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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
16,3 (1975)

TRANSFORMATIONS DETERMINING UNIQUELY & MONOID III
WEAK DETERMINANCY

Marie MUNZOVA-DEMIOVA, Praha

Dedicated to Prof. S. Schwarz to his SOth birthday

Agiiract: These two papers give necessary and suffici-
ent con ons for a translation to_be a member of oan iso-
morphic Cayley” s representations. In order to prove the ne-
cesslty of conditions it contains a number of constructions
which lead to non-isomorphic monoids. x)

Key wgr%ix Algebraic monoid, Cayley s representation
left iranslation, right translation, isomorphism of algeb-'

raic monoids,

AMS: 20M20 Ref, %.: 2.721.4

If a transformation £ on a set X has a suitable form,
then there exists an algebraic monoid M = (X, .,e) such
that £ 4s its left translation, in other words that £ is
the left multiplication by f(e) . In this case f 1is cal-
led a potentigl translation. It may happen that such a& monoid
is unique, then we call f a determining translation (see

[5)). The uniqueness of M = (X,,,e) means that e¢ X and
the associative binary operation " . " on X such that
£(e)ox = £(x) are unigue.

x) At this occasion I wish to express my thanks to Pavel Go-
raldik, Zden&k Hedrlin and Vdclav Koubek for their kind
helpt and valuable suggestions during my work at this
paper,
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From this definition it follows that no group can have
a determining translation (a determining element a = f(s)),
because we can take "b = (X,,,b) a monoid for which also
£(b).x = £(x), b being an identity element. Hence one can
introduce a weaker type of determinancy of monoids; the trans-
formation f will be called a weakly determin translatio
if for every couple of algebraic monolds M = (X,.,e) , M-
= (X, o,e‘) such that £ 1is a left translation of both M ,
M', there is an algebraic isomorphism ¢ from M onto M,

Our aim is to describe all translations weakly determin-
ing in this sense., Through the whole paper we shall use the
results of the papers [1),[2],[3) about potential translations
(further shortly translations) and [5],(61 about determining

translations,
Now, several notions and statements given in [4],(5],(6],

A T-monoid will be a couple (X,S) , X being a set, Sc xx
satisfying the following conditions:
(1) 1identity transformation lx is an element of S
(2) forall £,8€5 ,1tis £ge S .
A centralizer (isocentralizer) of (X,S) is a T-monoid
(X, (8))((X, Y€ (S))), where
€(s) ={gs Xx|fg-gf for all fe S7%

(J¢(S) ={ge Xxl g 1is a bijeotion and g € €(S)} ).
A point e 4is a source (exact source) of (X,S) is for every
x € X there is (unique) fe S with f(e) = x . A T-monoid
(X,P) 1s called a Cayley’s T-monoid if there exists an al-
gebraio monoid M with P = L(M) . There is a 1-1 correspon-
dence between Cayley’s T-monoids with a marked element o

and algebraic monoids.
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According to [41, a transformation which can be a mem-
ber of some Cayley’s T-monoid is called a tranglation.

Now some notions necessary for a description of a trans-
formation f: X—>X ¢ the kexrnel Qp of £ is

erU{A\AC X & £(A) = A%,
We shall call £ a transformation with an reas k

it £|Qp 1s not injective; £ has a bijective kernql, if
£|Qp 1is a bijection. ( £|Qp means the transformetion g:
: Qp—> Qp defined by g(x) = £(x) .) For a given xe X ,
the set Pp(x) ={£"(x)| m 2 0% is the path of £ of the
element x , The elements x,y€&€ X are Ef-equivalent if
£%(x) = £%(y) for some m, n2 0, E, 1is an equivalence, its
classes ﬁeing componentg of f . Transformations with one com=
ponent are connected, others are disgonnected. An element xe
€X 1s a gyclic element of f , if xePp(f(x)) ; the set
Zf of all cyclic elements of £ £forms the gygle of £ ., We
have the kernel of the component of x Qf(x) = QpN Ef(x) R
the cycle of the component of x : Zf(x) = Zen Ef(x) « The
order of x is the cardinality r(x) of the Ze(x) , 1t
r(x) = lzf(x) | <%, o A trensformation is called periodicsl,
if every element has an order, Let x be an element with
Qp(x) % # , the height u(x) of =x is defined as the smale
lest integer with £°(X)(x) Qp(x) o An element e 1is a top
element of £ , if there is a Cayley’s T-monoid (X,8), e
being its exact source, vwiyth fe S . Denote by . T the set
of all top elemente of £ , For a given top element e , the
main component of £ will be Ep(e), X\Ep(e) will be de-
gignated by Y . ’

