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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,2 (1975) 

APPLICATIONS OP THE INDUCED MORPHISM THEOREM IN REGULAR 

CATEGORIES 

Temple H. FAY, Conway 

Abstract: Several set theoretic results, principally,, 
due to Riguet, and a group theoretic result called Goursat s 
Theorem are shown to be consequences of a categorical result 
called the Induced Morphism Theorem (IMT). A characterization 
of when a regular category is exact is also derived from the 
IMT. The Difunctionally Induced Morphism Theorem, generalized 
from a result of Norris and Bednarek, is shown to be equival­
ent to the IMT in an exact category. 

Key words: Induced Morphism Theorem, regular epimorphism, 
regular category, exact category, difunctional relation, con­
gruence relation. 

AMS: 18A20, 18A30 Ref. Z.: 2.726.2 

!• Introduction. The purpose of this paper is to obtain 

a result called the Induced Morphism Theorem (IMT) which is a 

categorial generalization of a set theoretic result of Bedna­

rek and Wallace C 31 and which in turn is a consequence of a 

property of morphisms which characterizes the class of regular 

epimorphisms. Also a result of Norris and Bednarek [22] Is ge­

neralized to a categorical setting and shown to be equivalent 

to the IMT. 

Applications of the IMT are given in regular categories 

(terminology due to Barr C21 and Grillet ClOl) and, in parti-
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cular, our results subsume set theoretic results of Riguet 

[23f 243, and a group theoretic result called Goursat s 

Theorem [14, 153• A characterization of when a regular cate­

gory is exact due to Meisen [193 and independently found by 

the author will also be shown to follow from the IMT. This 

latter result is of interest in view of a theorem of Tierney 

(see Barr [23) which roughly states that a category is abeli-

an if and only if it is both additive and exact, and in view 

of the fact that varietal categories are precisely the exact 

algebraic categories (terminology due to Herrlich [-111, see 

[123). 

2» Preliminaries. If h: X — * Y and g: X—•• Z are 

morphisms in a category, the unique morphism from X to the 

product YxX induced by h and g is denoted A.hfg 1 • Pro­

jection morphisms from products will be denoted by the gene­

ric symbol sr with a subscript to indicate which projection; 

e.g., ar-,: X x Y — > X • Identity morphisms will be denoted by 

1 • 

As usual, if (X,x) and (Y,y) are subobjects of Z , 

we define (Xfx) £ (Yfy) if and only if there exists a morp­

hism z such that yz = x . If (Xfx) and (Yfy) are iso­

morphic as subobjects of Z , we write (Xfx) m (Yfy) • 

An E-M bicategory is a category C with a structure 

consisting of two subcategories E and M such that the 

morphisms in E are epimorphisms, the morphisms in M are 

monomorphisms, the morphisms in E fl M are precisely the iso­

morphism s of C f and every morphism h in C has an essen-
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tially unique factorization (efm) f where h • me and e e 

£ E and m e M . See Herrlich and Strecker [123 for a detail­

ed development of bicategories. 

Let C be a finitely complete E-M bicategory. By a 

relation from an object X to an object Y is meant an M-

subobject (Rffj) of Xx Y . If X * Y f (R,j) is called a 

relation on X . When there is little likelihood of .confusi­

on, the morphism j will be suppressed. Some basic categori­

cal relation theoretic definitions and results follow. For 

detailed expositions, see Klein [131 or Grillet ClOl. 

Let (Rfj) be a relation from X to Y . Let (R , 

j* ) be the M-monic part of the E-M factorization of 

4#2» ^i^ 3 • ̂ e ca!-- R *ne inverse relation determined 

by R . If (Sfk) is a relation from Y to Z f consider 

the following commutative diagram where S ^ and © 2
 are 

canonical isomorphisms. 

jxl 
^0^*T RxZ *-(XxY)xZ 

(RxZ) 0 (XxS) — 2 ^- XxYxZ — — & > XxZ 

lxk /** 
X*S •* Xx(YxZ) . 

Let (R«Sfco) denote the M-monic part of the E-M factori­

zation of ^ ^ 1 1 ^ * 2 ^ * RoS **s calle(* *ne composition of R 

with S . 

Klein.[133 has shown, in the case where C has pull-

backs, that the composition of relations is associative if 

and only if the pullback of an E-epic is E-epic. In this 

case C is called an E-M associative bicategory. 
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If C is an E-M associative bicategory, then for eve­

ry E-epic f and identity morphism 1 t lxf and fx.l are 

E-epics. Thus in such a category, if f and g are E-epicst 

then f . x g « (fxl)(lxg) is an E-epic. 

