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COMPOSITION OF PRERADICALS

L. BICAN, P. JAMBOR, T. KEPKA, P. NEMEC

Praha

Abstract: This paper provides several constructions
of preradicals, namely intersections and sums of preradi-
cals and two types of composition of preradicals. The re-
sults which are of technical character, are useful in fur-
ther development of the theory of preradicals.

Xey words: Preradical, intersection of a given fami-~
ly of preradicals, sum of a given family of preradicals.

AMS: 18E40 Ref. Z.: 2.723.4

In this paper, several constructions of preradicals
are provided. These constructions are of technical charac-
ter, nevertheless they have many important applications in
other branches of the theory of preradicals. In the follow-
ing, we use the terminology and results of [11,{2] and [3]
without stating it explicitly.

In what follows R stands for an associative ring
with identity and R-~mool denotes the category of all
unitary left R -modules. The injective hull of a module
M will be denoted by E(M) , the direct product (direct
suﬁ) by ‘_"'le'l'I M (_;.le.LIM;,M.,, @ M, ). A preradical x
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for R-mod is any subfunctor of the identity functor,
i.e. # assigns to each module M  its submodule x (M)
in such a way that every homomorphism of M into N in-
duces g homomorphism of x (M) into n(N) by restric-
tion. We shall demote by T, ( £, ) the class of all mo-
dules M such that (M) =M (2 (M) =0) . A preradi-
cal x 1is said to be

idempotent if s (e (M))= (M) for every module M ,
a radical if x(M/x(M)) = 0 for every module M ,

hereditary if 2 (N) = Nn (M) for every submo-

dule N of a module M ,

- cohereditary if X (M/N) = (R (M)+N)/N  for
every submodule N of a module M ,

- splitting if every module splits (a module M splits
if (M) is a direct summand of M ),

- stable if cvery injective module splits,

- costable if every projective module splits,

- cosplitting if it is both hereditary and cohereditary.

There are several preradicals associated with every pre-
radical 2 . The idempotent core X is defined by X (M) =
= 5 X ,where X runs through all the submodules X of M
with X € J,, , and the radical closure % is defined by
X (})=NL, where L runs through all the submodules L
of M such that ML e %,, . Further, the hereditary
closure 4o (se) is defined by h () (M)=M~n x(EC(M)D)
and the cohereditary core e (x) by ch ()(M)=x(RIM .
Finally, if » , » are preradicals then we shall say that
X E Hh it (M) E (M) for all M € R—mool .
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Proposition 1. Let 23, + € I be a family of prera
dicals and x (M) =7 2, (M) for all M e R-mod ., Then
4

(i) x is a preradical,

(ii) 9;‘ =._“QI g;‘-i. and ?;‘4 c %, foralliel,
(iii) 2 is a radical provided each x_, is so,

(iv) 2  is hereditary provided each x; 1is so,

(v) h()c)::q_’fs'\];h(n&) s

(vi) 1 is stable provided each x; is so,

(vii) if R is left perfect and each x, is cosplit-

ting then x is cosplitting.

Proof. (i) For each M € R-motl there is a set
Iy S I  such that for all 4 € I  there exists 4 e Iy
with g (M) = x; (M) .If £: M—> N is a homomorphism

and < € Iy 0 Iy then (M) & x; (M) ,and hence
£ (M)) € ny (N) . But n(N) g.f‘\In_;,(N) and we see
4

that nx is a preradical.

(ii) It is clear.

(iii) Let MGR-M and I‘ = IM (94 IM/H.(M) .Since
)c(M)=_."QL 2y (M) | there is a monomorphism £:M/x (M)—
— TT M/Zn. (M) .

1el e

(iv) Let MeR-mod , N M be a submodule and
L: IM [¥] IM . Then A (N) = "\-OIIL:"CN) =-LOI()";‘(M)”N) =
=NA (Mt M) = NAr(M) .

rel v

(v) For every injective module & , &QI'%(»"")(&) =
=;O1)L4’(&) = n(O.)=h<)L)(Q) - HO‘GVGI‘,
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AN Jo(n;) is hereditary and we are through by [21, 2.7.
(vi) With respect to [3], 2.6 we may assume that all
15,4 €l , are hereditary. Now it suffices to use (iv),

(ii) and [3]’ 2.4,

(vii) Let 0—> A—>P—>T—>0 be a projective
cover of a module T € J, . By [2], 4.2, Pe Ty, , for
all 1 € I , and therefore P € T, . An application of [2],
4.3 and (iv) completes the proof.