Define X as follows: if Qp(e) = @# , then K = ,Ef(e) s
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1f Qu(e)# #, then X =ixe Ep(e) | £°F(x) € Pyle)d .
For m20,n>0 sget
Ton = 4% € Bg(NE[ 277 2(x) & Pple) & £7(x) = £2()* Moy 7,
for mz 0 T, o =422(O)M(e)g,

Por y€ K define a mapping dys Ef(e)—vN as follows:
° where n, is the smallest integer such that

n
there is an integer m for which £%(y) = £ °(x) , m, is

the smallest integer for which fmo(y) = fn°(x) « Such a map~
ping d’ ias called the difference relastive to y . If there
will be no possibility of misunderstending we shall designate
[i;{?(;f the difference relative to a fixed top element e .

dy(x) =m, -n

Given a translation £ , we shall define a mapping h:
t Qp—> Qp , with f(h(%)) = t for all te Q , and in the
case f has an incressing kernel, Im hn Pf(e) =@, (1)
(Inh =4y | 3x, h(x) = y%.) The existence of such a mapping
is proved in [1] and [2], Let x 6 X\ Qe » let k be an in-
teger with f'k(x)* ¢ and f'(k"'l)(x) = ¢ , then we shall
call the integer k the grade st(x) of x . Designate A =
={xe X|st(x) = 03\ {e?}. Co

‘Now ie give a type of constructiéna of Cayley’s T-mo=-
noids with a pntameter ] , p“ being & mai)ping prY—>Y
‘aueh 'that p2 =D , ‘
\f(p(t)).- p(£(t)) for te€Y eand .
B(p(£)) = p(a(£)) for te YnQy (see (1)), (2)

Congtruction 1. ILet f be a non-surjective translation
with an increasing kernel, e its top element. Let lef(e)
be not a translation of the bicyelie semigroup? i.e. there ex-

ists v e Qe\ Pp(e) for which nlv) = 8 (see (1)), Then
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there exists a Cayley’s T-monoid (X,L(M )) , L(M ) =
= {tx\ x € Xt defined as follows:

for x €T, . and t such that guedm-leey oy g
is fx(t) = " 1(y) » otherwise f_ (t) = £ (t) .
The translations f  are given in Construction 1 in 6] for
a fixed p .

The demonstration is analogous to the demonstration of
Construction 1 in [6], using the property of v .

We will now consider the case of a connected translation
£ which 1s surjective and has an increasing kernel, By [2]
there exist a top element e of f and an injection g €
€ € (£) with gle) = £(e) , g 2(e) = 8 . (3
We will refer to such a couple e , g as having the property
(3). As was shown in [2], to any couple e , g with Property
(3), two translations h , k can be found with g, k e €(f,h)
end fh =kg=1y and k(Ty )e T, ,, for m>0. (4)

Congtruction 2. For e, g, h, k satisfying (3) and (4)
and p with the properties (2) define transformations fx »
xeX,by f.(e)=x,
for xe Ty, te T . if 9>m or te Y it is £, (t) =
= bUe"(¢), 1f qem 4t 1s £.(¢) = gPkI(x) , for xe ¥ 1t
s £ (H)=plx) .
The T-system L(M)=4f ; x€ X} 18 a Cayley’s T-monoid
with f£€ L(M) .

