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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

ON THE GEOMETRIC CHARACTERIZATION OF DIFFERENTIABILITY I.

Jif{ DURDIL, Praha

Abstract: In the first part of the pager, the geomet-
ric characterization of differentiability in Banach spaces
in terms of tangent flats (planes) is given. In the second
one, the possibility of such characterization in terms of
tangent cones [4) is discussed answering a problem of T.M.
Flett [41.

Key words: Banach space, derivative of mapping, tan-
gent flat (plane), tangent cone.

AMS: 47H99, 58C20 Ref, Z.: 7.978.44

The differentials of mappings are usually introduced
in an analytic (increment) manner, the typical example of
which being the definition in the sense of Fréchet, but
differentiability can be characterized also in another way:
geometrically, i.e., using the notion of a tangent as in
the classical analysis. Unfortunately, the simple transpo-
sition of a classical notion of a tangent into the spaces
of more éimensions or into infinitely dimensional spaces,
meets various difficulties. This and other related problems
were studied by many authors, for example in [1] - [10].
There are two main directions in approaching the problem
of the geometric characterization of différentiability; in

the first, the notion of a tangent plane (see [6]1) is ased,
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the second is based on the notion of a tangent cone (see
[4] and (5)). In both these directions, the characteriza-
tion was stated in case of finitely dimensional spaces;
the aim of our paper is to give such characterizations for
infinitely dimensional spaces, too.

The first part of our paper is devoted to generali-
zing the characterization stated by Roetman [6] to the in-
finitely dimensional case; the possibility of such genera-
lization was indicated already in [61. In the second part,
we deal with the notion of a tangent cone in the sense of
Flett [4]. Flett put the problem ([4], see also [5]) of
the characterization of differentiability in infinitely
dimensional spaces in terms of tangent cones defined in
[4); we shall show by an example that such a characteriza-
tion, even under very strong restrictions, is not possible.
This problei is investigated also in our paper [11]1, whe-
re we define a slight modified notion of tangent cone and
prove the required characterization in terms of the cones

in question.

1. Characterization in terms of tangent flats

(1.1) First we recall the main result of Roetman [61.
Let Ac R™ be a set with a non-empty interior, F: A —
—>R"* a mapping and denote G (F)=4(x,y):xe A,«*er’,
4=F)t c R™ x BR™ the graph of T . Consider
maximum norms in R™ and R™ and the sum norm (i.e.
Ixly + lggpl, ) in the product R™ x R™ . Let
(%, >°§'o) be an interior point of G (F) . A plane bl
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(in general, more than 2 -dimensional) is said to be the
tangent plane to the graph G (F) at the point (X;,4,)
if there are (m +4 -4) -dimensional planes T, (4=
=4,0e.. & ) -such that T = ‘.vf:b\q s, and that for arbi-
trary non-degenerated co-cones %% (X,,4,)2 T (4=1,..,4),
an open ball B(X,,4,) with the centre at (X,,%,/) can

be chosen so that

2
G(F) N Blxg,a) €, € ()

A co-cone in a space R™ with a vertex %, € R™ is de~
fined [6) as a complement in R™ of the set € (%) v

v (2z,- %(z,)) where <%(z,) is an open convex cone in
R™ with a vertex at z, . In these terms, the following
theorem holds [61:

A mapping F:AcR™—> R™ is differentiable (in
Fréchet sense) at an interior point X, of A if and only
if there is a tangent plane TI to the graph of F at X,
which is not parallel to the space R™ .

The proof of this theorem ia based on the representa-
tion of the mapping F by a matrix and on the description
of the geometric relations above in the analytic way. Now,
following the basic Roetman’s ideas, we shall prove an ana-

logical assertion for mappings in Banach spaces.

(1.2) Let Z be a Banach space. A set T c Z is
said to be a flat (or linear variety) in Z iff it is a
translation of some linear subspace of Z ; that means
(Tl — %) is a linear subspace of Z for every x € 11 .

A translation of a maximsl proper linear subspace of Z is
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called the hyperplane in Z ; if Tl is a hyperplane in Z,

Z, 1T end 24 € Z\TT then Z is the direct sum of TT-2,
and Ap (¥~%,) . Purthermore, if TT is a hyperplane in Z
then there is a linear functional x¥*: Z— R  such that
T={z:{x,2*>=03% and on the other hand, the set
M=4w:<x,2*> = 0% is a hyperplane for every z* Z —->R;
moreover, T is closed iff x* is continuous, See e.g. [12]

for these and other properties of hyperplanes used below,

Let z,€ Z. A set € (z,) is said to be the cone in
Z with the vertex =z, iff A(€(z,)-2,) € (€(zy)~ 2,
for every A >0 . If <€ (z,) is a convex cone in Z with
a vertex %, then we call the complement of %€ (z,) v
v(2x, - €(z,)) in Z the co-cone to ¥ (z,) and we de-
note it by <€’(z,) ; it is also a cone with a vertex at 2,
but it is not convex. .

