(Q) . Then | Mu!lo’an_ =0

and
df _ m(k) P
() R lg) = (f,9) - aplu,g) =, = &%"“‘La» a6

for @€ 12’26.9%)0 Wg'z(_ﬂ.) » where » =(» ,») is

the outside normal vector and Mu =-6aA u = '
8%y » w2
- (1 -6) ( 1 v axl axz vq 2 * axg ”2 :
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Proof: By simple using of Green’s formula.

It is very natural to introduce the approximate Ga-
lerkin method as usual. Let S:ll; and Sg be subspaces
of '2'2(.(1,“) and ‘W'Q’n((.f).h) algebraically for each
fixed he(0,1) . We define the following semi-norms:

mi) 4
a) lwlz’h= (4'?41"‘2"‘1111)2 and n'llz,h-.:

mih) 4_
=[.= “'Iz’nih + 074 ovnihja for each weW3(f,),

=1
1
) Rl p = ‘?:gil Flg)llgl, 5  for each
» equ,-Q,Q
fluly p =0, uesSL =>u=0 anQ3, i Ielyq 18

(Qp) . Let us suppose that

1
a norm on Sh .

r oblem: Find {ul ,B*} e slx$2 such that

(4) A buf JRF59,0) = (£,9)

for each {qg, G}eSpxSZ .

Lemmng 1, There exists a constant C such that

2 2 4
(5) Qg‘zxp Ay ,F39,6) | = clly o * llll'lll_,",)gy )2
R
for each {y ,Fic sixsg , where W, =£(¢p,0) €
2 2

€ s%"‘s% ' ‘?lg"‘* m?lﬂ_q,hz '13 .

Proof: Let 4w, Fle ng S% be given. We shall con-
sider the following auxiliary problem: Find 7“.5 S}n such
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that ap(g,74) = Flg) for each g e Si'; . There ex~

ists unique ue s%l for arbitrary given Fe Si and mo-

reover
£

(6) o WPN _, &l jpe g MFN _, o

where the constemts c¢,, ¢, are independent of F, h .,

If we substitute @ =g +x5, and G =-2F , we obtain

Ay JF; ¥+, - 2F) = ap(y,y) + a (7, ,14) « In ac-
cordance with (6) it holds

(T Taply Fi¥ ey, =200 | = cllyly, + ””"'2_2,h’

where C is independent of % , F, H . On the other hand,
from (6) it follows

2 2 2 2
(8 ly« mhlm* = 2r il -2, % C lylyg + NPN -2,n)
where C 1is independent of <4, F, h . The assertion (5)
is a simple consequence of (7) and (8),

Theorem 3. Let {u,Fp % and {uf ,A*% be the solu-
tion of the problem (2) and (4) respectively. Then

* -k -
(9) ln-uhlz’h*lllrh rhul_z’héc(llu vllz’h-r

-1
*G:ugﬁhl Glu-v)lllall 2n* e -ri -2,h

where C is independent of u, Fy , VGS%I » Pe Sﬁ y wr o,
L A

Proof: Let an arbitrary ve Sg; anrd Fe Sg be given.
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Then it holds: Aplu¥-v, R} - F; ,6) = Aplu - v; By -

- F;9,G) for each ¢ ,Gf¢ shxs2 . We may estimate
sup, n.,l Ap(u - v, F - F;¢,6)| by the right hand side of
the inequality (9). Finally, by using (5) we reach the fol=-
lowing estimte:

(10) \ul;“ "”2,1;*“ rx-FI -2,n c(nu-vllz’h+

+ o |G(u-v)|nlell 2nt T,

where C 1is independent of u, v, Fy, F, uf , ¥, h,

,
The assertion (9) follows from (10) immediately.

Remark: The semi-norm il . “—2,3\« need not be equi-
valent to the natural "sup" norm in the space -2 (f,).
From this point of view, Lemma 1 warrants the uniqueness
of ul’: only. In the following paragraph we give one ex-
ample of a concrete numerical method. The main problem ari-
sing by the application of the error estimates (9), will

be the proof that Il . “‘_2 4, 18 a norm on the space Sﬁ R
T

§ 3. Nonconform finite element method. Let N be a
polygon. Let the division D, ={0 ,,3'”‘“”

=1

be a triangu-
lation of . , i.e. there exists an affine mapping Fy,
of the fix "reference” triangle ¥ onto L., , i =1,...
eeeym(h) . Let us denote by d;y, and @;4, the diameter
of Q.4 &and the diameter of the circle inscribed in ;g
respect ively. Lgt us suppose that d, = d.f k“‘ﬂ’,‘.,,mw =
=on) end g min 0., ¢4 =0m™) for -t 0.

