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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

ON THE RANGE OF NONLINEAR OPERATORS WITH LINEAR ASYMPTOTES
WHICH ARE NOT INVERTIBLE

Djairo Guedes de FIGUEIREDO, Brasilia

Abstract: Let A s H—H be a hounded linear self-ad-
Jjoint operator in a real Hilbert space H ,with a closed ran-
ge and a finite dimensional null-space. Assume that there ex-
ists a sequence (Ay) of positive real numbers in the resol-
vent set of A , such that4,—> 0. Let N:H¥— H be a compact
mapping which i1s not necessarily bounded, but it could have
some sublinear growth for lm ll- o , see inequality (5). Al=-
80 assume some asymptotic condition on N with respect to
ihe null-space of A , see condition (C). Under these hypothe-
gses it is shown that the equation Aw +Nu = 4#» has a solu-
tion; this theorem is applied.to prove some results on the
existence of solution for the nonlinear Dirichlet problem.

Ke% words: Dirichlet Problem for nonlinear elliptic equa-
tions. Compact operators, completely continuous operators.
Mappings of type (M), coerciveness, perturbations of bounded

linear self-adjoint operators.
AMS: 35760, 4TFO5, 47H15 Ref. 2. 7.978.5

§ 1. Introduction. Recently Nedas [1] published a paper

with a title like the one abeve, where he proved the follow-

ing result.

Theorem. "Let H be a real Hilbert space, A:H—> H a
linear bounded self-adjoint operator, with a closed range and
a finite dimensional nullspace N(A). Let N: H—H be a

compact (on general nonlinear) mapping such that

(1) INawll « X
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fer all 4 € H , and a fized constant X = 0 . Assume

that, for each w e N(A), Jarll =4 , the limit
(2) Alw) = o (wry N +tar))
t>o :

exists uniformly with respect to bounded sets of .« . Fin-

ally suppose that, for each w € N(A), farll = 1, we have

(3 (k) < Blar)

where ©» ¢ H is given. Then the equation

(4) Auw + Nuw = 2

has a solution.uu € H "

An extension of this resuit was obtained by Pudfik, Kule-
ra and Nelas [2], when they relaxed (1) and (2), In this note
we propose to extend these results and also present a simpler

technique to proving this type of results. The main idea of
the prod is a sort of perturbation argument used in similar
situations by the authar [3), Hess [4], and surely others.
Like 2 we shall handle nonlinear mappings that are not boun=-
ded. And we present three different results according to the
tape of"continuity" imposed on N : compactness, weak con-

tinuity or type M . As for the linear mapping A we essen-
tially take the same hypotheses as 1 . In Section 5 we apply
our results to the type of boundary value problem for semi-

linear elliptic equations discussed in [2].

We would like to thank Prof. L. Nirenberg for supply-
ing us with the preprint of paper [2].

§ 2. Equation with a compact nonlinear part. A mapping

N:X—Y between two normed spaces X and Y is seid to
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compgct if (i) it is continuous in th¢ norm topologies,
and (ii) it takes bounded sets of X into relatively com-
pact sets of Y . In this section we shall study the solva-
bility of the equation

(4) Aw + Nu = %,

where fv is a given element in a real Hilbert space H ,
and N:H—> H is a compact mapping. The main result is
as follows.

Theorem 1. Let . A: H— H be a bounded linear self-
adjoint operator in a real Hilbert space H, with a closed
range R (A) and a finite dimensional null-space N(A) .
Assume that there exists a sequence (2, ) of positive
real numbers in the resolvent set of A , guch that A4, —
~ 0 .Let N: H—>H be a compact mapping such that

(5) INw I 2 e lal¥+ %

for gll #€H , where ¢ >0,X>0,02 cc <4, are fi-
xed constants. Assume that the following condition holds:
() Given m € N(A), Iy )=, and sequences t,—>+ ,
Ym—>p, Ym € NCA), 2, eR(A), Iz, | £X, , where X, is a
constant, we have

« /
(6 (hyap) > Hm inf (Nt + tm 2 ), ) -
M el oo

Then equation (4) has g solution w e H

Bemark. If \n ‘hav ; *' ¢ information that there exists a
sequence of negative real numbers Ji«m, in the resolvent
set of A , then the inequality (6) is replaced by
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(67} (h,y) < dign, wupe (NC, i + toy 2,0, %) -

Proof: Consider first the approximant equations

(7) Ay =Nyt + Ny = o

which we prove now that it is solvable for each m , Indeed,

{7) is equivalent to
.. .
(8) Abm' =(A"ﬂ«m) tm«—.mwm'/ .