We shall see later that it is sufficient for the charac-

terization of differentiability to consider a special type
of co-cones only. The reason of it lies in the following:

If €(z,) 1is a convex cone in Z with a vertex z, and
if T is a closed support-hyperplane of <€ (z,) at =z,

such that

dlS (z) n€(z), Tl=d=>0

where S (z,)) = {z:lz-2,l = 1% and d(A B)= inf la-£&1,

eehA e
then the set
1
{2:2=2+22' , A 20,0z l=1, dz,+z" )£ 2%
is a subset of the co-cone %¥’(z,) , This set is a co-cone,
t00; moreover, in the case of a finitely dimensional space Z ,
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it is the co=cone to some circular cone with the axis per-
pendicular to TT ; hence passing to the infinitely dimen-

sional case, we define:

Definition. Let Z be a Banach space, 1T a hyper-
plane in Z, 2, € TT  and o« > 0 , The set

‘e;l;«(zo)= {z:z=2,+hz', Lz 0, l2'l=1,d(z,+z;TT) ¢ x }

is said to be the ciroular co-cone in Z with vertex =,
corresponding to the hyperplane 1T and the parameter o .
The co-cone ‘C.;T‘m (%,) can be described also in an-
other way which seems to be more suitable for the conside-
rations below. The construction is as follows: Let T be
a closed hyperplane in Z , zg € TT and « > 0 . Choose
some u € Z\TT, lu-z,l=41 and let z¥ € Z¥ ve such
that Natll=4, <u-2,,2%> = d(x,TT) and {z-2z,,2} =
=0 for every z e T ; such =z} exists due to the
Hahn-Banach Theorem. Then

(z)=<Lz: I<z—za, xj‘;}l € xclz-2,1% .
of

(1) ¢
T,

Its validity and the independence of the choice of w and

zi‘ follow immediately from the lemmas below.

Lemmg 1. Let TT be a closed hyperplane in a Banach

space Z, %, € 11, o« > 0 and let ¥y (z,) be tpe
) .

corresponding circular co-cone. Then

o StLy 2 ¥)

€ (x,)=4x; - Sl —mor
MEAERETARE TN 0t a )

m olz-2z, 1 7

for every € Z\Tl  and =* € Z* such that (z-z,,z¥)=0
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whenever z 1T . ,
% -2,
Proof. Let z'e €’ (2, ; then o (=% T <&,

e o' -z,
Let 4 and z* be as in the lemmas and denote TT, =

={z:{z-2,, 2%*)=v}.The set T, 1is a hyperplane and it

(S

ean be easily shown that T = TT 4+ ————— + 4 and
¢ aatt ® Lan, ™)

dlau ™) ’_
A (T, TM)s ——————- |zl , Rence —Z=%o__ 7T,

{w,z®> | Iz -2,1

< *

where |2’| < AL sk AR o« , whence the result. The

ol (u,TT)
converse can be proved similarly.
Now, let X, Y be Banach spaces and denote by @
the system of graphs of all continuous linear mappings from
X dnto Y . Hence, every M € @& is a closed linear

subspace of X =x7Y .

Definition. Let X, Y be Banach spaces, Ac X,
F:A—Y, x, an interior point of A and let T be a
flat in X > Y . The flat T is said to be tangent to the
graph G (F) of F at the point (xo,F(x,)) iff the
following two conditions are fulfilled:

(1) T-(x,Flx)) e G

(ii) For each « >0 there is s (x)>0 such that
GIFINEB, (%, Flx,N HQH ‘f:ﬁ“ (X,, Fxy )
where B, (%, ,F(XD=dze€XxY: lz=(x,, F(x, D))< x? and

H is the system of all closed hyperplanes H in X xY
having the property TTe H .