Demongtration: The system of all right translatione of
M is defined by R(M) = -!gy $ y€ X3 where sy(e) =y and
for te Tp'q and ye'l“',’s with s> p or ye ¥ it is
gy(t) = h9tP(y) ; for te Tp,q
1t 18 g (t) = g'k%(t) § for te ¥ it ds £.(t) = p(t) .

and y & Tr,s with s < p
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Evidently e 1s a common source of both L(M) and R(M) ,
thus using Statement 1 in [4] it is sufficient to show that
gyfx(t) = fxgy(t) for all x, y, t€ X . (5)

Let x ¢ Tm’n,ysTr’s,tsT )9 , then for s> 1p

it is fxgy(t) = fx(hqu(y)) and furiher for s ~-p +q9g>m
it 18 h%t®h9%P(y) , for s -p+ g m it is g k¥P*I(x) ,
because hIfP(y) « Ty, 8eptq * If s& p , then fxgy(t) =
= fx(srke(t)) and for q>m it is W% k®(¢) , for g< m
it 18 gP™®*Tk%(x) (use g"k%(t) e Thoger,q )e

For g> m, gy(fx(t)) = gy(hnfm(t)) and if s< p it
is gTk®n"eP(t) = £,8,(t) as f, he €(gk) . If 8>,
then evidently 8 - p + > m and hence gyfx(t) =
= h9"™PeP(v) = WPePh9P(y) = fxgy(t) (use m< q ), For
g% m we have fx(t) = gPk%(x) e Tm-q+p,n , hence for s £ p
1t 1s equal to g"k®gPk%(x) = g?®*"k%(x) , so the equality
(5) holds. If s8> p then we have two possibilities: for
s>p+m=-q 1tis gf (t) = b IP(y) = WP (y)
(use mZ g ), for s£p+m=-gqg it is gyfx(t) =
= rksgka(x) = grks~p+q(x) .

Let te Y, xe Tm,n , then fxgy(t) = fx(p(t)) =
= 0" (p(t)) , a8 p(t)e Y 5 gL (t) = g (W77 (4)) =
= p(h"£™(t)) , as h"f™(t) e Y , using the properties (2), we
get the equality (5).

Finally, 1f xe Y, then f,g (+) = p(x) , g f,(¢) =
= p(p(x)) = p(x) (see (2)) a8 £ (t)e Y.

Hence the equality (5) holds for every x,y,t e X and
L(M) is a Cayley’s T-monoid.

We give now some lemmas about two isomorphic monoids,.

- 554 -



Lemma 1, Let M= (X,.,1) , M = (X,%,1 ) be two iso-
morphic algebraic monoids with the same underlying set X ,
let ¢ : X—> X carry an isomorphism of M onto M’, Let
L(M) = if, ixe X}, R(M) ={g,;; xe X3, L(M") = {f; xeX},
R(M’) = {gx; x € X denote the systems of left and right
translations of M and M’ , respectively. Then the transla-
tions of M are carried by @ to those of M according to
the rules A

’ ’
i = fgx)¥ + P ExZE(x)Y -

Proof is evident.

In the following assume f ©being a connected surjective
transletion with an increasing kernel.

Lemma 2, Let L(M) be a Caley’s T-monoid from Const-
ruction 2 with e,g,h,k ,then for every xe Tm,n it is
In £, = BPANPp(e)) v, (k).

Proof is easy.

Corollary 1. The only translations in L(M) of Const-
ruction 2 which are both surjections and retractions are of

the form £¥ = k=0,

ffk(e) ’
Lemma 3, For ei’gi'hi’ki' i =1,2 satisfying Condi-
tions (3) and (4) if g€ € (f) 1is a bijection of X such
that q(el) =€, P8 = 8% , ¥h =ho, @k, =
= k@ , (6)
then the algebraic monoids M, M, from Comstruction 2 ( My
with e,,g;,hy.k4 ) are isomorphic as algebraic monoids.
Proof: Define an isomorphism ¥ : My—> M, by y(f )=
= fo(x) ( £z T(M), £3eL(My)), Por fy =1y 1t is t&x) =
=1y (use: £ =1y iff x=e; , g(::) = 1y 1ff @(x) = e,).
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The only fact we must show is the equality yr(fxc fy) =

= y(f)e (fy) . Take x€ T, . ,ye€ T, . Assume g>m,
then @ (£.(y)) = @(h]™(y)) = h3f™(@(y)) . The bijection

@ maps the set Tp,n ONtO Tr;,n , where T;.n are defined
relative to e, , and thus it is f&(x)(?(y)) = hgfm(q(y)) .

