Commentationes Mathematicae Universitatis Carolinae

Carmen Stranska
Optimal and Sard approximation

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 3, 567--582

Persistent URL: http://dml.cz/dmlcz/105648

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105648
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
16,3 (1975)

OPTIMAL AND SARD APPROXIMATION
C. STRANSKA, Praha

Absgtract: The paper develops the previous Sard s idea
of an approximation the error of which is minimal in the
given space, It investigates the approximation in the spa-
ce of complex-valued functions on which the Hilbert pseu-
donorm is given, The Sard approximation and an optimal ap=-
proximation on some subspace is defined. The relation be-
tween the optimal and Sard approximation is studied. The
theory is illustrated by the example of integration in the
Sobolev space.
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reproaucfng kernel, natural spline, guadrature, Sobolev
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Introduction., An approximation of linear functional
A 1is understood as a linear combination L%a «; gy of
"gimpler" linear functionals ByrecesBy o

It 1s a natural requirement to define such an appro-
ximation the error of which would be minimal in the given
space, A, Sard treated this idea particularly in the
c®<a,b> space in [4) and [5). As A he toaok an integral

&:’f dt and his approximating functionals were the Dirac

measures., If the approximation is exact on all polynomials

of degree m - 1 then the error has the form

Py
ﬂra‘&xfmht,
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where X 1is the so-called Peano kernel. Sard called this ap-
proximation the best approximation if J:?dﬂ zdt is minimal,
He generalized his results later in [6] dealing with an app-
roximation of a linear operator from Banach space to Banach
space,

The present paper develops the previous idea of Sard but
in another direction than in [6]. An approximation is inves-
tigated in the space X of complex functions on which a Hil-
bert pseudonorm is given,

The paper is partially based on a preceding joint work
(3]. Analogously to [3], the ambiguous subspace X, on which
the pseudonorm is a norm, is constructed. Assuming that X,
is a Hilbert space, we define the optimal approximation on it,
i.e. the approximation which has the minimal error in the sen-
se of its norm minimization., If xo is a space witﬁ reprodu.
cing kernel (for more details see[1],[7]) then we will faci-
litate the calculation of the optimal approximation, Further,
an approximation that gives the minimal error with respect to
the pseudonorm on X is defined, It is shown that this is a
generalization of the previous definition of the best appro-
ximation given by Sard, and therefore we call it the Sard ap-
proximation.

The relation between the optimal and the Sard approxi-
matiop is studied. An argument is given why the Sard approxi-
mation on X is preferred to the optimal one with respect to
xo on X , However, it is considered as more convenient, in
most cases, to use the optimal approximation on Xo o This
approximation can be obtained from the Sard one by appropria-
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tely £illing in the set of approximating funoctionals.

Finally, the theory is illustrated by an example of in-
tegration in the Sobolev space. The theory can also be used
for determining optimal differential schemes.

1, General theory
1.1, Notation and aggumptions, ILet X be a space of

complex valued functions which are defined on the sét Q .
Let | | denote a Hilbert pseudonorm on X , i.e. the map
X — Rl satisfying

lx+ylelxh+lyl x,ye X
1) lexlha=lel,lixl x€C (C denotes the set

Ix + le2 +lx - yl|2 =2(lxh2 +1lyN?2) of complex

numbers).

Let the kernel of the pseudonorm M ={xeX,Ixll= 0}
satisfy
(11) dim M < o .

Further let % , %! c X* be such set that
(111) MA@ =40} X,

We are given linear functionals A and 81recer8y de~
fined on X and continuous in a certain algebraic direct
complement of the space M in X , We shall denote it gene-
rally by Xn » We suppose that 51""'511 are linearly in-
dependent on Xy and
(1v) MAGt = 0} where G = (8yreee18y)

We shall consider approximations of A in the form

x) m‘L denotes the annihilator of 7L .



m x
4_21 x 38y and by R™ denote the remainder of approxima-
=

"
tion, i.,e. R® =4 'k%ol“‘igi , where o¢ = (ocl,...,ecn) .
By RM we denote an arbitrary remainder of approximation
that vanishes on M ; let 2% be the coefficients of this
approximation,

1.2, Optimal spproximation. Similarly as in [3], we
use

Lemma 1,1, Under the assumptions (i),(ii),(iii) there
exists an m-tuple of linear functionals L = (£,,...,£.) ,
lism y 1 =1,...,m such that the space X ={xe X,
L(x) = O} is an algebraic direct complement of M , i.e.
I=X @M.

