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APPLICATIONS OF THE INDUCED MORPHISM THEOREM IN REGULAR
CATEGORIES

Temple H., FAY, Conway

Abstract: Several set theoretic results, principally,
due to Riguet, and a group theoretic result called Goursat s
Theorem are shown to be consequences of a categorical resuilt
called the Induced Morphism Theorem (IMT). A characterization
of when a regular category is exact is also derived from the
IMT, The Difunctionally Induced Morphism Theorem, generalized
from a result of Norris and Bednarek, is shown to be equival-
ent to the IMT in an exact category.

Key words: Induced Morphism Theorem, regular epimorphism,
regular category, exact category, difunctional relation, con-
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1., Introduction. The purpose of this paper is to obtain
a result called the Induced Morphism Theorem (IMT) which is a
categorial generalization of a set theoretic result of Bedna-
rek and Wallace [3] and which in turn is a consequence of a
property of morphisms which characterizes the class of regular
epimorphisms. Also a result of Norris end Bednarek [22] is ge-
neralized to a categorical setting and shown to be equivalent
to the IMT,

Applications of the IMT are given in regular categories
(termino;ogy due to Barr [ 21 and Grillet [10]) and, in parti-
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cular, our results subsume set theoretic results of Riguet
[23, 243, and a group theoretic result called Goursat s
Theorem [14, 15]. A characterization of when a regular cate-
gory is exact due to Meisen [19) and independently found by
the author will also be shown to follow from the IMT. This
latter result is of interest in view of a theorem of Tierney
(see Barr [2]) which roughly states that a category is abeli-
an if and only if it is both additive and exact, and in view
of the fact that varietal categories are precisely the exact
algebraic categories (terminology due to Herrlich [11], see
(12)).

2, Preliminarieg, If h: X—»Y and g: X—> Z are
morphisms in a category, the unique morphism from X to the
product Y= X 4induced by h and g is denoted {h,g%. Pro-
jection morphisms from products will be denoted by the gene-
ric symbol gr with a subscript to indicate which projection;
€sgey My: XxY—> X , Identity morphisms will be denoted by
l,

As usual, if (X,x) and (Y,y) are subobjects of 2 ,
we define (X,x) ¢ (Y,y) 1if and only if there exists a morp-
hism 2z such that yz = x . If (X,x) and (Y,y) are iso-
morphic as subobjects of 2 , we write (X,x) = (Y,y) .

An E-M bicategory is a category C with a structure
consisting of two subcategories E and M such that the
morphisms in E are epimorphisms, the morphisms in M are
monomorphisms, the morphisms in ENM are precisely the iso-

morphiens of C , and every morphism h in C has an essen~
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tially unique factorization (e,m) , where h =me and e €
€E and meM . See Herrlich and Strecker [12] for a detail-
ed development of bicategories.

Let C be a finitely complete E-M bicategory. By a
relation from an object X +to an object Y is meant an M-
subobject (R,j) of X=Y ,If X =Y, (R,j) 1is called a
relation on X , When there is little likelihocod of .confusi-
on, the morphism J will be suppressed. Some basic categori-
cal relation theoretic definitions and results follow. For
detailed expositions, see Klein [13] or Grillet [10].

Let (R,j) be a relation from X to Y . Let (R™T,
3* ) be the M-monic part of the E-M factorization of
{myy oyl § o Ve call R™1 the inverse relation determined
by R. If (S,k) is a relation from Y to Z , consider
the following commutative diagram where 6 , snd 6, are

canonical isomorphisms.

Jxl
Rx 2 ———————————3 (XxY )x2Z
(RxZ) N (XxS) —— X YRZ ~——— XxZ
1xk 8y

XxS ——————— Xx(YxZ) .

Let (ReS,« ) denote the M-monic part of the E-M factori-
zation of {4y, o, ¥4 3 ReS is called the composition of R
with S .

Klein. [13) has shown, in the cage where C has pull-
backs, that the composition of relations is associative if
and only if the pullback of an E-epic is E-epic. In this

cagse C 1is called an E~M associative bicategory.
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If C is an E-M associative bicategory, then for eve-
ry E-epic f and identity morphism 1 , 1xf and £x1 are
E-epics., Thus in such a category, if £ and g are E-epics,
then f£xg = (£x1)(1xg) is an E-epic.

