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A NOTE ON LINE GRAPHS

Ladislav NEBESKY, Praha

Abstrgct: Let 6 be a graph such that no component
of G is a tree. In this note, a relationship between span-
ning subgraphs of G and spanning subgraphs of the line
graph of ¢ is discussed.

. Key words: Graph; line graph; subdivision graph; span=-
ning au%grapﬁ; homeomorphism; contraction.
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If G is a graph, then we denote by V(G), E(G), J(6),
L) and S(G) the vertex set of G , the edge set
of G, the minimum degree of G , the line graph of G and
the subdivision graph of.G , respectively. For tﬁe terms
and .symbols not defined here, see Behzad and Chartrand [11],
or Harary [3]. In the present note, we shall prove the fol-

lowing theorem:

Theorem. Let G be a graph such that no component of
G is a tree. Then for every spanning subgraph F of G
with J(F) =1 , there exists a spanning subgraph H of
L(G) such that (i) H is homeomorphic with F , and
(ii) if F=G , then S(G) is contractible to H .

Proof. Denote V=V(G). If eV, then we denote by
P () the set of edges of G iﬁcident with . If AcV,
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then we denote

DAY= U D) .
reA

Assume that there is B cV  such that ID(B)l < IBI .
We denote by Gp  the subgraph of G induced by B . Ob-
viously, Gz contains a component g such that 1D(¥)l<
<7 , Wwhere V=vE) . Tis implies that é is a tree
and D(V)=E(G). Thus & is a component of G , which
is ‘contradiction.

We have that for every A<V, IAl £ 1DCA)! |, From P.
Hall's Theorem ([21, see also Theorem 12.3 in [1] or Theo-
rem 5.19 in [3]) it follows that for every . € V', there
exists an edge g(w) € D(w) such that if o, we V, w4 w,
then g (%)% g (w) . Denote X={g(u)lueVi. Llet xe
€eE(G),x=xnr.If xeX , then xe{g (x),g(s}. . If
x ¢ X , then x is adjacent both to g(xz) and tog(»)

Let F ,be a spanning subgraph of G with J(F) =1,
We denote by F, the graph with V(Fg)= X uE(F) and such
that distinet vertices 4 and z of I, are adjacent in

F, if and only if there are x,,4, €V  such that

wyw, € (ECF)an{ng,z}t and 4,z & {u,,, g (uy), 9. ()%,

It is easily seen that if 4, and %, are adjacent verti-
ces of F, , then they are adjacent edges of G . Thus T,
is a subgraph of L (G) .

Denote ¥ =E(F)-X.Every 4 €Y is a vertex of
degree 2 in F, and if ¢ ,4,€ Y , then 4, and 4,
are not adjacent in F, . Let x4, x, €V and x, nzeE(PJ;

then either (1) 9,()(.1) and 9(&2_) are adjacent vertices
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of F, or (2) there exist8 4'e ¥ which is adjacent
both to @ (x,) and to g(x,) in F, . Let x4 and X,
be adjacent vertices of F,, %, € X ; then there are 4, ,
by eV such that », A, € E(F),; % =9 (A,), and eit-
her X, =q(s,) or X, = A, 5, . This implies that Fo is
homeomorphic with F and that SC(F) is contractible
to Fy « For F= G , the proof is complete.

Let F% G . Denote Z = E(G)-V(F,) . For every 2, €
€ Z ,let a(z,) be one of the vertices x, and 5, , whe-
re Zo= XyRo . If w, € V , then we denote Blap) =4z e

‘€ Zlax)zw,¥.Denote V, ={u eVideg u = 1,9 () E(F)?.

Obviously, if t € V-V, , then there are x,, 4, €
€ V(F,) such that Xy, 1is an edge of T, , and t is
incident both with %, and with sy in G .We denote by F’
the graph which we obtain from F, in such a way that for
every o € V-V, , we insert precisely |B(2)l| new verti-
ces of degree 2 into the edge X, 4, of F, . Clearly,F’
is homeomorphic with F . We denote by F” the .graph which
we obtain from F' in such a way that for every w eV, , we
insert precisely |3 (w)] new vertices of degree 2 into
the edge of F* which is incident with q,('w')'. Clearly, F”
is homeomorphic with F . It is not difficult to see that
bald is isomorphic to. a spanning subgraph of L(G) . Hence

the theorem.

Corollary (J. Sedlé¥ek [41). Let G be a nontrivial
connected graph. If G contains a hamiltonian path, then
LILCG) also contains a hemiltonian path. If G contains a

hamiltonian cycle, then L(G) also contains a hamiltonian
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cycle.
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