Ayeey
About details of this techniques see [5].
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Rempark: We shall define the spaces Sl];, Si in such
a way that Si ¢ v2(Q) . Corresponding finite element
procedure is (in this semse) nonconform with respect to
the classical variational principle. About advantages of
such a method see [2] and [6],

Let S' = £ |4 1s a polynom of the 4th degree on
T ¥ 1s a polynom of the 3rd degree on each side of
the triangle J'% . Let us denote by A, and a (x=1,
2,3) vertices and mid-side-points of the reference trian-
gle T .

Lemma 2. An element % of S® has the following
degrees of freedom: D ¥ (A;) for |x| « 1 and
oy
a3,
tor which is not perpendicular to the corresponding outsi-

(’1)’ i =1,2,3 , where 3,;, is an arbitrary vec-

de normal vector 3, of the reference triangle J3° .
Proof 1is based on the fact that 3 1s on each "side"
direction polynom of the 3rd degree.
Let Si =4{glgo. Fihesl for i =1,...,m(h) , if
& 1is any vertex and a 1is any mid-side-point of any tri-
angle O, € flg , then D¥@ 1is continuous in A (for

lcl £ 1) and —5%— in a (where 2 is a normal vec-

tor direction at a ) respectively, with respect to 0 ;
@ =0 on 82 %. If A 1is a vertex of polygon .2 then
necessarily D* @ (A) =0 for Je! & 1 . Using this
fact, it may be easily verified that |. lz,& is' a norm on
st.

Let V=4 ¢ | @ is constant on each side of the
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triangle '35 . We define ¥2 = {@ | w is & Tunction
m(h)

on ,\J 8f:4  such that wo pih¢’§z for 1=

eeesm(h) 5 @lyo = 0% with a norm

l’...
df 11 mih) 2 >
Clp= A" CE 1l 50, ) . Finally, let Sj =

2 ~
=4G61a ew? (£4) such that there exists “E Si

mGh) o
G(g)=4’§4 f (b-é—g;-dG’ for each gsf'z(nh) .

n
We shall say that Geg¢ Sﬁ and (ac'§§ are assoclated irf

m () g
Glep) =¢§1 _Ln&h(w?;da’ for each 9512’2(.0.&) .

Lepma 3. For each uewtr2(0)n Wﬁ’z(ﬂ.) » k= 3,4
there exists € S!l‘ such that

' k-2
(11) i “"h“z,hé cl\ullk’nh

where C 1s independent of u, h . The function vy, may
be found such that it interpolates u at all degrees of
freedom (i.e. D¥ vy (A) =D*u(A) , |21l and

avh u

YIS (a) = 3;-(3) at each vertex A and mid-side-~

point a of any triangle .qu e Dg).

Proof: It is based on the well-known Bramble-Hile
bert ‘s lemma (see [1]) and on the fact that a piecewise
polynom ¢ of the 3rd degree, which satisfies boundary
conditions @ = O on 8. , may be interpolated ex-
actly on each .Q“V € D.h .
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The following three lemmas will be used to prove that
il !\\_Qh is a norm on S2 .
)

Lemma 4. Let (ue“éﬁ be given. Let us define S €
€s! such that D¥ @ (A) =0, lel21 ,1=1,2,3 end

aqd ( ) - ) -

B, a) = @ (ai , 1 =1,2,3. Then it follows

(12) f y.————a;“ a6 = C @y a0 19uls o
o7 v 3w, 0,87 " e 2

where € is independent of « and
(13) “("’“o,a:r X "?(4-‘2,7' .
Proef: If (12) were not true then there would exist
@ I« Ilo 55 =1 - see assumptions of this lemma. But
7
it may be easily computed that j;f @ —=Lfgg =0 irr
o
@ (ag) =0 for all i =1,2,3,
The assertion((13) is an evident consequence of Lemmg 2.
lemmg 5. Let Ge S% and (wesﬁ be associated.
Then

