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QUASICOMPLEMENTED LATTICES

William H. CORNISH, Bedford Park

Abstract:  Let I be a 0 -distributive lattice. Then L
is quasicomplemented if and only if each minimal prime ideal
in the lattice J(L) of ideals in L contrasts to a mini-
mal prime ideal in L . A necessary and sufficient condition
is also given for the contraction map to be a bijection of the
set of minimal prime ideals of J(L) onto the set of minimal
prime ideals of I.. Amongst distributive lattices, a new cha-:
racterization of quasicomplemented lattices is presented in
terms of "lifting" dense elements modulo the smallest cong-
ruence having a minimal prime ideal as its kernel.

Key words: O -distributive, quasicomplemented, minimal
prime 1deal, lattice of ideals, compact space, extremally dis-
connected space.
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1. O -distributivity. According to Varlet [9], a lat-
tice L with least element 0 is called 0 -distributive
if it satisfies the condition: o A& =0 and aAe =10
imply o A (& Ve)=0, for any a,&,c in L . This con-
cept is both a generalization of pseudocomplementation and
distributivity. It is equivalent to the condition that J* =
=4xel:xAj=0 for each 3€J} is a lattice-ideal
for each ideal or non-empty subset J of 1. and hence, as
was noted by Varlet [9, Theorem 1], to the condition that the

lattice J(L) of ideals in 1. is pseudocomplemented.

By a minimal prime ideal of & lattice or semigroup with 0
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we mean a prime ideal (necessarily a proper subset) which
is minimal amongst the prime ideals ordered by set-inclu~
sion. For further details on minimal prime ideals we refer
to [5] and [4]. The following theorem shows that there are
sufficiently many minimal prime ideals in a 0 -distribu-
tive lattice. It is a consequence of Keimel ‘s general theo-
ry of minimal prime ideals, see [4, Theorem C. Corollaryl.
Most of it is given in [2, Proposition 7.26, p.92]. However,
we give an alternative proof based on Kist’'s work [5], des-

cribing prime ideals in a commutative semigroup.

1.1. Proposition. For a lattice L with Q , the fol-
lowing conditions are equivalent:

(a) L is 0 -distributive.

(b) The.minimal prime ideals of the semigroup (L;A,0)
are minimal prime ideals of the lattice L .

(¢) For each @€ L. with @ == 0 , there is a minimal
prime ideal P such that ‘o & P .

(@) The zero ideal of the lattice L is an intersec-
tion of prime ideals.

Proof. (a) = (b). By [5, Corollary 1.4 and Lemma 3.1)
the semigroup (L 3;A,Q0) possesses minimal prime ideals
and a prime ideal P is a minimal prime ideal if and only
if, for each @ € P , there exists 2 & P such that
a ALl =0. Thus, if P is a minimal prime in (L;A,0)
and a,,a, € P then a, A &y =0=a, A2, for some £,
, « P . As P is prime,b:,Abz¢P and yet
(a,Va,) Aty A&)=0eP, by 0-distributivity. It
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follows that a, Va, € P and so P is a lattice ideal.

(b) => (c) holds in the lattice (L;V,A,0) since
(b) => (¢) holds in the semigroup (L;A,0) by [5, Lemma
1.2]. '

(e) = (d) is trivial, while (d) ==> (a) holds since
oA =0=zalhc and {0t=n7, ,‘for.a,uitable prime ide-
als Py , imply o A(&Ve) =0 .

Otherwise, @ A(# Vc) ¢ P; for some 3 and 80 a €%,
whence %, ¢ € P; as alr=0=aAc and P; is
prime. But then & Vec € 'P?: yields an impossibility.

Since any prime ideal of the lattice (L;V,A,0) is a
prime ideal of the semigroup (L; A, 0) , Theorem 1.1 shows
that a lattice L  with 0 is O -distributive if and only
if the minimal prime ideals of (L;V, A,0) are precisely

the minimal prime ideals of (L; A,0) .
Following Varlet [9), a lattice L with O is called

gquasicomplemented if, for each x € L , there is an element
x'el such that X Ax'= 0 and x Vx' is dense. Of

course, an element d €l is dense if{fael:aAd=03=10%.

In general the element X’ is highly non-unique. Besides
being O -distributive, a pseudocomplemented lattice L is
quasicomplemented - we may simply choose x' to be x* , the
pseudocomplement of X .

For an element x in a lattice L with O, let (xJ=
={a el:a€x? denote the principal ideal generated by x .
Then, as was established by Varlet [9, Theorem 10), a 0 -

distributive lattice. L is quasicomplemented if and only
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if, for each x € L , there exista x' e L such that

(x]** = (\X’]*

Let Mim (L) denote the set of all minimal prime ide-
als of & 0 -distributive lattice 1 . We may turn Mim (L)
into a Hausdorff topological space by endowing it with the
so-called hull-kernel topology which has the sets of the
form {PeMin(L): x&P? (xel) as a base for
the open sets. For details on this topology see [5), [41,
[6] and [8]. Applying Theorem 1.1 and the main theorem of

[8], we immediately obtain

1.2. Proposition. A 0 -distributive lattice L is
quasicomplemented if and only if Mim (L) is a compact
Hausdorff space.

Of course, 1.2 is also a consequence of [4, Proposition
5.10, Corollaryl. Proposition 1.2, together with the next
result, constitute our tools for proving the main results

of this paper.