Lemma 2. If TT is a closed flat in a Banach space
Z end H  is the avatem of all closed hyperplanes H in
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Z such that TT =« H , then HqﬂH-:TT .
* € inl

Proof. Assume that there is z'erEuH such that
€

z€ 1T end let =z, be an arbitrary point of TT . By Hahn-

Banach Theorem, there is 2* € Z*™ such that lz*l =1,
(2-2,,z*¥)=0 whenever z & TT and <z'-z,,x*>=d =,T)>
> 0 . Denote Hy ,={zeZ:<4x-2,,2%)>=0%; Hyy is a
closed hyperplane and T ¢ Hyx 4 hence Hy, € H . It imp-
lies that 2'e H_,  but it is contradictory to
{z'-z,,z2%>> 0, The converse inclusion is trivial.

Let us remark that the notion of a tangent flat to a
graph defined above agrees in finitely dimensional spaces
with the analogical Roetmen’s notion and moreover, the con-
dition (i) implies the tangent flat TT “is not parallel to
the space Y (it means the flats T and 41 0y3xY are not
parallel; two flats TT,, and TT,_ are said to be parallel
iff (-2 e(Ty-2,) or (T, - 2,)c (T, -2,) for some
zq € Ty and z, € T, ). Using this more gemeral notion
of a tangent, we can now prove the following theorem that
is formally identical with the Roetman ‘s theorem quoted abo-
ve but that characterizes T -differentiability of mappings
also in infinitely dimensional spaces (we write F -diffe-

rentiability for Fréchet differentiability etc.).

Theorem 1. Let X,Y be Banach spaces, AcX, F:
:tA—>Y and let x, be an interior point of A . The mapping
F possesses the T -derivative at the point x, if and

only if there exists a tangent flat to the graph of F at

the point (xo,F(xo)) .
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Proof. We shall consider the sum norm in X =Y (that
is the norm defined by l(x,q)lly, v = lxly + Ny ly ) but
it is not essential - an arbitrary equivalent norm can be
considered. Denote Z =X =Y , 4, = F(x,) and %z, =
= (%o g ) o

1) Suppose F possesses the F -derivative F’(x,) at
X, and set

M=1ix, ) eZ:ap=aq,+F'(x)(x-%,)3 .

Evidently, (TT- (x,,4,)) = G(F'(x,)) € G . set

P=q{z2* Z*: lz*l= 4,<z-2,,2*) =0 whenever z €T}

and denote H = {Hz* :z* e P3$ where Hz*= iz € Z:<x-2,,2%)= 0%.

It is Me H for every H e H and, conversely, every
hyperplane H in Z such that TTc H , belongs to H .
Indeed, there is z} € Z for every H o TT  such that
Izfll =4  and <z-z,,2¥> =10 whenever z e H ; sin-
ce Te R , it is z: e?P and hence H e H , Moreover,

it 1sz'QPRz*=W by Lemma 2.

To prove TI is a tangent flat to G (F) at x,, it
remains to verify the condition (ii). Suppose to the cont-

rary that there is o> 0 and z, € G (F) such that
1 '
ey, | £ — and zm_é;H:?ﬂ‘CHm(zo) for m=4,2,... .
It means there is H, € H for every m such that
]
z, € (eH,M«. (z,)
Choosing 4, and z:v in the manner described in the con-

struction before Lemma 1, we can see that Hz* =H, and
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l(zm—zo,z,ﬁ)l >z, -2, |

for every m by (1). Since T« H ,  for every m , it
”v

follows
g z,225 01 2 142,-2,, 20 > - Kzymz,2p > >t Iz, - 2, |

for all z e TT and hence

(2) Uy~ Nl ik =X 1) > o Cllgg - g B4+ Ik -, 1) 2 o lx, - %, |
where z, = (Xm,¥m) and z = (x,4)e T .

Now, set ), = (x),a,) where X, = X, , Y = g +
+F'(Xo) (X =X,) . Evidently 2z, € T and so it follows
from (2) that

Nag = Ay = B (%= X ) > o k= %, |

for all m , However, it contradicts our assumption on F -

. e e 1
differentiability of F at X, because ﬂx,n-xolléﬂz“-zoﬂé-ﬂ; .

2) On the other hand, suppose now that there is a tan-
gent flat TT to G(F) at z, = (x,,F(x,)) and prove that
F is F -differentiable at X, -

According to (i), there is a continuous linear mapping
L:X—Y such that T=4(x,) € Z: g =g+ L (x-%,)3% .
Define the sets P ,H,, and the system H in the same
manner as in the first part of our proof. Then H is the
system of all hyperplanes in Z containing TT , again, and

Sk - L .
it is H@lH T by Lemma 2

Now, let « =0 be an arbitrary number and let %’ €
1
eu:?n‘c”*“ (z,} . Then by our Lemma 1,
eC(Mz*, z*)
duw H

P2 Rt

(3) Kz'oz, ,z*> 1< clz'ez)l
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for all z*e P and all u , € ZNH,, . According to the
Hahn-Banach Theorem, there is z'* e Z* such that lz'*l= 1,

¢z-z, ,2'*> =0 whenever x €TT and

dz',T) .