Assume q & m , then ¢ (€,(y)) _ ‘?(gi’kg(x)) - ggkg(cy(x)) -
s t’f(x)(g’(y)) « Hence g (£,(y)) = f;(x)(g(y)) and we'have
VL) = ¥ (82 (1)) = iz (99) = Ty (o)) = Tp@Tel) =
= y(fy)e v(ty) .

Thus ¥ 1s an algebraic homomorphism and as ¢ 1s a bi-
Jection, % is an isomorphism,

emma 4, The two algebraic monoids Ml, M2 from Congt-
ruction 2, M, with e,g,h,k, M2 with e,g,fx,k, where fx
is the left translation of Ml by x € To,l , are equsal,

The proof follows from Lemma 2,

Before we give the second type of constructions, we in-
troduce some conventions: for a given x € X denote by ‘aﬁ»x
the graph %x a < LysRe> , where L = {y e X; inzo0,
£%(y) = x}, R _=4<u,w> 5 u,ve L, £(u) = vi,. The n-th
level éﬁn will be the graph %n = < H,R, Y , where H =
= I‘fn(e)\ Ltn-l(e) » Ry = (Hy>x H)n Rf"(e) .

Construction 3. Let £: X—» X be a connected surject.
i:ve translation with an increasing kernel, Let there exist e,
o> 1, such that g'l(xo) =0
and &, can be embedded into sexo + Denote B = .\J,

g with (3) and x, € Tao,l y 8
L
gi(xo)’
A = X\ B , There exist translations h,k guch that g, k e

¢ €(h,) ,fth=kg=1g, k(B)c B and k has the fol-
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lowing form: for ye x\Lx,yc Tmn,m>o it 1s
0 1]
k(y) s Tm-l,n' m=0 it is k(y)e To,n+13 for ye on ,

ye T it 48 k(y) e Ts°-2,n-1 + Define translations

8_,n
o’
f, as follows: fx(e) =x3; for xe¢ Tm’nn A,teT

it 1s
fx(t)ahnfm(t) if either te A and m<q or teB and

P,q

m<q-1,
fx(t) = gpkq(x) ifte A and gaem ,
£.(t) = k9 1(x) if tcB and o-14nm,
for xe Tm,n“ B, te Tp'q it 1s
£ (+) = b%"1e™1(4) 1f either te A and m-1< q or
te B and m< g,
£,(t) = gPk%=x) 1f te A and g£m-1,
fx(t) = gp'lkq'l(x) if te B and gq<£m,
Then L(M) = {f3 xe X} s a Cayley’s T-monoid and
feL® .

Demonstration: Obviously L(M) has an exsct source, so

we show that it is a T-monoid (use Statement 1 in [4]).
.We will introduce the equivalence ~» on X by
x~y<=->(x-y) or ((3n,3zel) (ggx (z) = x &
. 8n+Bo (z) = y)) . Evidently |{z; z~ y}lf-z for all ye
€ X . Purther the transformations £/~ , b/~ , B/~ , K/~
are correctly defined amd if we denote by [x) the class of
~s ocontaining x , then [el, £/~ ,8/~ sh/~ ,k/~ have the
properties (3) and (4). Designate by M the monoid from
Construction 2 containing Lel, £/~ ,8/~ sh/~ Jk/~ o We
show M/~ = ¥ . Take £_eL(M) , for t;~ t, it must hold