The inverse operation and composition respect each other 

via (Ro S ) " 1 * S"1** R"1 . If R is any relation on X t R 

is reflexive if and only if (A^ij) = (X tU tU) * (Rt3). If 

(Stk) is a relation from X to Y , then S*S"1 is reflexi­

ve if and only if ar-̂ k is an E-epic. Furthermore, it foll­

ows that A j - e S a S s S © A y • One defines symmetric, tran­

sitive, and equivalence relations in an obvious fashion. 

If f: X — • Y is a morphism, the equalizer of f sr% and 

f at? *s denoted (eong(f)tif) and is called the congruence 

determined by f . If (gfZ) is the coequalizer of ^ ^ f an^ 

TT^if » then there exists a morphism h such that f = hg and 

cong(g)tB cong(f) • If (Ete) is a congruence on X t the co-

equalizer of 3r\,e and sr*2e is denoted ($gfX/E) . A relation 

(Rfj) on X is called a congruence on X if there is a morp­

hism f with domain X such that (Rtj) is the equalizer of 

for^ and fflr2 (or equivalentlyf (Rt trr̂ j, *r2j) is the pull-

back of f and f ). Congruences are equivalence relations, 

but the converse need not be true. 

3» The Induced Morphism Theorem. The first definition 

of this section is a categorical property of morphisms motiva­

ted by a result which has been termed Sierpinski's Lemma C7], 

t20]t has been atributed to Schweigert [22lt called the Indu-
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ced Homomorphism Theorem T6J, and exploited by Aczel tlJ and 

by Bednarek and Wallace C33. 

A morphism f: X — • Y is called a Sierpinski morphism 

if whenever g: X— > Z is a morphism for which cong(f) £ 

£ cong(g) holds, there exists a unique morphism h: Y—> Z 

such that hf « g • 

Theorem 3.1. In a finitely complete category having co-

equalizers of kernel pairs, the Sierpinski morphisms are pre­

cisely the regular epimorphisms. 

Proof. Suppose f is a regular epimorphism, then there 

exist morphisms a,b: W —> X such that f is the coequali-

zer of a and b * Suppose g is a morphism for which 

cong(f) <& cong(g) holds, and consider the induced morphism 

4a,b} : W—* XxX • It follows that there exists a morphism 

d: W—» cong(f) such that ifd «4.a,b$ • Consequently, ga * 

= gb and hence there exists a unique morphism h such that 

hf » g . 

Conversely, suppose f is a Sierpinski morphism, and 

let f# be the coequalizer of tf^if and 3T2*f •
 x* f o l l~ 

ows that cong(f) s cong(f # ) • There exists a morphism h 

such that hf « f# • It follows from the definition of coe­

qualizer that there exists a unique morphism g such that 

gf# « f . One readily verifies that h and g are mutual 

inverses and thus f is a regular epimorphism. 

The notion of Sierpinski morphism is useful in providing 

a simple proof to the next proposition. 

Proposition 3.2. Let (B,e) and (F,f) be congruences 

on X and Y respectively and let g: X — > Y be a morphism 
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such that (gxg)e factors through f . Then there exists a 

unique morphism h: X/E—• Y/F such that h $ E » $-™g • 

Proof. One need only observe that $ E is a Sierpinski 

morphism and that E is "contained in" the congruence deter­

mined by $pg . 

A finitely complete regular epi-mono associative bicate-

gory having coequalizers of kernel pairs is called a regular 

category (see BarrC2l and Grillet £101). A regular category C 

is exact if and only if every equivalence relation is a con­

gruence. The categories of sets, rings, compact Hausdorff spa­

ces, triple algebras over the category of sets for certain 

triples, and certain functor categories are regular categories. 

Varieties and abelian categories are exact. Herrlich has defi­

ned the notions of algebraic category and varietal category 

llll (see 1121). Algebraic categories are regular, and varietal 

categories are the exact algebraic categories. 

We next turn to a result noted by Bourbaki [41 in the ca­

se of the category of sets and by Bednarek and Wallace C31 in 

the case of the category of compact Hausdorff spaces. 

Proposition 3.}* In a regular category, if E and F 

are congruences on X and Y respectively with the congruen­

ce determined by $ E K ^ P ^en0,fce^ by EfcF , then (§g*$|. t 

Ex Y/F) and ( $ E # F , X * Y/E*F) are isomorphic as quotients. 

Proof. Observe that $g.vp and $ g K ^ F a*e Sierpin­

ski morphisms. 