"

) LS
4y Cz-zy,z )

It is 2’*e P and hence, choosing Mg in (3) so that
4

Nae, =4 and d(u,, H )2 - (such u,,, exists

by the well-known theorem of F. Riesz, see e.g. [13]), we ob-

tain from (3)

(5) Kx'e 2,2 * 214 20 2" = 2,1l .«

In view of- the definition of a distance as an infimum, we can
find %" €T  so that

T (2, T - Iz'-2"11 < < lz'-z 1,
whence
(6) (2= zy, 2" *) Z I2'=2" - e lz’- 2, 0

by (4). Denoting z’= (x',4’) and 2"= (x",4”) we have
f'=np +L (x"-x,) and so it follows from (5) and (6) that

(7) l|lg’- nfo-L(o('-xo)Hé"q—’-f%-L(R"—xo)‘ﬂ'“L"'IX”—'X'“é
€A+l lz-z"l & U+ UL 1) (K2'- 2., 2"*>+x 2~ 2, 1) &
£ 3o (4.+llLll) lz'- 2z, .

This inequality implies that
'@-’*'%“‘“L(“"*o” €3 A+ IL I (lx'~x, U+ lgp'- g, )

whence
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B+ 3 (4+ 1L 1)

8 ‘. I < - - I
(8) Iy~ 4 1-seccdellly %

4

assumi % & ~—————w , It follows now from this re-
ne 34+ 1L

lation and (7) that
3ec (4+ 1L 12

e Tixx e x|
(9 lo'- oy - L (=)l < 1-Be(AadLl) e

1
for every x'=(x\g)e M €} (z,) if ¢ €« —————
HeH M 3¢4+1IL )

Now, let € >0 be an arbitrary given number; we can

€

assume that ¢ <4 . Set « = and let
34+ 1L I M+ILl+g)

2(x) be a number corresponding to this o« according

to (ii); note that o« « ---—4——— .Choose
3L’
41-3c (4+ 1L 1) nlec)

so amall (but positive)

& - - .
1+ 1L+ 3 (AL 1D 2

(
to be {xeX:ll.x—\xolléd"}:A s 1t130<d'<”'°c)

x ()

and hence llx - x, Il < whenever lx-x,l<d” . If

(x,4) EHQ ‘8’ < (%) then Ix-x,ll< d” implies

' Ie MLl +3cc (4+ 1L 1) x () 2 (o)
- ° <

% T Iy s (44 1LY 2 2

?
by (8) and so Anugu‘c (%) c B, .02, where

A=4Cx,g)e XxY: llx-x, Il € o3 . Therefore,

GEIAD A O (=) GRINE, @) = 0 G (=)
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by (ii) and hence

(10) GFinbe Me =) .

It follows from (9) and (10) that
I\P(x)-F(ato)-—L(.xnxo)ll & e lx-~ X, I

for all xe A, Ix-x, 1l £ d", which implies that F posse-
sses the F -derivative F'(x,) =1L at the point x, .

This completes the proof.

(1.3) Let & be a system of sets C c X  that are
star-shaped with respect to 0 and such that there is C €

€ @ with diem C<a for every 2 >0 .

Definition. Let X, Y be Banach spaces, A c X ,
F: A=Y, x,eInt A  (interior of A ) and let T be a
flat in X =Y . The flat TT is said to be @& -tangent
to the graph G (F) of T at X, iff the two following
conditions are fulfilled:

(1°) T-(x,Flx,)) e G where G is as in (1.2)

(ii”) There are A (x)>0 and C.€ & for each = >

>0 such that

(1) GUF) A [lxy, Flot D G B, o T € /0 €y (X T (gD

Yy
where B, = {yeY:lyll <}t and H  is the system of
all closed hyperplanes H in X x Y such that Tec H .

Particularly, we denote by 6, the system of all sub-
sets of X that are star-shaped with respect to 0 and by
the system of all C € §; such that 0 € Imt C . Our
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Theorem 1 can be now rewritten as follows:

Theorem 1°. A mapping F: A—> Y (A cX) posses-
ses a Fréchet derivative at X, € Int A if and only if
G(F) possesses a 6, -tangent flat at x, -

The following theorem can be proved in a similar way.

