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CORRECTION TO MY PAPER "EXISTENCE THEOREMS FOR
OPERATOR EQUATIONS AND NONLINEAR ELLIPTIC
BOUNDARY-VALUE PROBLEMS", Comment;Mathf
Univ.Carolinae 14(1973),27-46

Walter PETRY, Disseldorf

Professor P. Hess has remarked that the first part of re-

lation (3.5) (Theorem 2)

: 2 ’
(*‘) B(0,up,u,) =Ip|§u-4 [Bﬂ(-, oy (4)); Dty ]

is not proved.

We define D(B) as in the paper but only for all
weW:=Vn 'wm"‘,n and ask for a solution of (3.1) for
all veW.

We assume the following additional condition on F(X, Fm.ss Emg)
(see Assumption 5): To each w €V and X >0 there exists
a function Pu,K e L’(.Q.) such that

IF(x, §pm g (i), Emoy (#N] € F, ()
a.e.on Ll forall ~eV with lo(x)| & X . Further

let m = 4 .
Under this additionsl assumptions relation (% ) can be

proved. Indeed, for each K > (0 we define



J').K:={xs.ﬂ.:luo(x)léxi

and set
' wy(x), xeldy
wy(x): = _
o , .xe.Q.\.Q_K .
Then w‘; eV and w};——» My in V. as X —» 0 , Follow-

ing the pattern of the proof of Hess (J.Math.Anal.Appl. 43
{1973),241-249, p.248) for each X there exists a sequen-

ce {uy}c Cy (n) satisfying w«, —> w'g in ¥V,
Juy (x)] & X and w, (x)—> u:(a() a.e. on L .
Hence B (0, uy,4y)—> B(0,up,wk) .  From

B(O, mpy,4y) =LBy(e, mp)y ey ] it follows by Assumption
5 (b) and the additional condition on F  that the Theorem

of Lebesgue is applicable. Hence

BUO,uy,wp) = LB Coyuyd,ul T .

By definition of ,wf; and Assumption 5 (a) the Theorem of
Lebesgue again can be applied and (%) with m =41 follows

as X— o .

Relation (%) is unsolved for the case m > 4 . The
same remark holds for Theorem 2 in "Nonlinear eigenvalue

problems, Comment.Math.Univ.Carolinae 14(1973),113-126.
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