Corollary 2, Let s be a preradical. Then

(1) X =Nxs, where » runs through all the radicals
containing s ,

(ii) % (n)=MNt , wvhere t runs through all the heredita-
ry preradicals containing x ,

(iii) S (x)=Maw ,where a runs through all the heredita-

ry radicels containing x .

Proposition 3J. Let x, o be preradicals and
(oY M)=x(s(M)) for all M e R-modl . Then

(i) 04 is a preradical,

(ii) 7,

m,a;=§"n:?/'> end&lu%‘be?

x XLOA I
(iiid) Akl €snosr s s,
(iv) if X " A is idempotent then xO b = HOx =

=nx0 A .

Proof. (i) and (ii) are obvious and (iv) is an immedi-
ate consequence of (iii).

(iii) The inclusion X0 » & x N A is trivial. By
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(ii), Prop.l (ii) and 11, un = Txmz .  Hence for

all MeR-mod, TAA(M) € T 0n and consequently

XTAAM) S (nord)(M) .

Proposition 4. Let n, » be proradicals. Then

(1) if x is hereditary then xocAh = 2 " H ,

(ii) if » is hereditary and & is idempotent then n6 .5
is idempotent and X 0A» = L A A ,

(iii) if both »x and A are hereditary then nos = 40x =
=xn b 1is hereditary,

(iv) if » is hereditary then X oA = X C0b = XOA ,

(v) if both £ and » are stable {costable, splitting) then

204 is so.

Proof. (i), (1ii) and (v) are obvious.

(ii) For all M e R-Mod , (xon)(M)=n(»(M))e J; and con-
sequently 2 (5 Cn (5 (MMN)) = 2 e (H(M))) = n(H(M)) .

(iv) By (ii), X o & is idempotent. Further, :T,Lw; =
=7§nfx,=3}"nﬁ-f»°b=fm and we are
through by [1].

Propositi . Let x,s be preradicals for R-Mod ,
Then
(i) if both 2 and A are radicals then xo0b is
a radical,
(ii) if » is a radical then ZXd A = XoA = Xoh ,
(iii) if both n and A are cohereditary then x oA
is so,
(iv) if s is cosplitting and » 1is cohereditary then

xob =chnnnr),
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(v) if both x and » are cohereditary and » is
costable then L ons = ch (L AH) |

(vi) if both »x and A are cohereditary and costab-
le then noh = Hoaxn ,

(vii) if both n and A are cosplitting then nos =
= Ahon is cosplitting,

(viii) if R is commutative and both » and A are

cohereditary then nen = Hon .

Proof. (i) According to [11, A (s (M2 (H (M) =
= MY/ (sM)) =0 .

(ii) By (i), toh» &S X os . Let M eR-Mod and
N=Aoms(M) . Then KoAM/NY="C, i.e. 0= n(H(M/N))=
=(RoXYM/N).Thus (KoB)(M)c N .

(i1i) By [2], 4.8, 2 (A (M) = n(H(RIM)= n(RIH(RIM
and [2], 4.10 yields the desired result.

(iv) With respect to [2], 4.8, it is sufficient to show
that (oA (R)=A(RIH(R)=ch(nns)(R)=r(R)AAH(R).
However, this equality is an easy consequence of the fact
that 2 (R) satisfies the condition (a) (see [2], 4.8).

(v) Since »(R) is a direct summand of R as a
left ideal, £ (RIAH(R) = n(R)ANA AH(R) .

(vi) It follows immediately from (v).

(vii) By (iv), (iii) and Prop. 4 (iii).

(viii) In view of [2]), 4.8 it is enough to observe that
on)(R)= 2 (RIAR)=H(RIA(R)= (Hor)(R) .

Proposition 6. Let x, A be preradicals for
R-Mool . Then
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(i) if either x is hereditary or A is stable then

nlrros) =)o (n) ,

(ii) if » is stable then h(ron)= B (n)o f(n) .

Proof. (i) It suffices to prove that f (o »)(Q) =
= (M (n)o f (AN(B) for every injective module & (see
[2], 2.7). But K (xoAr)(B)=(nor)(B) = 2(A(BR)) and
N n)o(ANB)=2)iAIB)) =n)HB),If 1
is hereditary then n (5 (B)) = S (x)(H(B)) .If » is stab~
le then » (@) is injective and consequently . (x)(A(BN=
=n(»(8) .