Theorem 3.4. The Induced Morphism Theorem (IMT) Let 

(R,j) be a relation from X to Y in a regular category for 

which ST-ĵ  is a regular epimorphism. If (E,e) and (F,f) 
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are congruences on X and Y respectively such that 

R o (EoR) .6 P , then there exists a unique morphism h 

such that the following diagram is commutative. 

h 
X >. x/E 

i h 
Y f *" Y/P 

Proof. (Sketch) Define § • $ E fl^d and i(r « $ p «r2#j . 

It follows that there exists a (unique) morphism g such 

that ( 3rii*KiA)i* * eg • Prom this it is straightforward 

to verify that 4 or .-J a^i. , m2i Wgi*} : cong(§ ) —• Xa* Y 

factors through E o R , This implies that ( 7T2i x &2i)i* 

factors through R © (EoR) and consequently, through f • 

Thus cong($ ) * cong(tjr) • Since § is a Sierpinski morph­

ism, there exists a unique morphism h such that h§ • ip . 

This proof does not depend on the associativity of com­

position of relations, and is true in the category of topo­

logical spaces where the pullback of a quotient map ( = re­

gular epic) is not necessarily a quotient map. 

This theorem is generalized from a result of Bednarek 

and Wallace C3] called the Induced Punction Theorem (IPT) and 

which Norris [21] has recently used with some success. Mar­

tin [171 has shown how isomorphism theorems in algebra may 

be deduced from the IPT, and more recently, Norris and Bedna­

rek [22] and Martin [18] have demonstrated some equivalent 

theorems. 

Corollary 3.5. If (R,j) is a difunctional relation 

(So ( R ^ o R ) * R « (R«R""1)«R) from X to Y in an exact 
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category and i f ar̂ rj and fl^j are regular epimorphisms , 

then there e x i s t s an isomorphism h such that the fo l lowing 

diagram i s a pushout square. 

R 

*Г2;j 

ЯÍÎ 

Фp-lл 

ï W1 

X/R © R"1 

Y/R~x© R 
Proof. Since R i s d i f u n c t i o n a l , RoR" 1 and R""1© R 

are equivalence r e l a t i o n s , hence are congruences. In view of 

the IMT, i t need only be observed that R"1 ©((Ro R"1)*) R) & 

4R" 1 ana Ro (CR-1© R) © R""1) £ RdR" 1 . These fo l low ijnmedi-

a t e l y s ince R i s d i f u n c t i o n a l . 

To see the diagram i s a pushout square, suppose a: X—> 

— • W and bs Y—* W are morphisms for which a 5T-, j « bor 2j# 

Let (R © R,k) be the ind i ca ted composit ion; i t f o l l ows that 

b jr ,k • baTpk • Consequently, there e x i s t s a morphism s : 

t Y/R"1© R—• W such that b ». S § R - 1 # H • We see that 

^ S R . R " * 1 * 1 * s S*R"1©R *2* m h9t2i ** a 0 f l 3 ; *!* i s a i x ep i*" 

morphism, hence s h $ R o R - l = a . Thus the diagram i s a pushout 

square. 

A recent result of Horris and Bednarek £222 called the 

Difunctionally Indttced Panetion Theorem (DIPT) is shown to be 

equivalent to the IPT. We now generalize the DIPT to a cate­

gorical setting and, being motivated by the proof given in 

[221, show that what we call the Difunctionally Induced Morp­

hism Theorem (DIMT) is equivalent to the HIT in an exact cate­

gory. 
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Theorem 3.6. The Difunctionally Induced Morphism Theo­

rem in an exact category, let (R»j) and (S fk*) be di-

functional relations from X to Y such that tr-,3 and 

# 2 k * a r e regular epimorphisms. If R o R * SoS f then 

there exists a unique morphism h making the following dia­

gram commute. 

*R*R~X 

•^ X/Ro R""1 

$ -1 *S#S x 

-*» Y/SoS x 

Proof. By hypothesis f R"1 o ((R o R"1) O H ) B R~X o R £ 

sS» S . Thus the result follows from the IMT. Note asso­

ciativity of composition of relations is not needed here. 

Theorem 3.7. In an exact category, the IMT is equiva­

lent to the DIMT. 

Proof. Associativity will be used throughout this proof. 

In view of Theorem 3f6f it need only be observed how the IMT 

is deduced from the DIMT. Let (Tfm) be a relation from X 

to Y such that 3T,m is a regular epimorphism. Let (Efe) 

and (P»f) be congruences on X and Y respectively and 

suppose T"1* (EoT)£ F . Let (RfJ) • (BoToF,3) and let 

S « R . Observe R and S are difunctional. Since #!\m 

is a regular epimorphism and T £ R » it follow s that wr^t 

and or2J are also regular epimorphisms. 
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It will be shown that the above diagram is commutative. 