Remark, We shall call such a space Xo the DC-space.
According to Lemma 1,1 it follows that the pseudonorm
is a norm on xo +« So we can prove the following propositi-

on,

Propogition 1,1, If F 1is a continuous functional on
some DC-subspace then F 1is continuous on all DC-subspaces.
Hence the continuity of the functionals A, Eyrecer8y
does not depend on the choice of a DC-subspace. Suppose
(v) X, 1is complete with respect to the norm bl (i.e.
X, 1s a Hilbert space),
Remark, It is easy to prove that the validity of (v)
implies the validity of (v) for all complements X, of M

in X.

Definition 1,1, A funotionsl ,3, g, 1is called an
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optimal approximation on X, with respect to G if there
exists an n-tuple of coefficients ec° such that the re-

(]
mainder of the approximation R°= R® satisfies

sup | R°f| < sup | R* £ | Ve e R
hel €1 [F I
fEIXo f1!X°

The Riesz representation theorem guarantees the exis~
tence and uniqueness of functions @, §1...., §a from the
space xo which are the representatives of A,gl,...,gn .
Let us denote 2 = span {?i. i=1,...,n? the subspace of
the space Xo . Because of the linear independence of Byreee
¢e+s8, We have that dim 2 = n . It is easy to prove the

following theorems.

Theorem 1,1, Under the assumptions (i) - (v) there ex-
ists an optimal approximation with respect to G on Xo .
Moreover, the optimal approximation is unique iff 8yseeesBy
are linearly independent on Xo o

Theorem 1,2, Let (i) - (v) hold. Then the approxima-
tion on X, with respect to G 1is optimal iff it is exact
for all functions belonging to Z .

I xo satisfies another assumption
(vi) xo is a space with a reproducing kernel, the so-cal=-
led RK-gpace (see [3])
then the optimal approximation on xo can be well evaluated
in most cases., The fulfilling of the assumption (vi) does
not depend on the choice of the m-tuple of functionals L N
i.e. if any DC-space is RK-space then all DC-spaces are DK-
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spaces. This is easy to prove similarly as in [3] by means
of Proposition 1.1,
It Kt denotes the reproducing kernel in x° then

we have
si(Kt) = (&t’ si) = (gi’x‘t) - §i(t)
AKy) = (K, 9) = (@,K) = 9(%) .

Remark, In the case that the functionals 8yreeesy
reproduce the values of the function, i.e. 843 £ — f(ti).
i=1,,..,n,then 2= epan{Ktl....,Ktn} (see the Appli-
cation),

Parther we shall assume only (v).

1.3. Sard approximation., It follows from the assump-
tion (iv) that there exists at least one approximation with
respect to G which is exact on M , Namely, there exist

m functionals 8"1""'85 from G , so that the matrix

(‘ki(fj))li.,;i-l is regular, where fy,...,f; 1is a basis of
M . Hence there exists oy = (ccl,...,ecn) such that

m,
(1.1) 38 (fy) = ALy, J=1,0m

LOI -t
Definition 1,2. We call a functional ,_g.,'er.igi the

Sard approximation with respect to G , if it is exact on
M (i.e. VYfeM Rt =¥ £ 0) and, moreover,

(1.2) sup RSz | ¢ sup lR.tl
el €1 lele
feX feX
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holds for arbitrary R. .