The mapping T : H~—> H defined by Tu = (A—am)'q(h,-}i“,

is compact and

ITuls e, (Ml + M l) = ¢, bul™s o)

in view of (5). Thus for Ju =R , with R sufficiently
large, we have ITull £ R . 'So, by a version of the Schauder
fixed point theorem, T has a fixed point w, , which is a

solution of (7).

Next we claim that the sequence (u,) is bounded.
Suppose for the moment that this has been proved and let us
compiete the proof. In virtue of the hypotheses on A , we
see that H= N(A) @ R(A) . So let us write wy,= 2, + wy, ,
where o, € N(A) eand ay;, € R(A) . Passing to subsequences
we mway assume that 4, — 2 and wj,, — ar, where " — *
denotes convergence in the norm and " —= " denotes weak
convergence. We maey also assume that Nu,~—> 9 . So we get
from {7) that Aw,—Ah - g . Since the mapping A restric-

ted to R (A) is a linear homeomorphism, we obtain that
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afp —> ar . Let us denote 4 =4+ wr . So My-—> u sand from
(7) we obtain

Aw + Nuw = 0,
that is, 4 is a solution of (4).

In order to complete the proof, let us assume, by con-
tradiction, that Hau, |l—= 0 . Let us write u, = ¥n + Wn
where a7y, € NCA) and a, € R(A), Denoting by P the
orthogonal projection of H onto R (A) ,we obtain from
(7

(9) Aw;, - A, w, + PNa,, = P

Since A restricted to R(A) is a linear homeomorphism we

have from (9):

Nl £ 0, D10, 1oy I+ e Naty I+ X + Lin 13

or

(10) b, I £ o hatg 1%4 g

for m sufficiently large. Now, let us denote Uy, =4,/ fu, |,
Vo=an/luyl and Wp=ap /luyll |, so that Uy = Vo + We -
Going to subsequences, if necessary, we may assume in view of
the finite dimensionality of N(A) that V,-> 4 ,and, in view
of (10), that Wy —> 0 , So U, —> 4 and gl = 1. Next, we
obtain from (7) that

’ 1 1
11) (AU L 4) -2 (U e Nuy ) = —— ()
b m o W a(Unm )+ Tt 1 Um, 1 Y Tt ] Y
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Since A is self-adjoint, (All,,4)=(U,,Ay) =0 , becau-
se e N(A) ,Thus from (11) it follows that

Ap i, (U ) = (Nt =Sy ) o
so for m sufficiently large we have

(12) CNuy, - Jo,g) >0 .

Now observe that
o
Moy = N WV + vy, gy = eyl 2,

vhere 2, is bounded in view of (10). Thus, it follows from
(12) that
Liem imf (Nar, , M) = (fyny) ,

which contradicts condition (C).

§ 3. Equation with a !'egk;.x continuous nonlinear part.
A mapping N: H—> H = in a Hilbert space X ia said to be

weakly continuous if X, —>= X then implies that .N‘xm——* Nx .

Theorem 2. Same statement as in Theorem 1, except that ‘
the compactness of N is replaced by the ssumption that N

is_wegkly continuous.
Proof follows the same steps. The only differences are

(1) The fixed point of T 1is guaranteed by the following
well known result. "Let T: H—H be a weakly continuous
mapping such that the boundary of a ball of radius R cen-
tered at the origin is mapped into the ball. Then T has a
fixed point”. This is a result that can be easily proved by
Galerkin approximations, i.e., projection onto finite dimen-
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sional subspaces. (ii) Once the sequence (u, ) has been
proved to be bounded, we complete the proof in a simpler
way. Namely, going to a subsequence, we may assume that
Mpy —>= 4 . Since Au, —=Au and now Nupy—> Nu , we
pass to the limit in (7), and obtain that this « is a so-

lution of (4).

§ 4. Equation with a nonlinear part of type (M). A map-

ping N: H— H in a Hilbert space H is said to be of
type (M) if the following conditions hold:

(M) Ifa ae@uence (up) in H converges ieakly to an
element 4 , the sequence Nu, — w and Lm sup (Nu,, ,a,) £

£ (w,u), then Nu = ar .