Observe that F = So S"1 and that R"1© R = So s""1 . Thus 

the DIMT implies there sxists a morphism h-, such that 

"pentagon Q) n commutes. 

Next observe that «r-.e is a regular epimorphism and 

that E s R ©R . Thus the DIMT implies there exists a mor­

phism hp such that "pentagon (D " commutes. 

Since T & R f there exists a morphism b such that 

jb » m . Furthermore, (T^tfr^m, sr-ml) £ (A^i-^) A (Ete) so 

that there exists a morphism a such that ea =«{3r-,mf -̂ i---} • 

Thtts the outer "pentagon" commutes. 

In vies of the applications to topological algebra of 

the IPT investigated by Bednarek and Wallace C33 and Norris 

C213 9 a remark concerning the IMT is in order. The setting 

of an exact category (or of a regular category) seems to be 

the proper setting for doing most algebraic constructions 

(e.g.f manipulating congruences, forming quotients, etc.), 

but the pullback axiom seems to limit potential applications 
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in topological settings (except for the category of compact 

Hausdorff spaces which is a variety, and in which all of the 

above theorems hold). 

4. Difunctional Relations. Let C be a finitely comp­

lete E-M bicategory and let (Rfj) be a relation from X 

to Y . Denote the E-M factorizations of sr',j and #2j 

by ( ̂ ifin ) and ( tr2fj2) respectively. The domain of j. 

is denoted RY and the domain of j 2
 l s denoted XR . Es­

sentially, RYxXR is the "smallest11 rectangular relation 

"containing" R . If (Sfk) is a relation from X to Y 

such that R £ S f then RY £ SY and XR £ XS . It also fol­

lows that XCRoR"1) m RY f (R^oRjY a? XR f and RY * YR-"1 . 

The proof of the next lemma is omitted. 

Lemma 4.1. If 0 is as above and (Rffj) is a relation 

from X to Y f then: 

(1) tflfj is an E-epic if and only if RY m X . 

(2) fl^j is an E-epic if and only if R* R"1 is re­

flexive on X • 

(3) E © AJ-J si R » A R Y o R where ( A R Y , ^ 1 3 * ^l^RY-* 

and ( A T R * ^ * " 32)*TR) a r e considered as relations on X 

and Y respectively. 

If (Rtj) is a relation from X to Y f then (Rf4*rlr 

t-g? ) is a relation from RY to XR f called the canoni­

cal embedding of R into RYtxXR . Denote -to-,, tr2t ky $ • 

Note (j-j* j2)$ a 3 # Let (Sfk) be a relation from Y to 

Z such that XRs SZ and let (S,^) denote the canonical 

embedding of S into XRxYS . 
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Theorem 4.2. If (Re sfm) denotes the composition of 

(R,j) with (Sfk) f and if (R*Sfm) denotes the composition 

of (Rf§) with (Sfif) f then (R<-S fm) .* (R* Sf(j1H k2)m) • 

Proof. Consider the intersections (A • (Rx z) 0 (XxS), 

oo) and (B » (RxYS) H (RYxS)f/3) . It follows that 

(Afe&) s (Bf (3-̂ x. k2)/i ) • The theorem results from the essen­

tial uniqueness of the E-M factorization. 

Corollary 4»3» (R..1) is a symmetric, transitive rela­

tion on X if and only if (R. $ ) is an equivalence relation 

on RY . 

A relation (RttJ) from X to Y is called difunctio-

nal if and only if R P (R""1© R) £ R and (Ro R"1) o R m R # 

Note there is no assumption of associativity for composition 

of relations assumed here. If R is any relation, it follows 

from Lemma 4*1 that R = R - i J j - , ^ Ro (R~o R) and 

R v A R Y ° R -i (R» R"1)© R • Thus R is difunctional if and 

only if Ro (R-1* R) m R m (Ro R"1)« R . 

The term difunctional is due to Riguet [233. MacLane C16J, 

and Lambek Cl4, 133 have shown the usefulness of the concept. 

Meisen [19J has studied difunctional relations in E-M bicate-

gories as has Klein [133(under the term Von Heumann regular) 

and Grillet [10 3 notes that all relations are difunctional in 

an abelian category. This author has shown all relations are 

difunctional in any additive category [83* 

Corollary 4«4. (Rfj) is difunctional if and only if 

(Rf§ ) is also* 

Proof* The following diagram commutes where all the 

morphisms are M-monomorphisms. 
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(RoR^oR 

(Ro R- oR 
Һ* Һ 

R 
Ф 

RYxXR 

To avoid confusion we use the notation (RoR"*
1
)© R to 

denote the indicated compositions of (R,$ ) and (R"*
1
,!!*) . 