P,q °* then t2€ Tp+1’q+1.
Thus for xeA if q>m it is C£ (t))] = [h"€™(¢))] =

t,ea, t,€ B and moreover if tle T
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= (/0 )8/ )P (L47] ) = (0/0 )8/ )™ ([%,2 ) =
= [R"2%(8,)) = £, (4,)) , 4f gém then [£ (t))] =
= [ gPk9(x)) = [fx(tz)l o Analogously for xe B,
The demonstration will be finished if we show that for
every x,y,te X fva(t)eB irf ffx(y)(t)eB . (7
At first let us point out gome assertions which follow
from the definition of L(M) . For given xe Tp,nt Y€ Tr,s'
teTp’q it holds:
I, If xeA then (£, (t) eB}¢==>(t€B & g - 1>m) ,
II, If x€B then (£,(t)eB)¢==((teB & 9> m)v (ter &
& g£m - sc)v (teB& g=-1%m=-15,)).
I1I., If x,y€ A then (fxfy(t)e Bl¢==>(t€B & g -~ 1>r &
&g-r+8=1>m), '
IV, If xeh, yeB then (£,£ (t)eBk=> ((teB & q>r &
&qg-r+8-1>mv (teA & gér-s &8 =-1>m)v
v(ter & g-12r -8, & 8 ~1>m)),
V., If x€B, yeA then (fxfy(t)e Bl=>((teB& qg - 1>
>r&qg-~r+8>m)v(ted &sém-8,&m=-8,>q -1+
+8)v(teB &s<m - so&qu-l)v (teB&q=-=1>r & g -
-r+8-lem=-8))
vi, If x,y&€B then (fxfy(t)e B)¢=>((teB & g>r & q ~
r+a>m)v (teA & ger - &e>m)v (eB&g-14

,_go&a>m)v (teA& s -1lém=~8,&m=-8,2q -1+

n

g) v (teB&s-lém-so&m-aoaq-r+a-1)),
Now if x,y€A then for s>m , £ (y) is an element

of An w,.e_mm, for s£m of An Tm-é+r,n » Comparing I

and III we get the proposition (7).

If X€A, Y6 B , then for 8 - l>n, fx(y) is an ele-
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- 1% -
ment of BAT, o myn fOr 1£m of ANTy g.p n o Com

pare I, II and IV,

If xeB, yeA , then £ _(y)e ‘“Tr,s-mn , for 8 >

>m=-1 and fx(y)eAnT if m-s,<8<m-1

m-s+r-1,n-1 *

or BnTm—s-ﬂ-r,n if s<£m -~ 8, o As g -1>r aend g - 8 +
+8«1lem - 8, Wwe have s<£m - 8,3 it suffices to compare
IT end IV, For q - 1>r end e>m = 8, Or s>m- 8, and

qQ-1l2r compare I and V; for g - 1£r and s&m -8, com-

o
pare II and V. In all cases we get (7).

At last if =x,ye B then for s>m it is fx(y)‘B ~
N Ty gemen » £OF m =128 = 1>m =8, , £ (y)€ANT,

m-g+r-1l,n-1*
for s - 1lém=-8,, £,(y)eBNT

m-s+r,n * And again comparing
II and VI we get (7).

Hence L(M) 1is closed under the composition,

Before we come to the last two types of congtructions of
Cayley’s monoids we will need some definitions and lemmas:
for given e,g,h,k satisfying (3) and (4) and xe€ X denote
Ky =4ys 30, m20 k"£%(y) = x}. For yeK, set 8X(y) =
= (myn) if m,n are the least non-negative integers with
knfm(y) = X .

Lemmas 5 - 7 bring some properties of Kx .

