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RINGS ON COMPLETELY DECOMPOSABLE TORSION-FREE ABELIAN
GROUPS

B.J. GARDNER, Hobart

Abstract: The absolute annihiletar . G(*) of a com-
pletely decomposable torslon free abelian group G(*) is
characterized. A chain

0e6(®¥=6e...s G(ec)s Glecad)S ... € Gl@) =6GCus1)

of "itcrated absolute amuh:.latora" of G is then defined.
All subgroups GC«) are ideals in every ring on 6 and
when G = 6(«), some information is obtained about the kinds
of ring multiplication which G admits.

Key words: Completely decomposable, absolute annihila-
tor.

AMS: 20K99 Ref. 2.: 2.732.1

Introduction. Szele [71 defined the nil-degree (Nil-
stufe) of an abelian group G as the largest integer m
such that there is an associative ring R on G with
R™ % 0, if such an m exists. Analogously, we define
the strong nil-degree as the largest integer m (if the-
re is one) for which G supports a (not necessarily as-
sociative) ring R with _f{"w , the subring generated by
all products (... Ka, aj)az)...lam , non-zero.

(The ostensible asymmetry of this definition can be remo-

ved by consideration of opposite ringa.)
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In this note we characterize the absolute annihilator
of a completely decomposable abelian group G : the set
of elements common to the annihilators of all rings R on
G . This leads to the construction of an ascending chain
of "absolute ideals” which provides: (i) a sufficient
(but far from necessary) condition for G to admit only

T -nilpotent ring multiplications; (ii) in some circum~
stances, an upper bound for the nil-degree of G ; (iii) in
all cases, the exact value of the strong nil-degree of G .

We denote the type of a group element X or a rational
group X by T(x), T(X) respectively and otherwise fol-
low the conventions of [2]. All groups considered are tor-
sion-free abelian and in the absence of any qualifice‘tion,
rings are associative. A group is nil [61 (resp. strongly
nil [51) if R2 =0 for every ring (resp. every not ne-
cessarily associative ring) R on G . Other notation: G°
is the zeroring on a group G, RY¥  the additive group of
aring R, <« indicates an ideal.

1. Completely decomposable nil groups

Bee and Wisner [5] have given a description of the
completely decomposable torsion-free nil groups. We begin
with a paraphrase of their results, together with a proof,
which will be useful later.

Theorem l.1. Let G '-i.%x X. be a direct sum of ratio-
nal groups. The following conditions are equivalent.
(i) G 1is strongly nil.

(ii) G is nil.
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(iii) T(I,L)T(Xa-_) $T(JC*’) for all 1,4, % el .

Proof. Clearly (i) == (ii).

(ii) == (iii): When considering a rational group X ,
we lose no generality by assuming that X contains the in-
.tegers and 1 has any pre-assigned characteristic of ap~
propriate type. Thus, supposing T(X3)T(X;) £ T(Xg) for
some 4,3,% € I , we may write X;=Xze;, Xz=Xze; ,
Xpe™ Xgyey , where x(e;) ylez) £ g (eg) . A multi-
plication on X; ® X3 @ Xy is completely determined by
its effect on {e;,e;,eq ¥ . There are three cases to
consider. '

() If X =X; =Xp, =X = Xe , then T(X) is

idempotent and we can define e?=e .

(b) If X; = X5 = X = Xe + Xg , we can use the mul-

tiplication table

e Bj“
e e» 0
e |0 |0

If X3=Xg=X=2Xe % X; , then T(X)& T(X3)TX)&TX),
so T(X)TXNLTXITX)=T(X), and we are back to the pre-
vious case.

(e) 1£ Xi , Xz end Xg are all distinct, the fol-

lowing table can be used:
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e, ea‘, eb

e, | 0 |eg| O

e; e,;o 0
e |0 |0 |0 .

In every case we have defined an associative ring R on
1,0 X, X nd R2 %+ V. ThuG(Re[ @ o)
e 4 h ® R+ ( e&#i}é’ﬁkxz])

is not nil.

(iii) = (i): If R is a ring (not necessarily asso-
ciative) on G with R?34 O, then Xy X3 #+ 0 for some
1,4€l. Let xeX;, y € X; be such that

Oxny =2z +..0+2y , 0F 2, 6Xy,
Then

TAX,) T(X,) & Tlxgpd = TCX Inoen T )£ T(Xg )

Remark. The second possibility mentioned in (b) of the
proof just given can occur even for non-idempotent -types,

e.g. the types corresponding to the characteristics
A= (0,4 ,0,4,0,4,0,4,0,4,0,4,...)