Theorem 2. A mapping F: A=Y (A cX) possesses &
Géteaux derivative at X, € Int A if and only if G(F) pos-
sesses a 6, -tangent flat at x, .

Note that it is possible to characterize also the diffe-
rentiability of a mapping F:A—»Y (AcX) atx,s 4
relative to a set M « A ; to this aim, only the change of

Co in (11) for C, A M is needed.

2. Characterization in terms of tangent cones

(2.1) Another approach to the geometric characterigza-
tion of differentiability was studied by T.M. Flett, who in-
troduced in [3] and [4] the notions of tangent rays and co-
nes. We recall his definitions:

Let X be a Banach space, Ay cX, X, be a cluster
point of .A.Q and denote A= Ao\ {x,? . If the limit

. X = Xg ‘

% —>Ng lx-xoll
*xe€A .

exists then the ray in X with the beginning at X, and

= ueX

the direction 4 (i.e. the set {XeX:X=Xo+Au, A 20% )
is called the tangent ray to A, at X, .
Let ScX,x € S . The union of all tangent rays at X,
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to all subsets A, c S for which such a ray exists is said
to be the tangent cone to S at %, ; if there is no such
A,c S then we define the tangent cone to S at X, to

be the one-point set €% 3 .

Flett proved in his paper [4] the following theorems
(see [4], Theorem 1(i) and Theorem 5):

Theorem A, Let X,Y be Banach spaces, De X , X, €

€ IntD , let F:D—Y be a mapping F - differentiab-
le at X, and denmote @ (x)=F(x,) + F'(xy) (x-%g) for
x € X . Then the tangent cone to G (F) at the point
(X, F(xg))  equals to G (@) .

Theorem B. Let X,Y ©be finitely dimensional spaces,
DeX,x, €eIndt D, \ie"t F:D~>Y be a mapping conti=-
nuous at X, and suppose the tangent cone to G (F) at
(xp , F(Xq)) 1is contained in a set (x,,F(x,)) + G (L)
where L: X—Y is a continuous linear mapping. Then the
mapping F  has the Fréchet derivative F’(x,) at x,
and F'(x)=1L.

Flett [4] put the question (see also [5)) whether it
would be possible to define F -differentiability by means
of some tangent cone also in infinitely dimensional spaces.
We show in the next paragraph tl;at'uaing tangept cones in the
sense of Flett [4), such total characterization of F =-diffe-
rentiability cannot be given, even under very sirong restric-

tions.

(2.2) Consider the following example. Let X be a real

line, ¥ a real infinitely dimensional Hilbert space, {e,%
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an infinite orthonormasl sequence in Y and define & mapp-

ing F: X—Y as follows:
-

Fa)=0 for Ixl= —— , m=1,2,..
2m~4

" " = 4,2,...

P(x)=-'1—e, for Ixl= ,
m

2m

FX)=0 for Ixl=1

*
F(x) 4is linear in each of the intervals
e e
2m+d ' 2m 4?7 2m ' 2m-4"""2m-1" 2m
-1 -1
a.nd 01—'4 2 ey
L [ 2m ' 2m 4+ 4 ]’ »?

The mapping T is locally Lipschitzian and maps the
whole 4-dimensional space X (the real line) into the Hil-
bert space ¥ . It is F(0)=0 and we show that the tangent
cone to G(F) at the point (0,0)e Xx Y i8 the line
Ly=d(x,y)eX=Y:ig=03 .

Indeed, let A .be a subset of G (F) such that z, =

=(0,0) e AN A and let Zp = (Xm,F(xy)) Dbe a sequence

in A which converges to =z, (we shall consider the sum

norm in X <Y as in the preceding paragraphs). We can sup-

pose without loss of generality that X, >0 for all m =

= 1,2, ... and that there is at most one X, in every
interval [ 1 1 ] (R=42,..). denote by i (m)
= XYY .
2+ ' 2% -1 2

4

h t
such a number tha x""e[ﬁi(n\.)+4 ’ 2i(m—1

] for m,-4)2,... .