Lemma 5. Let e,g,h,k have (3) and (4), let for every
x with g l(x) = O be k(x) = hkf(x) . Then for x,,x,¢X
such that h™l(x;) = g™M(x;) =@, 1 =1,2, Ko Ky, 9
it holds Kxf; sz or szs Ky o

x. X

Proof: Let zerln sz, 8 1(z) = (b,a) , 8 2(z) =
= {0,d) ; we can suppose that c<b ., It is sufficient to
show that d<4a , as it means kb'cfa'd(xz) =x) and X,6
€ le implies szs le .
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Suppose a<d . Take z’ = k°£%(z) ; we have e 1(z%) =
= (b - ¢,0) . For every u with Bxl(u) = (b - ¢c,0) it is
b1() = § . Further £9-8(z’) = x; , thus g “1(z2°) = ¢ and
k(2’) = hke(z’) . Henoe he(z’) K1(k(z/)) and s L(nf(z))=
= (b - ¢,0) , thus for u = hf(z’) it is not i) = ¢ , 8
contradiction.

Lemma 6, Given e,g,h,k from Lemma 5. Take an element
y with h™%(y) = @ . Then k°(z) =y 4f and only if z =
-8 ey .

Thie Lemma 6 can be proved by an induction over n using
hl(gP(y)) = # for every n .

Lemme 7., Givenm e,g,h,k from Lemma 5 and an element
y with g'l(y) = h'l(y) = @ , then hagb(x)eI%, if and only
if xe Ky o

Proof is easy.

Construction 4. ILet £ be a connected surjective irans-
lation with an increasing kernel, e,g,h,k satisfying (3),(4).
Assume that for every x either g"l(x) =@ or k(x)=
= hkf(x) . Let there exist xl,xz,xBEX v X3€ Tp m, ,ny
"l(xi) = h™ (xi])‘ =§,1=1,2,3, such that for n,> my it
s £(x3) = h "1 1(12) , for myém it is f(x;) =

'smzk 2(1’(11)) and if x) = x3 or x3€ Kx2 and n,€my

then x; = x, = x5 . Define translations £2 by:

*x

f;(t) = hagc(x3) for 1(x) = (b,a) and s 2() = (c,b) 3
/

fx(t) = rx(t) otherwise,

where fx are translations defined in Construction 2. Then

L(M’) = {f;; xeX? is a Cayley’s T-monoid with fe K(M’) ,

For the proof of Construction 4 we shall need the follo-
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wing properties of elements X9 Xp» X3 0 In Lemmas 8 - 10

suppose assumptions of Construction 4.

Lemma 8, If x; € sz then either m =0 or x;=
=X, =X or mlnnlsl and Xy = X3 .

Proof is easy.

Lemma 9, If 13¢ le and len sz-b ¢ , then for
n,> my it is m +1ny>n, , for n, £ my it is m, + n, >
>m1 °

Proof: By Lemma 5 we have x, € Kx2 or x,€ le .

e s PR |
1) Consider ny,>my ; if x,e K » then k £ (x;) =

nl-l oy ny
= x; ; further r(x3) =h 4 (xz) , ice. £ (x3) =
-m, N,=n
g2 1(::2) =

o "2
£ “(x5) . Assuming my + ny£n, we get k
m,=m, N,=n,-m, n m,-m, n,-m
k2 1p2 11l yo? 12 L), Thus x.e K ’
1 3 37 7xy
a contradiction, If x€ sz, then ny>n, and m=m, ,

my ~my
hence m) +n,2n, . For ny =n, we have k (xq) = x;

my -,
ile. x =g (x;) 4 thus x; = x, . Assuming m) = 0 we

get x3€ sz = K

x. 0 8 contradiction,
1

2) Consider ném . If x,¢ le, then my=m; and thus
m, + ny> m(ny,>0) . Let x)e sz, then

kml-mzfnl-nz(xl) = x, o For n, = n, from kml-mz(xl) = x,
we get X) = X; 4 80 again my, + ny>my . Consider ny>n,
then £ 1 2(x;) = g2 20 N 2x)) (2(xy) = @ 2k 22(x;))
and further fnl-nz(xs) = gmzknzgml-mz(le) (use Lemma 6),

ny-n, m,y-n,
Assuming m, + ny&m; , we get f (x3) =g (x,) and

thus x,€K , a contradiction,
37 7%
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Lemma 10, If x4€ le s then either n,>my szs
s le and n; + m]_én2 or Xy = X; = X3,
n,-m
Proof: Consider n,>m; ; we have £ 2 1(:1:3) =

