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COMMENTATIONS MA THEMATICAE UHIVERSITATIS CAROLINAE 

16,3 (1975) 

REMARK OS LOCALLY PIKE SPACES 

Jan PELANT, Praha 

Abstract: Locally fine coreflection is constructed in 
CII by an iterative method* The first locally fine approxima­
tion M ( U ) of a uniform space (X,tO is defined as foll­
ows: M(<24 ) m i i 0t n P* 30|C(> I < 0U I e % and -CP̂  I e U for 

each v f . The first locally fine approximation will be cal­
led a derivative in the present remark. It la shown that a 
derivative of uniformity need not be a uniformity. 

Key words: Uniform spaces, locally fine coreflection, 
point-Tinite base• 

AMS: 54E15 Ref. l.t 3*962 

Introduction: It is one of unsolved problems of [I] whe­

ther a derivative of each uniform space forms a uniformity. 

Some answers are given in til, e.g. a derivative of a unifom 

space with a point-finite (or 6* -disjoint) base forms a uni­

formity. A derivative was need in LI3 for the construction of 

locally fine coreflection. Because of difficulties with the 

proof that the derivative is a uniformity, the notion of a 

quasianiformity was introduced. Hence we are going to show 

that it was necessary to do it. Our main proposition is : X 

is a uniform space. A derivative of X"1 is a uniformity for 

each cardinal m Iff X has a point-finite base. This as­

sertion is not useless as we believe that examples of uniform 

spaces without point-finite base are given in [P3. 
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It is my pleasant duty to thank Z. Frolfk who turned 

my attention to this problem and P. Simon whose simplifica­

tions are used in the proofs of the present note. 

Definition? Let (X9%) be a uniform space. Morita 's 

derivative U(%) of (X9%) is defined as follows: 

*(%) • « 0 wn P * ! ^ M O J € % ,Vc s i ^ J e U ? . 

Propositions (X9%) is a uniform space. The following 

conditions are equivalent: 

1) (1,11) ha8 a base of point-finite covers. 

2) V 9 e % 3 £i X—,* $> i (f(x) 9 x for each x ) 

3 <l s % V f t - c £ , % € % V R e # : 

: card f (R) «= o>Q . 

Remark. 2) is stated in tPJ in fact. 

Proof: 1 m+ 2. 9 6 % . Take any tf e % which is 

uniformly locally finite and refines CP (it is possiblev see 

[13). Suppose that tf is well-ordered. Define f': X —-• Sf 

by f'(x) a min-CS e «f | x e S? • Choose a mapping <f> i 

.#.-*,?> 8ttCh that g> (s) 3 S for each S e *4 . Define 

f m cf o f'. Any uniform cover, each member of which meets 

only a finite number of members of if 9 can play the role 

of <£ from 2). 

2 ==-> 1. It is sufficient to prove this implication for 

metric spaces only. Choose 6- > 0 • By the assumption, the­

re is a partition 3> of X such that all classes of & 

have a diameter less than ~— and there is cT, ~-><f> 0 
3 6 

such that B^(x) intersects only finitely many classes of 
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3) for each x £ X • B^tx) i s oT-ball with a center in 

x e X 5 B^(Z) «VJ4 Bef(x) | x € Zl for Z c X . It means 

that the cover i B ̂ (D) i1>€^> i s point-finite• Clearly, 

diam B^(.D) <: e, for each De fi • Hence "C B^ (D)?3>g^< 

< -£B g (x )Ja # x . QED. 

Theorem* Let (7L9%) be a uniform space that has not any 

base of point-finite covers. Let m be a cardinal greater 

than cardinality of any uniform cover of % • Then a deriva­

tive of (7L9%)m i s not a uniformity. 

Proof: By Proposition, (Xf1l) sat isf ies: 3(P * % V f: 

: X —• 3> : f (x) 3 x V £ e U . 3 C & - < < 5 L * 

& e % 3 R € i i : card f (R) 2: o>0 . 

Take such a wild (P • Choose i € m • Take some one-to-one 

mapping K: iP —• m - -£i0} . We are going to define a cover 

% of a derivative of xf": fc - - t ^ " ^ (P) A *r-*p) (Q) | P • 

Q c (P J # To spare space denote CZ3 » P for Z 6 % with 

z . ^ ( P ) « » - ; M ( Q ) . 

Suppose there is W e M( ft"*) such that W %c Z . We may 

suppose that W is of the form: 

T T « ;r*R 
for each R <s ft f IR is a finite subset of m } • 

Choose a mapping F: xP — » % such that st(y, W) c F(y) 

for each y c X • Let us observe that I-j s{ K(£F(y)3) | y c 

a «rrj1 (R)$ for each R * fl, 

Define f:X-~>:P by f(x) - CF(fy )] f *%(&,) « x for 

each i e m 9 
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There is R Q e % such that card f (R0) 2 o 0 . As K is 

one-to-one. it holdsx card*K( tf(y)l ) | y « a£* (B0) } > 

£ card 4K(f(x)) J x e RQ i 2. c>0 . 

Hence we have found even two infinite subsets of the finite 

set IR which is a contradiction* 

Corollary 1. (X,4t) has a point-finite base iff a de­

rivative ef (XfUy
m,is a uniformity for each cardinal m • 

Prooft for "if only" part see CI3. 

Corollary 2. If %, is a productive class of uniform 

spaces such that a derivative of each member of Ct is a uni­

formity, then each member of X has a point-finite base. 

Corollary 3. Let (X,U) be a uniform space. If X has 

a 6*-disjoint base, then X has a point-finite base as well. 

Proof: A derivative of any uniform space with 6"-dis­

joint base forms a uniformity (see III, p. 142). 
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