Ay=4,0,4,0,4,0,4,0,1,0,4,0,...) .

The assumption that it cennot leads to some incorrect sta-
tements in [1]. In particular, while it is true that the
direct sum of two nil rational groups has nil-degree 4 or
% , the strong nil-degree need not ‘be defined. For example
if X =Xe and Y =7Yf are rational with q(e) = 74

and 7 (£)= x, , consider the non-associative ring defined.
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on X@Y by the multiplication table

e £
e £
£ ] £ 0

2. [The absolute annihilator

Fuchs ([2] , Problem 94) refers to the absolute anni-
hilator of a group G , the set of elements belonging to the
annihilator of every ring on G . In this section we inves-
tigate the absolute annihilator, which we denote by G (*),

when G is completely decomposable.

Theorem 2.1. Let G =&@I X; be a direct sum of

rational groups. Then

G(*)= @{X;|iel and 3 no j,k el with
T(Xy) T(Xy) & T(Xg)} .

Proof. Note firstly that if X;n G(*)# 0, then X, =
g G(*) ,

If T(Xy)T(X3) &€ T(Xg) for some #, 4 & 1 , then as
in the proof of Theorem 1.1, there is a ring A on G with
Xi A4 0, so that Xy § G(*) . Conversely, if X; & G(*)
then for any non- zero X € X; , there exists a ring R on
G in which xX; 5 0  for some el . If xg %= 0,
where o e X; , let '

X m Xg Fove Xy

where 2z, is a non-zero element of X; ~ for (aistinct)
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Agsreeryiy €l . Then

T(X,) T(Xy) £ Tlxy)=T(z)n...n T(z,)< T(x, )= Tcx%) .

Finally, let X4+ .cc + X be any element of
G(*) , where 0% x,eXy, for n=4,...,m and
the 1, are distinct. We complete the proof by showing
that x, € G(*), 1If X, € G(*) , then T(x;,ﬂ)'rcxé)e
£ T(Xy) for some 3,% eI and as in Theorem 1.1 we
can define a commutative ring A on G such tet for some
Lel, Xi Xp + 0 but X Xg = 0  for all other
m € I . But then for 0 + 4 € Xg we have

Xt = (g4 .ot xp )y =0

We now consider a chain

0sG)eG(2)E... € G(x) E -

of subgroups of G , defined inductively as follows:

G(M) = G(*); Glx+4)/G(x) = [G/G(x)I(*)
G(pY= U G(x) if A is a limit ordinal.
x<f3

Clearly G(w)=G(u+4) for some ordinal w .
A straightforward transfinite induction argument pro-

vides a proof of

Lemma 2.2. Let G:,@Ix;, be a direct sum of ratio-
nal groups. For every « , there exists a subset I of I

such that G(x) = X. .
2@ X

Theorem 2.3, Let G=,P_X; be a direct sum of ra-
vel
tional groups, R a ringon G . Then G(x)<aR for eve-
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Ty o o
Proof. Let £ be an endomorphism of G,xeXi & G(*).
Then £(x)=0 or

0% £(x) =X, + .00+ X,

where X, €X; , x=4,.,m and the 4, are distinct.
If £(x) & G(*) , then some Xy ¢ G(¥), so T(X; )T(X)& T
for some 3, 4% € I . It follows that T(X;) T(X3) £ T(Xp),
which is impossible, so £(X;) s G(¥*) . Hence & (%*)

is fully invariant, so that G(4) = G(*) <« R . If now
Gl == R , then Lemms 2.2 iﬁplias that .
[RAG(xII(*) <R G(x) , and thus Glec+4)<t R . At limit

Ordinals the result is clear.

Suppose now that G(w)= G for some ordinal w . In
any ring B on G, Gle+M)/Glxt)s(0: R/G(x)) 1i.e.
Gle+1IR s G(x) and. RG(x+4) & Gl=x) . Thus

061Gl s...€6({xx)E... EG() =R

is a two-sided annihilator series for R 1in the sense of

(33. Thus by Theorem 1.6 of [3] and § 3 of [41, we have

Corollary 2.4. If G is as in Theorem 2.3 and G =
= G(g) for some ordinal w , then any ring R on G is
left and right T -nilpotent. If in addition g« is finite,
then R“*1 =0 for any such R .

We conclude this section with an "internal" characte-

rization of the subgroups G(m ) for finite m . A gt-met-

rix is a 2xm matrix



4 Typ e T

of types such that ¥, ¥, £z, . .  for i=4,2,.,m-1.