Now, every Xn can be expressed in one of the forms
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1 1 1
. TR e ————— L - t
Qza) x, s (o 21,’(mM),as\“.s 0,13

2il{m) 41
or
1 1
=z — of— - S 00,11 .
(lz,b) i 24 (m) +1’&L (Qi(ln)-‘i 2%(01.)) » T S5

Assume for instance that all X, are expressed in the form
(12a) (other cases would be processed similarly) and that

Xm < X4, vwhenever m <em j; then

F(‘xm) = _4:?";'/5 * Citm)

and
2i(m)+ 45,4 (m) + 3%,

1 = W= ¢
Iz, I = N, I+ 1P (x,, 24 (m) - (22 (m)+1)

Denote P the projection of (X x ¥)\{z,} onto S =

w
={zeXx¥:lzl=4%  i.e. P(z) = —"—:-H— for every % €
e XY, z%(0,0) ,It is easy to calculate that for every
m,m, m>m ,

P(xn)  FlXm) "

(13) 1P(x, ) - Pz, = | e - Zeme | |

lz, ) Nzl MmNz
24—(@)-#19@ 24 (m) + A3
T 2imre s kilm) | 2i(mIt 3G+ me,u] *
24 (m)+ 4 2  2i(m)+1 213
+ [(2 2%(@)-&30”-!-‘!-%(01)1&) + (2% 2~;(m)+wm+wmam” )

If we denote the first term on the right side of (13) by T,
then the following estimate holds:
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DerT [ ! ! ]
= - +
1 1424 + 3P, 4+2q7‘+31$”

™~ 24(m) 24 (m)
24 (m)+ (3444 (mND, (2443, )4 (m)+ 3%,
< |2+ = 2% 21@)' + | - eum)+3l
b4 + 7—
& (4+ 1(m) .
( 124 (m)+ 6 )
where q}w = mag (1dy,, 49',,,,_) . The second term on the right
side of (13) - denote it by T, - can be estimated as fol-
lows:
1
24 (m)Y+4 \2 29 (m)+ 1 272
T < 240 o | ————— ] + - £
2 max [( 24 (m) ) ( 24 (m.) ) ]

é(“ameS)ﬁ""m

24 (m)+1 yva 7 24 (m)+ 1 I 2
T2'>'Q"‘}M. [( eilm)+ 3 )+( 64 (m)+13 )J _ﬁ

where W, = min (4, , ) and Y., is as above.

We conclude from these estimates and (13) that

(14) e - mim (4, ,%5,) & IP(z,)-P(z,, Y& clm). max (4, ,5,)

for every m ,m, m<m where ¢, > 0, c(m)>0 for all

m and m c(m)=-c, >0 . We can see from (14) that
N~y oo

the sequence {P(z,)% converges if and only if the sequen-

ce -{z@} has the property n&w——» 0 . If this is the case,

then denoting z* =(4,0)e ScX <Y , it holds

F(x,) }1
Iz, 1

X
NPz, ) - 2*1 = i 1] + |
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1 B, Jo2 1+ Titm)

-5 : ~Me 28 S,
A+ 2% + 321';9_5.2(”n 2ilm) b (n) a3 ™ LGy s

and s0o P(x,)—> z* if m — co . Thus we lave proved that
z* is the only limit point of P(A-2,) for arbitrary
AcG(F) with z,=(),0) e AN A . Hence according to
the Flett’s definition quoted above, the line L, is the
tangent cone to G (F) at =, .

On the other hand, it is evident that the Fréchet deri-
vative of T at 0 € X does not exist. In fact, if there
is the derivative of ¥ at 0 it would be equal to zero-
operator N by Theorem A and by the assertion just been

4 .
proved, However, choosing X, = T (m=4,2,...) we have

Xp=—>Xo=0 and

1
IlF(xm)—P(xo)—N(\xm-xo)ll IF(x ™

- = =2
Ix,~x, I Ix, 1

2m
for all m , which contradicts the definition of the F -de-

rivative.

The reason why the Flett’s notion of a tangent cone is
not adequate to the characterization of P -differentiabili-
ty, is the following: In the Flett's definition of a tangent
cone, only such sequencea {z,%c G (F) , x,— %, are
taken into account for which the sequences {P(z,)? are
convergent while on the other hand, all sequences {z,% c
c G(F), x,~>2, are considered in the definition of an
I_’ ~derivative. This difference is not essential in the ca--

se of finitely dimensional spaces because the set {P(z,)}
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is then compact for every <=x,% and hence every sequence

{P(x,7?

mensional spaces, this ¢ifference is unfortunately essential

has a convergent subsequence. In infinitely d&i-

and in order to make the total characterization of differen-

tiability possible, we must modify the Flett’s definition in

an appropriate manner. In this respect, see [11] for concre-

te results.

1

[2

£31
4]

[51

[6]

[7

[81
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