(ii) By (i), Prop.5 (ii) and [31, 2.s6.

Proposition 7. Let x , A be preradicals. Then

(i) if n 1is cohereditary then ch (ror) =
=eh()dochin)= noch(n) ,

(ii) if A (R) is projective (in particular, if » is
costable) then et (Lo a) = ch (n)o ch (H) .

Proof. (i) Obvious, since X (H(R)) = x(R)AH(R) .

(ii) We have e (oA I(R) = (o A)(R)=n(AH(R)) and

(e ndock (AMNCR) = n(RYAHCR) , However, »(R) is
projective and we are through by [1].

Proposition 8. Let 24, Mg,:005 Xy be preradicals
me
and x =&Q4 %5 . Then s is costable (cosplitting, split-
ting hereditary) provided that each xj; is so.
Proof. Let x, A be two costable preradicals. Since

eh(nn R R)=chlchin)a ch(/:)), chnnid=chlch(x)nch(»)).

- 399 -



By £31, 3.8 and Prop.5 (v),chalchn)nch (n))=ch(ndoch(s).
Hence ¢h (i A ») is costable by Prop.4 (v) and we are

through due to [3]1, 3.8. The rest follows from Prop. 4.

Proposition 9. Let x be a preradical, x'=x, 2**

= xon% for every ordinal o« =4 and £¥= ) 2P,

=

for « being a limit ordinal. Then X = Q)p“‘ .

Proof. Let A= Qm“’ . Since Xxon =x and
% Sn,%XSA. On the other hand, if M e R-Mod , then the-
re exists an ordinal o such that A (M)=,C(M).We have
A (AN = oAM= M) = x*(M) = »(M) . Thus
AMYE TN .

The proofs of Propositions 10 - 18 are dual to that of
Propcsitions 1 - 9 and therefore will be omitted.

Prcpcsition 10. Let n; ,46 I be a family of prera-
dicals and x (M) =4§IA¢ (M) for all M e R-Mod . Then

(i) s is a preradical,

x 2

(11)&:}»@}3}6‘_‘ and.’f,"isﬂ' for all 1+ eI
(iii) x is idempotent provided each x; is so,

(iv) x is cohereditary provided each x; is so,

(v) ch(x) =4§1°h("4) ,

(vi) 4if R 1is left perfect then x is costable provided

each x; is so,

(vii) » is cosplitting provided each x; is so.

Corollary 11. Let x be a preradical. Then

(i) % = S » , where » runs through all the idempo-~
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tent preradicals contained in »x ,
(ii) eh (n) = =+, where t runs through all the

cohereditary radicals contained in x .

Proposition 12. Let x, » be two preradicals. For eve-
ry MeR-Mod let (i AAIMY =X, where X/ (M) =
=AM~ (M) . Then

(i) x A»  is a preradical,

1) F oo, =% n & and T, v T ..,
(iii) n+HmEnAn = a¥r ,

(iv) if x4+ is a radical then n+hs = A s =sAx .

Proposition 13. Let x , » be preradicals. Then
(i) if » 1is cohereditary then A A = 2+ A ,

(ii) 4if x is cohereditary and » is a radical then x A b

—

is a radical and X AA = 2+ A,

(iii) 4if both x and A are cohereditary then x4 » =
=n+5s=xs»Ax is cohereditary,

(iv) if x is cohereditary then LAA = ZAR =A% , ¢

(v) if.both 2 and A are stable (costable, splitting) then
21 As  is so.

Proposition 14. Let x, » be preradicals. Then

(i) if both n and » are idempotent then x A » is idem-
potent,

(ii) if x is idempotent then x AA = X AKX = 2 A% ,

(iii) 4if both x and » are hereditary then »x A 5 is he-
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reditary,
(iv) if both 2 and » are hereditary and x is stable

then x A h = JCa+nr) ,

(v} if both x and » are stable hereditary then x A » =
=»br
(vi) if both ~ and » are cosplitting then n An=sAx

is cosplitting.

Proposition 15. Let x, A4 be preradicals for R-Mod.
Then

(i) if either x is costable or » is cohereditary then
M (bdr)=ch(x)Deh (s ,

(ii) if n is costable then ch (XA A) = ch (x)Ach ().

Proposition 16. Let x ,s be preradicals for R-Mod .
Then

(i) if % is hereditary then A (L AA)= SO AR (A=A,

(ii) if either n is stable or R is left hereditary then
RCLBA) = I (n)A I (h) .