(MQ) N is continuous from finite dimensional subspaces of
H toH endowed with its weak topology. The concept of map-
pings of type (M) was introduced by Brezis [5] on a more gene-
ral set up. This class includes all the hemicontinuous mono-
tone mappings and the class of pseudomonotone mappings yint-
roduced in [5]. We recall the following results, en& refer to

[6] for proofs.

Proposition 1. Let N be g mapping of type (M) in the
Hilbert space H . Let A: H—>H be s bounded linear mono-

tone operator. Thep A + N is of type ().
Proposition 2, Let T: H— H ke a bounded mapping of
type (M), Suppose that T is coercive, that
(Tw, )
lac > c0 Na d
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Then the range R(T) of T is all of H .

Now we state and prove the main result of this section.
Theorem 3. Let A: H—> H be a bounded linear monotone

operator in a Hilbert space H , with a closed range R (A) ,

and a finits dimensionsl nullspace N(A). Let N: H—H
be a mapping of type (M) such_ that

(13) INel 2 clal®+K |

for all ueX , where ¢>0,X>0, 04 « < 1 are fixed
constants. Assume that the following condition holds:

(Cy) Given g e N(4), Iyl =4 , and sequences tn —+ ,

Ym—> %, Yyn€ NCA), 2z, eR(A), Nz, £X, , where X, is
constant, we hav

(14) (Br,4) < Zim pugy (N Ctyagy +tm 220, ) -

Then equation (52. is solvable in H .

Proof: We use the approximant equations

(15) A, + %— iy + N, = h

which we claim is solvable for each m . Indeed, by Proposi-
tion 1, the mapping T=A+ % I+ N is of type (M). It
follows from the boundedness of A and from (13) that T

is bounded. Also from the monotonicity of A and from (13)
it follows that T is coercive. So Proposition 2 mav'be ap=
plied, and there is a solution ., o0f(15).

As in the previous theorems one has to prove that the
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juence (i) is bounded. Let us assume that this is the

e and let us complete the proof. Going to a subseqguence
may assume that ALy, —>au . So Auw,— Aw , and Nu,—h -
Aw . On the other hand,
1
(N , M) = (%—M,,;TV'M@,MW) <

5)
£ Uy tt)) = A i Vo4 Ry )= Ay ) = (Aty )

ere we have used the monotonicity of A .So
m pupy (N, s, ) £ (- A, )
together it allows us to use the fact that N is of type
) to get N = 1 - Au ,That is w is a solution of (4).
Finally, the boundedness of (u,) is proved just like

. Theoren 1.

§ 5. Application to boundary value problems. We shall

1dicate now the application of our Theorem 1 to proving the

tistence of weak solutions of the Dirichlet problem for the

juation

|
1 % PP 0% B 0 D% N =2
lcl,iplem «p lal€p .

here £ is a given function of L2 () , L a bounded open

omain in TR™ . This is exactly the problem discussed by Ne-
as, Fudik and Kulera. Our aim in including this problem herec
s to illustrate the use of Theorem 1, which we believe pro-
‘ides a quicker proof for the existence of solutions. In a
)aper under preparation we are able to discuss (17) with more
seneral nonlinear part.
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Let us denote by ( , ) the inner product in L%
and by ( , ),, the inner product in H;” ., For definition
of Hy® and results on the linear Dirichlet problem see, for
example, Friedman [7] or Nedas [8]. ‘
A weak solution of the generalized Dirichlet problem for (17)

is a function w4 e HJ* such that

18) = (o, Du.2%) (o (3% 3% = (2. o)
"“alméma&'ﬁ’ “he g +Inclzé4b % “hyd e ' &

m
for a1l @ el .

The following assumptions are made on the linear part:

(44) The coefficients a3 ,for locl, Bl £ m , are
bounded measurable real functions defined in ) . The coeffi-

2ients QU 0 lcl = Ipl = m , are uniformly continuous.

(Ap) The linear operator is uniformly strongly ellip-

tic, i.e., there is a constant ¢ > () such that

< _f3 2m
(19) b} (x) zcl€l
ol plam <P £f g

for x € L (a.e.) and geﬁm' .