m,-m n,-m
=g 2 1(x1) (use Lemma 6), further £ 2 1(::3) =

no=m,=1 n,=1

g2 1 hﬂl fml(xz) o Assuming 1n,- m) - l<n; -1 (n2<
n,-m n.+m,=-n, m

<my +n, ) we get f 2 1(x;,') =h1 172 1(12) =

mo-my _q, My-m

=g (x3), hence h l(g 2 1(x3))=t=¢ and h‘l(x3)4=¢ ’
a contradiction. So we have nzz m + ny and further
m,-1m n,=n.

g 2 1(x]_) =t 2 1(x1), which means x,e K,

my=ny 1
If ny€my , then k (x3) = x) (xjsTml_n2+m2’n1) ’
m,-n

i.e. Xy = 2 2(xl) » 80 my, =n, and x; = X3 hence
X) =X, = X3.

Demonstration of Congtruction 4: Evidently e is an
exact source of L(M’) thus it suffices to show that L(M”)
is closed under the composition, Dencte z‘ = f;(y) § we are
going to prove the equality:

- f'xf;(t) = f;,(t) for all x,y,teX . (8)

Assume xe€ Tm,n s JE Tr,s , te Tp,q » Evidently (8) holds if
f;f;(t) = fxfy(t) and £7,(t) = £,(t) . Thus first the as-
gertion:

x

2 3

Le‘at ysxxl, terz with 8 “(t) = (c,rn-nml), ir xye
/v = e .

€ sz, xstl and 8 = m then fxfy(t) =h “g(x3); (4)
13.’ either x3¢ sz or x4 le and m&s - n; and for n,>

>ni1 it i8 ny - my + s>m , for nyém; it is s>m , then
~D+8=Dy

n
f'xf;,(t) = h g (x5) (B)
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red
Otherwise fxfy(t) = fxf.y(t) .
Let y,t be such elements that t;(t) = fy(t) , then
for ch,xJGKx,a-nzam—ml and qQ£r - m, Wwe

xz
n=n, r-g+p-
have f£7£7(t) = h 17 9P lurl2(::3) ; (©)

for xerl, tGKx,q-r+s-n2-m-m1 and g =-1n,zr

-n, p-m
it 18 £1£5(t) = h e 2(xy) [6))
otherwise f;f;,(t) = rxfy(t) R .

Now let us show the equality (8), First suppose 2z’ =
=z=f£(y); i.e. if xe le and ye Kx2 then 8 = n, %

#m - m; . The following holde f,, (t)4 £, (t) iff for s >
>m we have yerl end m<£s -n; , then sxl(z) =

x
-(r-ml,s-m+n-n1) and for ¢ with sz(t)..

= (cpr = m) 1t is £,,(t) = hs-mn-nlg°(x3) . (E)

x.
In the case 8€m iff xe le eand s€m - m,, then s l(z) =
x
= (r+me=-s8-~ my,n - nl) eand for t with s 2(1;) = (c,r +
’ n-nl c
+me-8 - ml) it is £, ,(t) =h g (13) . ®)
The equality (8) must be shown for t such that
PR ()22 (8) or 7, (4)42,(t). Suppose £, (t)ug,(t)
x

and s>m , thus yeK, ,m£s -n; and s 2(1;) = (c,r - ml)‘
in this case compare (B) and (E). Let s&m , f;.(t)*rz(t) .
i.e. xerl and sé.m-'m1 e If 8 =m and sém'..ml , it

0. K d (P
means my = Por xje x, compa:.x'e (4) end (), for X3¢ sz
compare (B) and (F), Let s<m , 8 ?(t) = (G +mMw g - ml)
then it holds r+m-e-m1+n2-n2-r+m-e-m1?_r
and r+me-8g=-m +0; =F+8 =N, =m-m, i.e. the as-

sumptions of (D) hold and moreover
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n-n, p-m
h 18 z(x):h lc(X)o