The inverse operation and composition respect each other
via (Ro 8) 1w s~1o R, 1f R is any relation on X , R
is reflexive if and only if (A4,iy) = (X,41,1}) € (R,3). If
(S,k) 1is a relation from X to Y , then Ses™l 1g reflexi-
ve if and only if srlk is an E-epic. PFurthermore, it foll-
ows that Axe Sm=S=S o Ai « One defines symmetric, tran-
sitive, and equivalence relations in an obvious fashion.

If f: X—» Y 1is a morphism, the equalizer of fo; eand
foar, is denoted (cong(f),i,) and is called the congruence
determined by £ . If (g,2) is the coequalizer of ﬂrlif and
‘.!'I’Z:I.f s then there exist.s a morphism h such that £ = hg ar;d
cong(g) = cong(f) . If (E,e) is a congruence on X , the co-
equalizer of ;e and F,e 1s denoted ($5,X/E) . A relation
(R,j) on X 4is called a congruence on X if there is a morp-
hism £ with domain X such that (R,j) is the equalizr of
fory and for, (or equivalently, (R, o3 51'23) is the pull-
back of £ and £ ). Congruences are equivalence relations,

but the converse need not be true.

3. The Induced Morphism Theorem, The first definition

of this section is.a categorical property of morphisms motiva-
ted by a result which has been termed Sierpinski ‘s Lemma [71,
[20], has been atributed to Schweigert [22], called the Indu-
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ced Homomorphism Theorem [6], and exploited by Aczel [1] and
by Bednarek and Wallace [3].

A morphism f: X—» Y 1is called a Sierpinski morphism
if whenever g: X—> Z is a morphism for which cong(f) <
£ cong(g) holds, there existe a unique morphism h: Y—>» 2
such that hf =g .

Theorem 3,1. In a finitely complete category having co-
equalizers of kernel pairs, the Sierpinski morphisms are pre-
cisely the regular epimorphisms.

Proof. Suppose f is a regular epimorphism, then there
exist morphisms a,b: W—» X such that £ is the coeguali-
zer of a and b « Suppose g 1is a morphism for which
cong(f) « cong(g) holds, and consider the induced morphism
{a,b% : W—» X=X , It follows that there exists a morphism
d: W—» cong(f) such that igd = 4a,b} . Consequently, ga =
= gb and hence there exists a unique morphism h such that
hf = g .

Conversgely, suppose f 1s a Sierpinski morphism, and
let f# Dbe the coequalizer of Jrlif and :Irzif e It foll-
ows that cong(f)=m cong(f# ) . There existe a morphism h
such that hf = f# . It follows from the definition of coe-
qualizer that there exists a unique morphism g such that
gf# = £ . One readily verifies that h and g are mutual
inverses and thus £ 1is a regular epimorphism,

The notion of Sierpinski morphism is useful in providing
a simple proof to the next proposition.

Propogitio: 2. Let (E,e) and (P,f) be congruences

on X and Y respectively and let g: X—3 Y be a morphism
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such that (gxg)e factors through f . Then there exists a
unique morphism h: X/E—> Y/F such that h@p = @pg .

Proof. One need only observe that & is a Sierpinski
morphism and that E 1is "contained in" the congruence deter-
mined by Ppg .

A finitely complete regular epi-mono associative bicate-
gory having coequalizers of kernel pairs is called a regular
category (see Barr[2] and Grillet [101). A regular category C
is exact if and only if every equivalence relation is a con-
gruence. The categories of sets, rings, compact Hausdorff spa-
ces, triple algebras over the category of sets for certain
triples, and certain functor categories are regular categories.
Varieties and abelian categories are exact. Herrlich has defi-
ned the notions of algebrailc category and varietal category
[11) (see [121). Algebraic categories are regular, and varietal
categories are the exact algebraic categories.

We next turn to a result noted by Bourbaki [4] in the ca-
gse of the cétegory of sets and by Bednarek and Wallace [3] in
the case of the category of compact Hausdorff spaces.

Proposition 3.3. In a regular category, if E and P
are congruences on X a;ld Y respectively with the congruen-
ce determined by Pp=dp denoted by ExF , then (QE’@F ’
ExY/F) and (QE*P,XK Y/ExF) are isomorphic as quotients.