(14) Crlul,, &l ail,,

280
where the constant C 1is independent of G, e, h .
Proof: Let fcs?.i be given. Let ¢ belong to St
such that D¥ @ (A) =0 , lec1% 1 for each vertex A of
triangle Q,, e O a12L ()l = 1Y wla)
any triangle iy % 8D 35 (el = ‘ula)/

for each mid-side-point a of any triangle ‘Q'U» € ‘Q‘h .
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We introduce the following notation:
df F. 5., & iy .
(“’h’l“‘° };,994,5,"—' Polins s * i
Then it holds
a‘“’aw

)

(15)f@%§;dsz0mf@m(%§org )descfg%
an, -Xod

where C 1is independent of «, ¢ , h . It may be shown

8% o
3::: (a) = @, (a) and —5% (a) =0 at each

A~

that

mid-gide-point a of the triangle J° , where = 1is a
tangentiel-direction.
According to the assumptions concerning triangula-
A
tion Qg , we can estimate |(3;, » )Rz\'hséhlnzzs>o

where ¢ does not depend on i, h . By an easy computa-

tion we obtain

‘a"}*‘vm |= (3,

ik (q, )}z el%%—'{-%h)l .

MR EN Ia»h

By using (12) and (15) we reach
(16) 93 we = Cl@ ol o lags, |

[ U35, 46 =2 Clnloor 190, 4 2.7

0.y '
where the constant C is independent of h, «,< « The
estimate (14) follows from (16) immediately.

Lempg 6. Let Ge Si and e Si be associated. Then

there exists a constant C independent of G , @&, h such
that

for each ge ¥2(0,)
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md) ag
Proof: Since G(g) —L§4 aééh(b -'5-;- a6 , we

obtain that
mb) g ;. mh)
(@)l £ (“2% Il "o,a.n,; 3-..) , ” ”a,and,

054
Let us estimate “—i— “oa 00, ¢ N':;-:Lna,anm‘—"c v 164

“1 A 2 1 \
=Ch7(|cg|:7+|?}ﬂo,7 )3 where @£?°Fih and €
J

is independent of %, 1, h. If we use the inverse affine
mapping, we obtain the estimate (/& I2 + g ho,o) EP
I

-2 A _ 2
£ c(n? iq| Bt h "‘fho,nu,.)% =Chllglyp. .+
- 2 1
+ 74 “‘Suo,n;,g.,)l .
Lemmg 7. Let us suppose that the solution u of the
problem (1) belongs to vi2(0) for k= 3,4. Then the-
re exists vy € S}]; such that

(18} sup | Glu = vy)l- me' n&Cluly o0
GesZ h k0

where C 1s independent of u, h . The function vy Dbay
be found such that it interpolates wu at all degrees of
freedom.

Procf: see (11), (14), (17).

It remains to analyse the norm [l ®, - Fll _, It
uew?2(fL) then we obtain (see (3)) that Fplg) -

mCh) aq,
Ld = - — h
F(?) ;é: 'L-Wuﬂf,mu (u) a» a6 , where 2% ¢'¥h
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is associated with Fe Si « Let us define an operator
&.q by the following way for each 1 = 1,...,m(h) :
We denote by A} , A3 , A} emd by a}, a3, a] the verti-
ces and the mid-side-points of the triangle fl:6g . If v

is & function given on side A] , AL , then &; v is

a Lagrange interpolation at the points Ai ’ a% ’ A%

. On
the other sides of {l;p there is defined the operator
3u~ by the similar way (i.e. as a three-point Lagrange

interpolation). It may be easily verified that

mih) 3 m(Ch) g _2
jm“fmu_m%wﬁag b= @)L - 4, 52 )6

.

421
for Qe 5111 « Therefore it holds

A % 29 ¢, %% )ae .
(9GPl o= pun gl B, fm*.,fym“"“)(a £,,22)

Lemma 8. Let us suppose that we I"zf.ﬂ.‘;“) and
Mw =0 on 80~ &f;, . Then there exists a constamt
C independent of w , i, h such that

g ¢
(20) [ M-, () —=-&, a6z Cal ’M"' legl
af!l- o (a b ) ‘v 20

by

for each ge s}, » where g (w) 0 % - 2w)

1
Rl ¥w(t Al + (1 - t)Az) + (-- + 200)1im M\v(tAk +

+ (1 - t)Ai) on each side A1 AI. y k>£ , of the
triangle .., for either o =0 or o =1.