It follows that oc is an isomorphism if and only if oc is an 

isomorphism. 

The next result appears in C233 in a set theoretic set­

ting* If C is the category of groups, this result has been 

called Goursat 's Theorem which is useful in constructing con­

necting homomorphisms in homological algebra, and in giving 

elegant proofs for the Zassenhaus Lemma and the Jordan Holder 

Schreier Refinement Theorem [14, 151. 

Corollary 4«5« If C is an exact category and (R,j) 

is a difunctional relation from X to Y , then there exists 

an isomorphism h such that the following diagram is a push-

out square (cf. Corollary 3*5)• 

R i ** RY *
 -]L 

XR 

RY/RoR-
1 

^ R ^ R i *. 

-Ъ-XR/R
-1
 o R 

RoR 

Proof* By the previous corollary and Corollary 3*5, the 

result is immediate* 
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This last result plays a central role in providing a 

relation theoretic characterization of when a regular cate­

gory is exact. 

A relation (Rffj) from X to Y is called a pullback 

relation if and only if there exist morphisras g and h 

such that (Rf 2NJ* ^?*^ *s t n e Pu--lDac^ °£ 6 anc* n • Thus 

congruences are pullback relations; in fact, a relation is a 

congruence if and only if it is both reflexive and a pullback 

relation. 

Theorem 4*6. Let C be a finitely complete E-M bica-

tegory; if (Rffj) is a pullback relation, then (R,j) is 

difunctional. 

Proof* Consider the indicated compositions (RoR ,b) 

and ((RoR )©Rfa) • Since R is a pullback relation, the­

re exist morphisms f: X—> Z and g: Y —•* Z such that (R,j) 

is the equalizer of f flr^ and g sr2 • It follows that tVTjb-

=- f vr^b . Using this fact, one demonstrates that f -7T-.a = 

= g 3r2
a f which implies (RoR )© R it* R . Similarly one shows 

R o (R-1* R ) ^ R , 

Let f: X — * Y be a morphism. The morphism i lff i : X—• 

—* XxY is a section (coretract) hence, (Xf41ff$) is a 

relation in any E-M bicategorical structure on C • This 

relation is called the graph determined by f • For the sake 

of convenience, we denote (Xf4lff} ) by (Gfff) • Observe 

(G"1,?* ) s (Xfif ,1\) . Klein [13.1 and Grillet 1103 have no­

ted graphs are difunctional. 

The proof of the next lemma is straightforward and is 

omitted. 
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Lemma 4»7« (a) If f: X—**Y and g: Y—>• Z are mor-

phisms, then Gf o G s G f • 

(b) If f: X — * Y and g: Z—*Y are morphisms, then 

the pullback of f and g is G»o6" . In particular, 

cong(f)s Gfo G^
1 . 

The next result is due to Meisen [19J and was indepen­

dently found by the author. 

Theorem 4.8. If C is an exact category, then every 

difunctional relation has the property that its canonical 

embedding is a pullback relation. 

Proof. Let (R,3) be a difunctional relation from X 

to Y . There is no loss of generality to assume X s RY and 

Y s XR . We have seen that the following diagram commutes. 

1 *- X . 
-1 = f 

*oî 

*R-\H = « 

X/R o R"1 

\ \ 
-э- Y/R"

1 * R 

In view of the previous lemma, the pullback of hf and 

g i s Gj^o G"1 . We wi l l show that R s G f «Gj 1 - G"1 . Since 

the diagram commutes, R £ G-po Gh0 ®x • 

I t follows that (R,-£f Jr lfj,g jrr2-j J ) £ (a^oRoQ ,b) . 

Since f OT-̂ j i s a regular epiraorphism, (f 7r^j9h) i s the 

regular epi-mono fac tor iza t ion of • J f ^ d t g ^ J ? a n d conse-
-1 
g 

quently, (G. ,h) & ( G ^ o R o G .b) . Computing, G o G' 
-* - o- n* L. 

QfC Gh° Gg ~ G f ° Gf o R < 9 Gg* Gg s ( R o R'1)° R ° (R~ l 0 R) SS R 

Corollary 4 .9 . If C i s a regular category, C i s ex-
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act if and only if every difunctional relation (R,;j) has 

the property that its canonical embedding (R,$) is a pull-

back relation. 

Conditions concerning commuting congruences equivalent 

to a regular category being exact are given by Burgess and 

Caicedo [51 and by this author [91. 
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