Suppose fxfy(t)*fz(t) s the case (B) for s<m cannot
be fulfilled (since s«m implies m>s - n,) , neither the
case (C) (z = 2° ). The cages (A), (D) and (B) for s>m ha-
ve been shown,

Let us suppose z%3° , l.e. xe le. ye sz and 8 -

- n2 = Mm - ml s then
, n-n; r-m, ,
z’ = h g (13) o For n,>m; we have z’e Tr’nz-ml+n ’

’ /
for ny,ém; z'e Trﬂnl—nz.n o It holds 2z’e le irf x,e le

x
(see Lemma 7) and in this case for n,>m; it is s l(z’) =

X
= (r - m, Ny =m + 10 = nl), for n,ém; s 1(z’) = (r - n,,

n = n,) . Therefore f;,(t).—‘:fz (t) 1ife xBerl and if

X
o> oy for t with 8 2(t) = (c,r = m) , £7,(¢) =
-m +n=-n
a0 2 e ) (@
X,
tf npgm for ¢ with o 2(t) = (o, = ny) , £, () =

= h [4 (x3) . (H)
Further it can be shown: £, (t)#rz(t) 1ff qér - m,

_ P-q+r-m, n-ny
in this case it is fz,(t) =g h (13) . J)

Let us show the equality (8). First consider x3¢ le,
i.e. 2’6 le, hence £7,(t) = £,,(t) . If for y and ¢
we have f;(t) = fy(t) , then (8) follows from (C) and (J),
go for len sz = @ (8) holds (the assumptions of (D) are
not fulfilled, as g-r +8 -n, =m - m, implies q = r
and q = ny<r , the same holds about (A) and (B) as y &
¢ le). Let now len Kxa* g, ve le
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Assume n,>m; , then m =8 -n, + ;;>8 - 0y (use m, +
+ny>n, ) and the assumptions of (B) are not fulfilled., If

n,£m; , then s€m as 8 - Dy, =M =My o Then for t with

x
s 2('l:) = (c,r = ml) it is f;fg(t) = fz(t) , moreover for
this t we have q = r - my + 0,>r - m, (use m, + n, >
>m;) and £,,(t) = £,(¢) , too. Thus (8) holds for x3¢ le.

Consider x3€ le, i.e. z’e K, o Suppose n,>m; , then

x

£7,(8)4£,,(8) for t with s 2(t) = (¢, ¥ = my) . We know

that K. e K. , hence yeK and for this ¢t we have ful-
2 1 1

f£illed the assumptions of (B) because m<s - ny (use m +

ny &1, ) and n, -m +8>m (use n,>my ). Moreover

N-m+s-n n-m, +n,=n
h lgc(xB) =h 1772 lgc

(x3) . Assumptions of (A) are
not fulfilled as s=%m , The rest is the same as in the case
Z/¢ K .

*

Consider n, € m then xy = x, = x4 and elements t

X2 X2
with 8 “(t) = (¢, r - ml) and t with s “(t) = (c, » - nl)
are the same elements. Thus (8) follows from (4) and (H).
Congtruction 5. Given e,g,h,k having (3) and (4), k
such that either k(x)e g'l(x) or k(x) = hkf(x)., Let then
Do -1 -1
exist a sequence {x;}, , such that g "(x;) =h""(xg) =4,
n -ng=-1
_ i1 (xy)
%1€ Ty yngr 1= Doeeesoity = 0o o £(x34q) = B 17

%o, Po
i=1..0m -1 and f(x)) =g 'k £(x;) + Define for te

€ = ’
8 = c

(]
X.
£7.(+) = n%%(xy) 1f xeK N K o oand 8 1) = (v,8) ,
+

£7.(t) = £ (t) otherwise,
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where rx are translations from Construction 2.

Then L(M‘) ={f,; xeX} forms a Cayley’s T-monoid

containing f as a left translation.

Demonstration is analogous to the demonstration of Con-

struction 4.

(11

[2)

(3)

4

(5]

(6l
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