Proof: Using the well known technique of the affine
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mapping Ty)p = see [5], it may be shown that

3
7%

and

by o

@ | 2L -2, %2 "oan,f ewtige,,

, A df.
where W if weFyy , 9= @ eFyy and C 1is a constant
independent of w,¢, i, h.

Let zTr and 3(\, be a polynom of the lst and 3rd deg~
ree respectively. Then 1 ‘,‘;f Ye P th and 7 = 7(’ ° Pi%x
is a polynom of the 1lst and 3rd degree respectively. First

we shall prove that

)
{ (M(w-n-q,)-(/,&(w-n(,))(a‘i*v) 0,22V ug o

T on
(23) b 5
[ o (o (32 - 2, ag’)ds .
0%,

Because %i’--i%%‘fgo on 8Q,, , it is sufficeint to

verify that f (M%‘f"h(%» (-:—:-!- &0 g—f)ds =0 .
i 1

Let a side Ay Ay of £, , be given. We define

(Mg, = wulyg)) (-%%- - “v'g% ) equals to K(t) at

the point x =t AL + (1 - t)Al for te<0,1>. The
function K(t) 1s a polynom of the 4th degree and the
numbers 0, 0.5, 1, 1.5 are roots of K(t) . Hence

fo K(t)at =0 snd the equality (23) holds.
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From (21), (22), (23) it follows that the left hand
-p A A
side of (20) is bounded by Ch 1%r I noiziwoiigﬂq +

01’4"" This term may be bounded by C h 2| %l .-1&l 5.

27 {4 2,

Transforming J° into ;. , we obtain the estimate (12).
By the same technique may be proved the following

Lempmas 9. Let us suppose that w¢'3’2(.ﬂ."‘.) . Then
o -]
@4 'J;.n. M(—ag'zi‘*?% )da‘ c""‘”"ﬁ;»lq‘ﬁr%h
Ay
for each ge Si .

As a simple consequence of (19), (20), (24) we may
obtain the following assertion:

Lemma 10. Let the solution ueW'2(f), k= 3,4 .
Then there exists Gype S5 for each he (0,1) such that

(25 Nr-cy M , 4 clhuly o v

where the constant € is independent of u, h . The func-
tional Gh may be found by the following way: If k =3
then G,m 0 . If k =4 then G, 1is associated with
such a @””sﬁ which aquasls to @g(u) on each .45 -
see Lemma 8.

Now it is easy to prove some assertions concerning

error estimates of the presented method.

Theorem 4. Let the solution u of the problem (1)
belong to W2(Q2) , k = 3,4 , Then
- 4-k
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Proof: See (9), (11), (18), (25) .

Theorem 5. Let the solution u of the problem (1)
belong to vH2(0) . Then

Mu(a) = w¥* ( I=o(’-’t
Q:uhlua “r a) h%)

where w} is associated with P , Mu(a) and X (a)
is the value of Mu and W} at the point a , 2, =
=4{a; a 1is mid-side point of 2;, € 2, % .

+ Ppoof: Let g be the element of ’§§ defined in
lemma 10 (case k = 4). Using (10), (14), (11), (18), (25%)
we reach the following estimate: E&z-&lzkﬂ o(n?) ,
i.e.

(26) = | @ (8) = @y(a)| = O(h%)

ae gy
where (,(a) 1is the value of wg at the point a . But
@p ®ay be defined by two ways (see Lemma 10 and 8). If
we replace «, by its average (i.0.

1
“n = 3 (&:04- Mu(t A;‘ + (1 --‘t)Ai) >

1 1
* *1_3‘14311 (t AL » (1 - t)ay))

on each side Ai Li of the triangle f;,), we obtain the

same estimate (26) evidently. On the other hand, it may
be shown that

\12(}1:0 Mu(t AL+ 1 -wal)
Jl

1
2

1
+*
Juim Mult Ay

' 1 1.1
*+ (1 - t)A‘ D -ml= (A +ag Nl &cCh '“‘4.3“
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on each side Ai Ai of f:, where C is independent

of u, i, h . This finished the proof.

Remark: Using so called "Nitsche s trick™, we would
obtain error estimateées of u - u,’: in Ly~norm. Since
we cannot expect "a priori" better smoothness of u then
uew12() for even amalytic function f , the L, esti-
mate may be found localy only. Local error analysis of

this case exceeds the purpose of this paper and will be
published later on.
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