Remark, It is easy to verify that in the definition
1,2 the right hand side term of (1.2) can be replaced by the
expression:
sup |R® ¢ | Vc e R,
elhsl
feX

Theorem 1,3. Assuming (i) - (iv) to hold there exists
a unique Sard approximation with respect to G .
Proof. a) Existence. Let us define the function

@ oty —> sup |Af '4,,%,,“181(’)' , where oty =
lellel = (0Cqpeeesxy) o
feX

We shall prove that this function is continuous on its do-
main, i.e. on each vector of coefficients from Rn which
is the solution of m equations (1.1l). This domain is a

closed set. Further,

lp (xy) = @ ()| & sup|laf -L%ocigi(f)l -

Ithel
fexll
m m -
-lag - 2 2 () | & sup |2 (0 -Fg)gg ()] &
- lell&«l
fexl
w —
/_-mix sup Igi(f)l‘.*gzdl w0y - Xy |y

lehel
£6 Xy

where E“ = (alpoongan) °

Since the functionals B83se..s8np 8F¢ continuous on Xy it
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evident that the function @ 1is continuous in its domain,

for example with the norm [loc ! = max lecsl o If we prove
i

that

(1.3) @ () —> @ if Nocy Nl —» 0

then the function @ will attain its minimum. The functio-
nals 811900048, 8are linearly independent on a certain sub-
space XM , 1.e. on an algebraic complement of the space M .
Thus there exist functions ?Jc I\M , ?34; 0,3 =1y0es
«seyn  such that the matrix (si(?d))!;'jﬂ is regular, We

have

m N m A
laf - % o8y (£)1 |lAfjl - I§. ocigi(fj))l
@ (&y)= sup pd
££0 el I fdll
feX

V.’] = 1’000’11 .

m
Letting [l ¢yl —> @  we see that mgx (%ﬂ “‘igi(f;])l'—’
~—> c and hence (1.3) holds,

b) Uniqueness. If oos denotes the n-tuple of coef-
ficients of a Sard approximation then

NRSH & = sup IRS21 £ eup [ Ryel = Ryl
EENPIVA heh el T
feX fe Xy

for any n-tuple o, satisfying (1.1), Since Xy is a

space with Hilbert norm, g;,...,8, are linearly independent
on X, and because of the fact that the domain of the coef-
ficients M is a closed set, we get the uniqueness of co-

efficients cc,s « This follows from the orthogonal projecti-

\
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on theorem (on a convex closed set in Hilbert space). The

proof would be similar to that of Theorem 1,1,

l.4, The relation between optimal and Sard spproxima-
tionse Let us observe that the Sard approximation with res-

pect to G has been defined independently of the DC-subs
gpace, Provided that (iv) holds, one can assume without loss
of generality that the matrix (gj_(:t“.j))x{.3=1 is regular,
where fl,...,fm is a bagis of M .
If we put
Y, = {xeX, gi(x) =0, 1i=1,...,m%

then Y  is a DC-space for = {g;, 1 =1,...,m} and a
Hilbert space, too.

Theorem l.4. Let us suppose that (i) - (v) hold and
let Bnp10eec 18y be linearly independent on Yo . If °°§ ’
i =1,se04n are the coefficients of the Sard approximetion
with respect to G on X and agg sy 1=m+1,...,n the
coefficients of the optimal approximation on Yo with res-

pect to Bni1rece08, on Yo , then
©S - x? i 1
i= i =M + lyeeeynt o

Proof. Let us define an approximation with respect to
8@ with coefficients o = (oc‘i,...,ec;) such that oc‘{ =
= ch y i=m+1,...,n and oei sy 1=1,,..,m 1is the so=-

lution of m 1linear algebraic equations

m v 2 °
té"ocisi(fk) = Afk -L.ﬁ‘”%igi(fk) k=1,000,m

v
The remainder R'= R* of the approximation defined in this
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way satisfies the requirements of the Sard approximation,
Indeed,

v,

R = 0 VfeM ,

“n v
sup |BR°2| = inf sup IRM £) = sup | R°2| = sup IRZ| =
Iehe1 g Nenel Iheher 12l el
feX fCYo ero f(Yo
= sup | Rf|
Jtl&l
feXx

A
where o, denote (x ,...,xn) for any oy = (cx,l,...

m+1
....acn) o The converse inequality is trivial., Due to the
uniqueness of the Sard approximation, the assertion of the

theorem follows immediately.