Proof. Observe that QE;P and ¢E’<QF are Sierpin-

ski morphisms.,

Theorem 3,4. The Induced Morphism Theorem (IMT) Let
(R,j) be a relation from X to Y in a regular category for

which oryj is a regular epimorphism. If (E,e) and (F,f)
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are congruences on X and Y respectively such that
R 1o (EoR) & F , then there exists a unique morphism h
such that the following diagram is commutative.

&y

ﬂ:" X > X/E
R}/ l h

m3 Y > Y/F

Proof. (Sketch) Define § = Pgmd end ¥ =Qp®>d .
It follows that there exists a (unique) morphism g such
that (v 3= :11'1.1)1Q = eg o From this it is straightforward
to verify that §or,j iy oré;j arziQi : cong(P ) —» XY
factors through Eo R , This implies that (vrzjxmz;j)ié
factors through R"lo (EeR) and consequently, through f .
Thus cong(d ) & cong(y) . Since § 1s a Sierpinski morph-
ism, there exists a unique morphism h such that h@ =y .

This proaof does not depend on the associativity of com-
position of relations, and is true in the category of topo-
logical spaces where the pullback of a quotient map ( = re-
gular epic) is not necessarily a quotient map,

This theorem is generalized from a result of Bednarek
and Wallace [ 3] called the Induced Function Theorem (IFT) and
which Norris [21] has recently used with some success. Mar-
tin {17) has shown how isomorphism theorems in algebra may
be deduced from the IFT, and more recently, Norris and Bedna-
rek [22) and Martin (18] have demonstrated some equivalent
theorems.

Corollery 3,5. If (R,3j) 1is a difunctional relation
(Ro (Yo R)= R= (RoR"1)eR) from X to Y din an exact
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category and if oy and ®,J are regular epimorphisms,
then there exists an isomorphism h such that the following

diagram is a pushout square.

Ul'l,‘j
R > X
! $pop-1
3 X/ReR™
h
_ QR' oR l 1
Y —» Y/R™"o R

Proof. Since R 1is difunctional, Re Rl and R7loR
are equivalence relations, hence are congruences. In view of
the IMT, it need only be observed that R1e((RoR"1)e R) &
¢R! and Re (R™1eR)oR™1) & RoR™1 , These follow immedi-
ately since R 1s difunctional,

To see the diagram is a pushout square, suppose a: X —>
—» W and b: Y—» W are morphismav for which aarlj =bar,J.
Let (R"le R,k) be the indicated composition; it follows that
b:rlk = bsrzk « Consequently, there exists a morphism s:

: Y/R"le R—> ¥ such that b = 8dp-1 5 . We see that

sh®p -1 = BQR"loR o =bayy =am ;o) 1is an epi-
morphism. hence sh QReR"l = a o Thus the diagram is a pushout
square,

A recent result of Norris and Bednarek [22] called the
Difunctionally Induced Function Theorem (DIFT) is shown to be
equivale:it to the IFT. We now generalize the DIFT to a cate-
gorical setting and, being motivated by the procf given in
(22], show that what we call the Difunctionally Induced Morp-
hism Theorem (DIMT) is equivalent to the INMT in an exact cate-
gory.
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Theorem 3,6, The Difunctionally Induced Morphism Theo-
rem in an exact category, let (R,j) and (S'l,k"‘) be di-
functional relations from X to Y such that zrlj and

-1 -1

arzk"‘ are regular epimorphisms. If R "o R& Se S

s then
there exists a unique morphism h making the following dia-
gram commute,

QRoR"l

Y

i 'Jr,/é,.x X/Re R™1
T~— 8051 l N

wi o~y > Y/ses™!

Proof. By hypothesis, R™1e ((ReR~1)oR)m R™1oR &
€5Se 5”1, Thus the result follows from the IMT, Note asso-
ciativity of composition of relations is not needed here.

Theorem 3.7. In an exact category, the IMT is equiva-
lent to the DIMT,

Proof. Associativity will be used throughout this proof.
In view of Theorem 3,6, it need nnly be observed how the IMT
is deduced from the DIMT, Let (T,m) be a relation from X
to Y such that aorym is a regular epimorphism. Let (E,e)
and (F,f) be congruences on X and Y respectively and
suppose T 1o (EeT)& F . Let (R,j) = (EoTo F,j) eand 1let
s =R, observe R and S are difunctional. Since srm
is a regular epimorphism and T& R , it follows that :rrlj

and ol are also regular epimorphisms.
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rym S . b Tom
- \\
E £ 2 R
/18 M ‘_/1"j ”A
X X Y
® @
s QR.:R'l QF
= -1
X/B N X/ReR B > Y/F

It will be shown that the above diagram is commutative.
Observe that F = SoS™) and that R™2oR = SoS™L , Thus
the DIMT implies there exists a morphism h1 such that
"pentagon @ " commutes.