1.3. Proposition. Let L. be a quasicomplemented O -
distributive lattice. Then Mim (L) is extremally discon-
nected if and only if for each ideal J in L , there ex-

ists 4 € L  such that J* = (gl* .

Recall that a topological space is extremally disconw
ted if and only if the closure of each cpen set is open.
position 1.3 can be obtained by adapting [1, Theorem 4.4)

rom ring-notation to lattice-notation. There are no hidden
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difficulties . Alternatively, it is easily proved that,
for a quasicomplemented 0 -distributive lattice L , the
space of minimal prime ideals is the Stone representation
space for the Boolean algebra of all ideals of the form
(xJ** (xel) . That we have a Boolean algebra can be
geen from either [9, Main Theorem, p.156] or [7, Theorem 1].
The assertion then follows from the well-known fact that a
Boolean algebra is complete if and only if its representa-
tion space is extremally disconnected ahd the observatién
that the Boolean algebra of ideals (xI** is complete if
and only if the condition of 1.3 obtains. This last ohser-

vation follows from [7, Theorem 2, Corollary].

l.4. Lemma. For any O -distributive lattice 1 ,
Mom (JCL))  is a compact Hausdorff extremally discon-
ected space.

Proof. Since 1 is O -distributive, J(L) is
pseudocomplemented and so Mim (J(L)) is compact and Haus-
dorff because of 1.2. For a non-empty subset of J of
JLY, {3€J(LY: InX = (01 for each X €J3=
={553(L):JAY=O, where Y= V{X:XKeJ3} and

80 the rest follows from 1l.3.

2. Main Theorems. For a O -distributive lattice L
and a prime ideal P in J(L), ¢ (P) denotes the set-
theoretical union of all ideals (of 1 ) which are in P,

while for a prime ideal @ in L, £ (Q) denotes the set
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{3 €J(L): 2% . If we identify the members of L with
the corresponding principal ideals which they generate and

thereby identify L with a sublattice of J(1) then c(P)=
=LAP for each prime ideal P in. J(L). That is, c(F) is
then poth:l.ng more than tﬁe contraction of P to the sublatti-

celL of J(L), Thus, in the statements of the main theorems
we shall speak of contractionsg of minimal prime ideals in
JC(L) +to l though, for the sake of clarity, it will be con-
venient to use our initial description of c(P) (PeMim (J(1I))
in the proofs.

For a prime ideal P in J(1l) and a prime ideal 6 inl,
it is easy to see that ¢(P) and /n.(Q) are prime ideals in L
and J(L) , respectively. This was observed by Katrindk [3] in
the case of distributive lattices, In fact the main theorems
were inspired by [3, Lemma 12 and Theorem 5]. They not only
explain [3, Lemma 12] but also clarify Theorem 5 of [3), where-
in Katrindk gives a necessary and sufficient condition, invol-
ving contractions of minimal prime ideals, for the lattice of
ideals of a distributive lattice with 0 and 41 to be a Stone
lattice.

2.1, Theorem, & O ~distributive lattice L is quasi-
complemented if and only if each minimsl prime ideal in
J(L) contracts to a minimal prime ideal in I .

Proof. Suppose L is quasicomplemented. Let P e
eNim(€ICL)) and xec(P) . Then, (xleP . Choose x'€
el such that x Vx’ ig dense and X A x'= 0 . Ve

claim that x’ & c(P) . Otherwise, x'e€ ¢(P), (xJe?P ,
and (x V'l = (xIV (x'1e?P, and so the dense ele-
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ment (x Vx’] «of J(L) is in the minimal prime ideal P.
This contradicts the following characterization of a mini-
mal prime ideal in a 0 -distributive lattice L : a prime
ideal @& in a 0 -distributive lattice is a minimal prime
ideal if and only if, for each @ € Q , there exists & €
e\ G such that @ A & = 0 . This characterization
which will also be freely used below, follows from 1.1 and
the proof of (a)==> (b) in 1.1. Thus, it is indeed the case
that x'& ¢ (P) . Since ¢ (P) is a prime ideal it fol=~

lows that it is a minimal prime ideal.

Conversely, suppose ¢(P)eNMim (L) for each

Pe Mim (JCL)) . Then, we have a function ¢c:Mmn (J(L))—
—> Min (L) such that ¢: P c(P) for each P e

€ Mim (JC(L)) . This function is a surjection. For if @ e
eMm (L), £ (@) is a prime ideal in J(L) and so,

by Zorn’s lemma, it contains at least one minimal prime ide~
al P . Then ¢(P) =6 . Since, if @ € ¢(P) 1then (ale
ePSp(B) and so(al € B, i.e. o€ B; ¢(P)g G has
been established and hence ¢ (P)= G .because both <(P)
and @, are minimal primes. The function is continuous.