Remark, The Sard approximation with respect to G is
exact not only on M but also on the functions - S 1=
= 1,000y n - m , It should be observed that the considered
expression is an approximation with respect to G . This
means that it cannot be an optimal approximation on the spa-
ce Yo with respect to G .

It seems natural to ask whether it would be better to
use some of the optimal approximations on X with respect
to G than the Sard approximation with respect to G . To
compare both these approximations, the following theorem is
of. importance.

Let Xy 0 2 denote the spaces defined in Section 1.2
and 8yreeesly be linearly independent functionals on M ,
which satisfy (v).

Due to the assumption (iv) and since the optimal appro-
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ximation is exact on sll functions from 2 we have

Theorem 1,5, Let us assume that (1) = (v) hold. The
optimal approximstion on xo is not exact on M iff the
foilowing implication holds:

(1.4) JpeM, e 2: 6(p) = G(pr) => Ap+ Ay .

Theorem 1,6. Assuming that (1) - (iv) hold, we have

(1.5) sup | R°f| < sup |RS2)
Nehél lehéed
f‘xo f‘xo

for any DC-subspaces X, which satisfies (v) and (1.4).

Eroof. If a DC-subspace xo exists such that it sa-
tisfies (v), (1.4) and such that in (1.5) the equality
holds then o° -o(,s would be valid because of the unique-
ness of the optimal approximation on X, o But this is a
contradiction with Theorem 1.5.

Corollary. If the task is to find the value of the
functional A for a function fe& X , we must consider whe~
ther f 1ies in some DC-subspace X, fulfilling (1.4) and
whether the given 81100048, are linearly independent on
X_ . Thus, it is better to use the optimal approximation on

(]

-xo than the Sard approximation on X , When the answer is

negative, we shall use the Sard approximation because

sup |\R52) < sup |IR°2| = o
ieN&1 iehea
reX feX
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In this case we shall say that the Sard approximation is
"univergal” with respect to all DC-subspaces satisfying (v)
and (1.4).

2, Application

Let us consider the Sobolev space X = Wg <a,b),
m sbl'{with the given Hilver pseudonorm Jl£ 12 =
= 1™ )1 2at . Then M 18 o, , f.e. the set of
polynomials of degree less than m . If 2 is the set of
all functionals F: f—> £(t) , teQ ,c<a,b) , where
card Q,zm , then (1ii) holds. If we choose m diffefent
points X;,...,X; from Q, and put X, = {feX, f(xk) =0,
Xe Qo ,k=1,...,m} then X, is a DC-space satisfying (v).
Due to the continuous imbedding of W%’(a.b} with usual
norm into the space C < a,b)» , the condition (vi) is sa-
tisfied. The reproducing kernel of Xo is the vector-func-

tion K,e X, such that KtEsz_l(xl,...,xm,t) » lees Ky

is a natural spline of degree 2m - 1 with knots Xqseee
eeerXpyt , see [31. s

Let A be a functional given on X by Af = fw £ dt
and the functionals g; by g (£) = £(t;) , t;eda,d>, 1 =
= lyeeeyn , {xi}rfh ity i‘ = & . Under the assumption n=
2m (iv) holds. The Bys++es8, are continuous and linearly
independent on Xo .

' In this case we shall call the optimal, resp. the Sard

approximation, the optimal, resp. the Sard quadrature.

We shall now demonstrate that the Sard quadrature coin-

cides with the best quadrature which is given by Sard in [4],
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Definition 2,1. (Sard). Let t1see0,t, Dbe different

points from {a,b)> and m an integer such that m<n .