Next observe that n’le s a regular epimorphism and
that E ERoR_l « Thus the DIMT implies there exists a mor-
phism hz such that "pentagon @ " commutes.

Since T & R , there exists a morphism b such that
Jb = m . Furthermore, (T,{orym, vrlm!) & (Ax,s,x) & (E,e) so
that there exists a morphism a such that ea ='i'.7r1m, ﬂrlm?; .
Thus the outer "pentagon”" commutes.

In vies of the applications to topological algebra of
the IPT investigated by Bednarek and Wallace [3] and Norris
(211 , a remark concerning the IMT is in order. The setting
of an exact category (or of a regular category) seems to be
the proper setting for doing most algebraic constructions
(e.g., manipulating congruences, forming quotients, etc.),

but the pullback axiom seems to limit potential applications
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in topological settings (except for the category of compact
Hausdorff spaces which is a variety, and in which all of the

above theorems hold).

4. Difunctional Relationg. ILet C be a finitely comp-
lete E-M bicategory and let (R,j) be a relation from X
to Y . Denote the E-M factorizations of ‘-!:'1;] and 5]
by (‘cl,jl) and (®,,J,) respectively. The domain of 3
is denoted RY and the domain of j, 1s denoted XR . Es-
sentially, RY~XR is the "smallest" rectangular relation
"containing” R ., If (S,k) is a relation from X to Y
such that R« S , then RY £ SY and XR <« XS ., It also fol-
lows that X(ReR™1)= RY , (R"}eR)Y= XR , and RY m YR™! ,
The proof of the next lemma is omitted.

Lemmg 4,1. If C 4is as above and (R,j) is a relation
‘from X to Y , then:

(1) m;J 1s an E-epic if and only if RYmX .

(2) m,J is an E-epic if and only if Re R™! 1s re-
flexive on X ,

(3) RoAjp=Re ApyoR where (Apy,(3y> Jy)igy)
and (AIR’(JZ"JZ):"XR) are considered as relations on X
and Y respectively.

If (R,J) is a relation from X to Y , then (R,{'r:l,.
T,3 ) 1is a relation from RY to XR , called the canoni-
cal embedding of R into RY»XR . Denote {1:1, wt by ¢ .
Note (3% Jp)® = Jj . Let (S,k) be a relation from Y to
Z such that XR= SZ and let (S, ) denote the canonical
embedding of S into XRw=Y¥S . '
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Theorem 4,2. If (Ro S,m) denotes the composition of
(R,j) with (S,k) , and if (Re S,¥) denotes the composition
of (R,&) with (S,¥) , then (ReS,m)= (Rs8,(3;= ki) .

Proof. Consider the intersections (A = (Rx2) N (XxS),
) and (B = (R;YS) N (RYxS),3) « It follows that
(Aye0) = (By(Jy=ky) ) . The theorem results from the essen-
tial uniqueness of the E-M factorization.

Copollary 4.3, (R,j) 1is a symmetric, transitive rela-
tion on X if and only if (R,§ ) is an equivalence relation
on RY ,

A relation (R,)) from X to Y is called difunctio=-
nal if and only if Roe (R™IoR)4 R and (ReR1)sR&R .
Note there is no assumption of associativity for composition
of relations assumed here. If R 1s any relation, it follows
from Lemma 4.1 that R= Relgp & Ro (R"1e R) and
RwdpyoR & (ReR™1)o R, Thus R 1is difunctional if and
only 4f Re (R"1oR)m Rwm (RoR"1)eR .

The term difunctional is due to Riguet [23]. MacLane ([16],
and Lambek [14, 15) have shown the usefulness of the concept.
Meisen [19] has studied difunctional relations in E-M bicate-
gories as has Klein [13](under the term Von Neumann regular)
and Grillet [10) notes that all relations are difunctional in
an abelian category. This author has shown all relations are
difunctional in any additive category [8].

Corollary 4.4. (R,3J) 4is difunctional if and only if
(Ry® ) 41s also.