For let @ € L ., Then, ({8 eMim(L):a &«PH=iPe
eMim (I(L): a ¢c(P)¥={PeMim (I(L): (@) &P}, which means that

the inverse image of a basic open set in Mwim (1) is a
basic open set in Mim (J(L.)) . Thus, Mim (L) is the conti-
nuous image of Mam (J(L)) =and so is compact due to 1l.4.

Because of 1.2, L. is quasicomplemented.
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2.2. Thecrem. Let I, be a 0 -distributive lattice.
Then, L. is quasicomplemented and each minimal prime -ideal
of L is the contraction of a unique minimal prime ideal of
J(L) if and only for each J e J(L) , there.exists g e
€ L  such that J** = (1% .

Proof. Suppo'se L is guasicomplemented and if Q €
s Min (L), 2, € Mim (J(L))  are such that Q=c(Py) =
=¢(P) then P, = Py . Then, by 2.1 and its proof, c:
: Mim (ICL)) —> Min (L) is a bijection. But, by the proof
of 2.1, ¢ 1is continuous. Hence, ¢ is a homeomorphism sim-
| ce each of Mim (L) and Mim(J(L)) is compact and Haus-
dorff. Because of 1.3 and 1.4, J* is of the form
(z]* (x€L) for each J € JC(L) . The quasicomplementation

on L then implies J** m (z1** = (z’]* , aa required.

Suppose L satisfies the condition: for each Je J(L),
there exists 4 € L such that J**a (g 1* | It is clear that
L is quasicomplemented. Let F,,P, & Mim (J(1)) be such
that ¢ (Py)=¢c(Py) . Let Je Py . 4a L ias 0 -distributive,
J*e J(L) , IVI* is dense in JC(L) , and J A I*=(0)=

=0**~ J* | As JCL) is 0 - distributive and P4 is a

minimal prime ideal, J* & P, and s J**¢g P, . Choose

x €L  such that J*¥**. J*= (x1* . Then (xJ**. J**¢?P,,
80 xe€ (x** = ¢ (P,) . Hence x € ¢(F,) . Then, we must
have x e K for some X € P, , whence (xJcKeP, and
(xJeP,. As P, is a minimal prime ideal, (xI*¢ P, and
8o (xP*e P, . But JE I** = (xI** , and so Je P, . Thus

P, P, . Because of the minimality of P, , we conclude
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that P,i = P, . Because of the proof of 2.1, each Qe
€ Mim(J(L)) is the contraction of some Pe Mim(I(L)) and
thus @ is the contraction of a unique Pe Mim (I(1)) .

As a consequence of the proofs of 2.1 and 2.2, together

with 1.2, 1.3 and 1.4 we obtain

2.3. Theorem. The following conditions are equivalent
for a 0 -distributive lattice L .

(a) Mim (L) is compact, Hausdorff and extremally dis-
connected.

(b) L and its lattice of ideals J(L) have homeo-
morphic spaces of minimal pripe ideals.

(¢) For each ideal J in L , there is sg-€L such that

3. Distributive lattices.

3.1. Lemmg. Let I be a distributive lattice with 0
and at least one dense element. Then L. is quasicomplemen=-
ted if and only if for each minimal prime ideal’ P in L and
each X € L\P , there exist a dense element d and an ele-

ment o € P such that xVp =dVap .

Proof. Let J be the non-empty filter of dense ele-
ments in L .

Suppose L is quasicomplemented with x e L\P  for
some given minimal prime jdeal P . Choose x'& L  such that
xXAx =0 and x VX’  is dense. As P is prime,x’e P .

Then,x Vp =dVp withd=xVYx‘eD and p=x"eP .
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Conversely, suppose L satisfies the condition in
the lemma. Suppose O is a prime ideal disjoint from D .
Then O contains a minimal prime P . If @ is not a mi-
nimel prime then there is an element x € &\P . Thus the-
re exist d €D and neP such that X VYsa=d Vs . Then
d € 0 , an impossibility. Hence any prime ideal §  which
is disjoint from P , is a minimal prime. It follows from
Stone”’s theorem that each ideal which is disjoint from the
filter D , is contained in & minimal prime ideal. From [6 ,

Proposition 3.4], 1L is quasicomplemented.

If J is any ideal in a distributive lattice L then
it is well-known that the relation 1 9(J) s, given by
a=2(6() (a,el) if and only if a Vx = & Vx
for some.x € J , is a congruence. It is, in fact, the
smallest congruence on L having J as a congruence c.lass.
When J 1is prime, the quotient lattice L/e(g) is dense,
i.e. each non-zero element is dense. We say that a dense
element d in L/eca) can be lifted to a dense element X
in L if the congruence class of x modulo 8(J) is d .

Lemma 3.1 and these remarks yield the following theorem.

3.2. Theorem. Let L be a distributive lattice with
0 and at least one dense element. Then L is quasicomple-
mented if and only if, for each minimal prime ideal P in
L , each dense element in L/g(p) can e lifted to a den-

se element in 1 .
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