Proposition 2.5. ILet @& =&@Ix1; be a direct sum

of rational groups. Then

Gim) = @{15\3 no 2x(m+41)

a -matrix over

{T(x,;,)l“uell with 'ﬂM:—- foé_)} .

Proof. The result is true for m = 4 (Theorem 2.1);

if it is true for m ,let

G=Gm)eH=6m)@H(M @XK=6G(n+N®X

If there is a 2x(m+ 2) gr -matrix

T T e 2y,

T(xi) Ty ot Tymas

with X; s G{m+1), then Xi £ G(m) (strike out the

last column) and similarly X; % G(m) . Thus X; e H(*)

and X; €H . But then X ¢ H , 80 Xg €G(m) , which

is impossible, as T (Xg) is the (1,41) entry in a

2x(m +4) g¥ -matrix. Conversely, if X; satiafies the

condition for 2x(m 4 2) ar -matrices, we need only look
at the case where X; € H . If X, €X

T(X3) T(X3) £ T(Xy)

then

b
for some Xj,Xg = H . But then
there is a 2x(m+4) gr-matrix M= [ez;;] with =z, =

= T(Xg) which can be augmented t0 2 2x(m+2) sr -mat-

rix
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TX:
oM,
Txé .

Hence we conclude that X, & H(*)s Glm+1) .

3. Some examples

A completely decomposable group G 'need not have an
absolute annihilator series in order to admit only T =-nil-
potent multiplications. For instance if G is the group in
the Remark in § 1, then G(4)=0, but R%® =0 for eve-
ry ringR on G .

Even when G = G(m)*% G(m+4), G can have nil-deg-
rec £€m: Let 6=X;0X, ® X3® X,® X5 , where the

types of X4,y Xs are those of the characteristics

(4, 0, 0, 4, 0, 0,..))
0, 4, 0, 0, 4, 0,...)
MU, 4, 0, 4, 4, 0,..0
(o, 0, 4, 0, 0, 4,..0
M, 4, 4, 4, 4, 1,..)
respectiv.ely. It is routine to verify that R3 =0 for

any ring X on G but that [ T(X,) T(X;) T(Xy)
T(X,) ‘I‘(X,’) T(xs)

is a ¢ -matrix.

Any direct sum of finitely many rational groups with
non-idempotent types has a nil-degree (see e.g.[8], Theorem
3.1). With infinite rank the situation can be quite diffe-

rent. Consider the characteristics
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(0, m) wy, m, 0, m, @, m, 0, m,...)
(0, 0, m, 0, @, 0, m, 03 @, 0, ..)

(0, 0, 0, 0, m, 0, 0, 0, o, 0, ...

200 ;

m =4,2,... . They forn a semigroup ({y; |1 € 13, ) .

Let X; = X;e; be a rational group containing e; with

xley) = x4 and write xij= 74 x; etc. Then a ring

R is defined on 4@1 X3 by the multiplication rule

e; ej=e;; .Since for any 4 one can find 3 with

X3 X4 =25 , We have xe; = (.xe.;,)e;- and R is idempo-
; 2 e (¥ = ®

tent and since (. X x; e, 52y 4ze;) = D% Wi Sy

has no zero-divisors.

4. Non-associative rings

The absolute annihilator series furnishes more precise
information about the non-associative rings which can be
defined on a completely decomposable group G . If G =

= G(m) (m finite) it is easily proved that
* 1

=mt
£ for s=41,...,m , whence R =

R eGlmn-n+1)
=0 for any ring R on G .

Proposition 4.1. Let G = '@I X; be a direct sum
“

of rational groups. There is a (not necessarily associative)
ring R on G with X" 4 0 if and only if there is a
2xm g -matrix over {T(X.)|i eIl 3 .

Proof. If there is such a matrix [T(X: ;)] , let

X;;=X;;e;; where the characteristics 7 (e;;) sa-
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tisfy the relations the matrix requires of their types. De-
fine e4; e, =e; 3.4 and let all products not thus

accounted for be zero. (Note that e and e, , can be

7
equal for different (+i,3) and (x,A) .) Then

(u. (((9444 624) 322) 323)-..)82‘m_4 = 34”" + 0. On the other
hand, if there is no such 2xm matrix, then G=G(m-1)

and R™=0 for all ringg R on G .

Summarizing, therefore, we have

Theorem 4.2, Let G=‘._§Ix,-, be a direct sum of ra-
tional groups. The following conditions are equivalent:

(i) 6=6(m), m< o0 and G+ G(m-1).

(ii) There are 2>xm ,but no 2x (m+1) o -matrices

over {T(X.)|iel}% .

(iii) @  has strong nil-degree m .
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