Proof. The following diagram commutes where all the

morphisms are M-monomorphisms,
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J
> IxY

R
w N
\(nox’l).a /

PR e
° [

X \

R ;} » RYx XR

iy

To avoid confusion we use the notation (m to
denote the indicated compositions of (R, ) and (R™L, ") .
It follows that o 1is an isomorphism if and only if'&' is an
isomorphism,

The next result appears in [23] in a set theoretic set-
ting, If C 1s the category of groups, this result has been
called Goursat s Theorem which is useful in congtructing con-
necting homomo.rphiams in homological algebra, and in giving
elegant proofs for the Zassenhaus Lemma and the Jordan Holder
Schreier Refinement Theorem [14, 15],

Corollary 4,5. If C 1is an exact category and (R,J)
is a difunctional relation from X to Y , then there existg
an isomorphism h such that the following diagram is a push-

out square (cf. Corollary 3.5).

1
R > RY
‘ QR:R'J‘
-1
v RY/Ro R
2 $p-Lr J, h
XR — —>XR/R™1e R

Proof. By the previous corollary and Corollary 3.5, the
result is immediate.
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This last result plays a central role in providing a
relation theoretic characterization of when é regular cate-
gory is exact,

A relation (R,j) from X to Y 4is called a pullback
relation if and only if there exist morphisms g and h
such that (R, aryds 1!'2.]') is the pullback of g and h . Thus
congruences are pullback relations; in fact, a relation is a
congruence if and only if it is both reflexive and a pullback
relation.

Theorem 4.6. Let C be a finitely complete E-M bica-
tegory; if (R,j) is a pullback relation, then (R,j) is
difunctional,

Proof. Consider the indicated compositions (Re R'l,b')
and ((Re R'l)oR,a) « Since R 1is a pullback relation, the=-
re exist morphisms f: X—»2 and g: Y—» Z such that (R,])
is the equalizer of f:ﬂ"1 and gy It follows that fw‘lb=

fsrzb o Using this fact, one demonstrates that fﬂrla =
=gy , which implies (Re Rl)eR&R . Similarly one shows
Ro(RIoR)e R

Let f: X—» Y be a morphism, The morphism {1,f} : X—»
—>» X»Y 1is a section (coretract) hence, (X,41,f3) is a
relation in any E-M bicategorical structure on C ., This
relation is called the graph determined by £ . For the sake
of convenience, we denote (X,41,£f}) by (Gf,'f) . Obgerve
(G}]',f* )= (X,4£,1%) . Klein [13] and Grillet [10] have no-
ted graphs are difunctional.

The proof of the next lemma is straightforward and is
omitted,
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Lemma 4.7, (a) If f: X— Y and g: Y—>Z are mor-

phisms, then Gfo Gg = Ggf .
(b) If f: X—» Y and g: Z—Y are morphisms, then
the pullback of £ and g 1s Gpo Ggl . In particular,
-1

cong(f) = Gpo Gp™ .

The next result is due to Meisen [19] and was imliepen-
dently found by the author.

Theorem 4.8. If C is an exact category, then every
difunctional relation has the property that its canonical
embedding 1s a pullback relation.

Proof. Let (R,j) be a difunctional relation from X
to Y . There is no loss of generality to assume X= RY and

Y=XR ., We have seen that the following diagram commutes.

M3
R 1 —= X .
1§R°R-1 = f
L% X/Ro 7L
M
éR-:I'oR =8 l-l
Y > Y/R""e R

In view of the previous lemma, the pullback of hf and
g is Gypo G;l . We will show that 1115 Gpo Gy o 6;1 . Since
the diagram commutes, R £ Gfo Gh° Gs o

It follows that (R, {far j,gmyj8) < (GgoRo Gg,b) .
Since f£ar;j is a regular epimorphiem, (farlj,'ﬁ) is the
regular epi-mono factorization of 4 fm'lj,garzj} and conse-
quently, (Gh,?l) < (G;lo R oGg,b) . Computing, tha G;J‘ =
Gge G o G;J'é-. Gpo GploRo 6 e 6;l= RerDero@ IRy =R .

Corollary 4.9. If C 1is a regular category, C is ex-
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act if and only if every difunctional relation (R,Jj) has
the property that its canonical embedding (R,d) is a pull-
back relation.

Conditions concerning commuting congruences equivalent
to a regular category being exact are given by Burgess and
Caicedo [5] and by this authar 19l.
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