The remainder of a gquadrature exgct on Tl

& m
faf at ~ kz:1 a f(t,) , where fe c®<a,bd
2
can be expressed in the form
&
1) R£= [Teme™w) at,

where ¥ 1is the so-called Peano kernel (see [5]). The quad-
rature exact on o, , with the remainder R* is called

the best quadrature if the corresponding Peano kernel

(2.2) K* has the minimal L,-norm among ell Peano ker-

nels of quadratures exact on I ., .

The density of C®<a,b) in W? { a,b> guarantees
that (2.1) holds for all feX . But (2.1) is equivalent to

the requirement

sup |R* £| = 4inf sup IRy f feX
(m) (m)
het™ iy g2 oy et I, 1

We introduce a linear map J: w'; <a,b>+> L, < a,b> such
that Jf = f(m) and a functional
"4
& (g) = J;g . X*dt , gel, <ap>
then we have

sup [R*f| = sup |® (3£) = sup 1O (g)] =
@ er N =1 llg 52
2 2 2

£eX fex
= L&l = IlxM
? L, L,
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Therefore both quadrature formulae are equivalent.
If we now apply our theory on this special case, we
shall receive the following results. Let Dn denot e the se-

quence of points tl,...,tn .

Theorem 2,1, There exists the unique optimal quadra-
ture on the space XO with respect to the D, .

Theorem 2,2, The quadrature is optimal in Xo iff it
is exact on the space Z ={fe Nam-l(xl”"'xm’tl”"'tn) R
é‘(xi) = 0 ' is= l'--o' m} .

Theorem 2,3, There exists the unique Sard quadrature
with respect to D_ . ’

Let us take the first m points tl,...,tm from Dn
and put k =n-m, ¥, ={feXx , £($;) =0, 1= l,000,m .,
The other k functionals gg: £—> f£(ty) , i =m+ 1,...
eeey N are linearly independent on RK and DC-space Yo .

Let us denote D =4t ., ... tn; .

Theorem 2.4, If eoi y1=1,..., n are the coeffi-
cients of the Sard quadrature with respect to Dn , and
c(«: s i=m+ 1,...,n are the coefficients of the optimal

S o

quadrature in Y, with respect to D, then «xj =ocy ,

i=m+1,,..,n o
Corollary. The Sard quadrature is exact on M@ Z =

= xm_le{fexam_l(tlpouo'tn) » f(ti) =0 ’ is= 1,--0, n}ﬂ

- Nzn_l(tl,...,tn),wbich is a known result (see [2]). It is

possible to obtain the coefficients of the Sard quadrature

by solving n + m 1linear independent equations:



m &
§ wit] = j'a t*at, r=0,...,m =1
m &
2m=-1 2m-1

(S ity =0T 4 w(ty) = L (8- 600 at

t L N ] t>0
J = 1000y n, 1:+ =

0 ... t£0

for o« ,1=1,...,n end m coefficients of gedr, , .

To obtain the optimal quadrature with respect to Dk
on Yo it is sufficient to evaluate the Sard quadrature

with respect to I)n

Lemma 2,1, There exists a function p € ’rm-l such
that if € Z satisfies G(g) = G(p) then

2 &
f“pdt #fw»g'dt )

Proof. We shall find the function gq. e N2m-1(x1""
coesXpotysecesty ) such that qo(ti) =0, 41i=1,...yn and
the values of which in XyseeesXy will be chosen to satis-
£y f gy dt+0 . There exists a unique function q, gi-
ven by values qg(%$;),00.,9,(t,) and q (x;),...,09,(xy)
(see [21). Using the values q (x7),eee,q,(x,) at xp,...
e X, We construct an interpolation polynomial P, € "m-l’
If we define the function Po=Po =9 then o€ 2
because of ¥ (xy) = Polxs) = Golxg) =0, 41 =1,0.0yn
and P E N, 1 (XyseeesXpobysecerty) o

& ¥4
However, fa, %o 4t %+ j; p, dt as required.

Due to validity of (1.4) we get

Theorem 2,5, There is no RK and DC-space X, such
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that the optimal gquadrature is exact on ', ;1 »

Corollary. The Sard quadrature is "universal" with
respect to all RK and DC-subspaces.
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