Under these assumptions, we use the Riesz-Fischer repre-
sentation theorem to define the operator A: H:”-—» 'J*{:'L by
o B
(20, (A, @) = 2Z (a_,Du,D o)
» ¥l locl, I plem <R 77

N
for all ¢ e Hy" , which is linear, bounded, self-adjoint and
has a discrete spectrum. Let us assume that 0 is an eigen-

value. It is known that the nullspace of A, N (A) is finite

Gl =



dimensional. We shall also assume a hypothesis on the unique

continuation of elements in the nullspace of A :

(Ag) The only we N(A) such that D% , for some
lecl £ p , vanishes on a set of positive measure is w =0 -

For the non linear part we assume:

(Ny) The functions g_:®—>TR are continuous, and

there exist constants 7< % <1 , K'l =0, K2 =0 such that

. )
(21) lg, (»)I £ X Inl + X,
for all 4 e R and all lx| £ p
(N,) 20m -+ 4) >m .

Under these assumptions, we use the Riesz-Fischer theo-

rem to define the mapping N: H;m'——,» H;m' by

(22) Ny @) = % (g (D), D) |
x| f

which is compact, and there are constants ¢ > 0 and X > 0

such that

&
(23) iNwl, £ clul,+X

for all W € J{;m . The compactness of N follows from the

b Gl

compact embedding of H™ into and estimate (23) can

7
be proved using Cauchy-Schwarz ‘s and Holder's inequalities.

Now observe that (18) is equivalent to
(24)  (Aw, @) +(Nu,g), = (h,@ for all g€ H;m

)/”L ?
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where b € Hy* is such that (&, @)y = (£f,¢) for all
@ € H7” . 'The existence of such an /. is guaranteed by the
Riesz-Fischer thecrem. So the generalized Dirichlet problem

is equivalent to the functional equation

Aw + N = v

Finally, we make the following assumption on the nonli-

near part.

(N,) The two limits below exist as extended real num-

bers, that is, in RUA{- w0i U{+ 0}
. + . -
= om (b)) =
biu?mq%(/a) P and e g )= G >

with the following provisals (i) if some 9,; is + oo (resp.
— 0 ) then the correspohding 9,; is — o0 (resp. + 0 ),
(ii) if some %':o is 4+ 00 (resp. —po ) then any other 9_",; is
either finite or +co (resp.—c0).

Under assumption (NQ) we see that
R - oC
(25) L) = = ¢ [0 +g [ v
feclef ™™ ey p %<0
is defined as an extended real number, for each ~ e N(A) .
Now state the main theorem of this section

Theorem 4. Asssume (4,), (4,), (Ag), (Ny), (Ny), (Ng).
Suppose that for each & e N(A), larl, =1

.26) (£,0) = L()

Then the generalized Dirichlet problem (18) has a solution ueH:’t




Proof: It is enough to use Theorem l. By the remarks ma-

de previously in this gection, all the conditions of that
theorem, except (C), have been checked. Observe that since 0
is an isolated eigenvalue of A , then we can obtain sequen-~
ces (A,) in the resolvent set of A made up of either po-
sitive real numbers or negative ones. Now we check condition
(C)e Let o e N(A), hr gy =1, 4y — 27, e NCA) e R(A), 0 || £
£X,, t,— +0co . Then

' o S _o¢ o
(27) <N<tm%+tﬁ%),v>m=M§@f%<tmm%mﬂm o, ) D

- ¢ Ss_cC o .
= 2L o (tn Do+ T Dy, )D fu*+‘&°‘ same expression ]
lép >0 v<l
The integrauas in the last term of (27) converge point-
wisely a.e. to 9.:;])"‘4)* in D%r > 0 and q,;:D”qr in
D% < 0 . Here we have used (Ny) to guarantee that J)“w,,,,
is bounded in the supremum norm in view of the Sobolev imbed-
ing theorem. Now using the dominated convergence theorem, in
the case of gt  finite, or Fatou’s lemma, in the case of a
%:c infinite, we obtain
Rirm, (N Gt ar, + e i)y 20 )y, = £ (a2)
Pargils nVm T W ! s ¥ im = .
So (26) implies condition (C). And the proof of Theorem 4 is

complete.
Remarks. i) (26) can be replaced by
(£,2) > L)
for all weN(A), larl, =1 .

ii) Theorem 4 has, as corollaries, Theorems 3.1 and
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3.2 of [2) under less stringent hypotheses.
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