Proposition 17. Let s, , g, -ens Xy be preradi-
~n
cals and ):,:-_.‘E4 n; . Then x is stable (costable, split-

ting cohereditary) provided each x; 1is so.

Proposition 18. Let x. bec a preradical, x, = s

n
Mgy =g B for every ordinal o = 1 and x, = ﬁg‘: g s

for « being a limit ordinal. Then %' = S, -

Proposition 19. Let x ,A be two preradicals and t; ,
4 €1 , be a family of preradicals. Then

- 402 -



(2 tdox = S (tgon), (D t)on = (ko x),

. . and »A (M t.) =

bA&'%It.b &E‘I (éA‘t'l.) . +el @

- 'QI (s0t;) Moreover, if x is hereditary and »
»~

. . . = t, =
is cohereditary then o £§It1 %%:I (ot ) nor t;
= ) ( . = (t,
SO (e ty), izdtgu 2t As) and
(J\.Qlt';‘)Ab =&QI(t‘i‘AA) .
Proof. It is rather of technical character and runs

without difficulties.

Theorem 20. Let »x, A be preradicals. Then xoh =
= > oA provided thét. at least one of the following condi-
tions holds:

(i) » is a radical,

(ii) x is hereditary and X o » is cohereditary,

(iii) 2 is idempotent cohereditary and i o 5 is co-
hereditary.

Proof. (i) By Prop. 5 (ii).

(ii) and (iii). The inclusion X o» & X o% is ob-
vious. To prove the inverse inclusion, it is sufficient to
show that X (S (M)) =0 for all Me F,,, .Letx=2
be an ordinal and let s (55 (M)) = 0 for all 3 < .
If « -4 exists then we have the exact sequence
0—> beeg M)— b (M)—> H M/ Ay (M))—>0 . By the in-
duction hypothesis, x (b, ,(M)) = 0. Further, Afonr is
cohereditary and (roA)(M)= n(HA(M))=1D (since
Me Fron ). Hence x(h (M/ by 4 (M)= 0 , and con-
sequently x (bo (M)) = 0, since x 1is idempotent. If «

is a limit ordinal then A, (M) = U/ A,(M).If n is he-
>3
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reditary then 0 = (ng (M) = 45 (M) N on (s, (M) for all
B < < , and consequently x (A, (M)) =0 .Now, let
be cohereditary. Then .x (A, (M)) = 0 , since there exists
an epimorphism £ of the s -torsionfree module p.i.l.“,b,, (M)
onto 4y (M) . We have proved that i (4, (M) =0 for eve-
ry ordinal o« , and therefore (X (M)) =0 . Thus

(BN =0 (since % = 9 ) and we are through.

Corollary 21. Let r be a hereditary preradical and »
be a preradical such that x n A 1is a cohereditary radical.

Then XA A =XAA .
Proof. By Prop. 4 (i), Th. 20 and [21, 2.3.

Corollary 22. Let x;,<i el be a family of heredi-
tary preradicals such that x; n x; = zexr (where zer is
the zero functor) whenever 4 # 4. Let »-4%1 n; and
Te T, . Then T is a direct sum of. its submodules
A, (TY, 4el .

Proof. It suffices to show that X n 3 X; = zer for -
all 4 € I . However, ;L_‘-_nég_i)ci '442::4 (A7) ‘5& A ry=zen
using Cor. 21, Prop.l9 and Prop. 4 (i).

The proof of the following proposition is left to the

reader as an easy exercise.

Proposition 23, Let n,%»,t be preradicals. Then
(1) (ros)lot=nol(sot), '
(ii) (LAMAt=xB(nAL),

(iii) (L A»)ot=Lhot)Anlot provided t is

idempotent ,
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(iv) (rAb)ot = (not)B(bot) provided t . is a
radical,

(v) (nemdBDrt=n=nbron) provided n is a
radical,

(vi) 2o A)=n=(nrlAr)on provided 2 is idem-

potent.

Exemple 24. Consider the following three preradicals
for the category of Abelian groups: x(G) is the maximal
divisible subgroup of G, A(G) is a 2 -socle of G and
t(G) =2G . Then n is an idempotent radical, » is a
hereditary preradical, t is a cohereditary radical, zer =
=ihornkHoR=% and xex = tom + toR . Thus the
hypotheses of Theorem 20 cannot be weakened.
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