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GENERALIZED SYMMETRIC SPACES X’

(Preliminary communication)

Old¥ich KOWALSKI, Praha

Abstract: In this note we give some new results concer-
ning generalized symmetric Riemannian spaces (i.e., Rieman-
mian manifolds which admit a regular family of symmetries in
the sense of A.J. Ledger). We also present a complete classi-
fication of all simply connected irreducible generalized sym~
metric spaces of dimension 3, 4 and 5 that are not symmetric
in the sense of E. Cartan.
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Let (M,g) be a smooth Riemannian manifold. An 4 -
structure on (M,g) is a family {4y : x e€M? of isometries
of (M,q) (called symmetries) such that each Ay has the
point x as an iaolated fixed point. The corresponding tensor
field S of type (4,4) defined by Sy = (#y, )y for each
X €M is called the symmetry tensor field of {4, ¥ .Follow-

- e e e . e o

x) A report at the fTagung iber Geometrie", Oberwolfach, Sep-
tember 1973.

With respect to the special character of the paper, Edi-
torial Board agreed with the unusual size of this preliminary
communication.
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ing A.J. Ledger ([1),[2]) an A4 —atructure <45y3% on
(M, g,) is called regular if for every pair of points x,
g s M

My o Ky = by ok, , where X =y (y) .
An equivalent condition is that the corresponding tensor
field § is invariant by each Ay , i.e., for all x e M
and all vector fields X on M

by (SX) = S(hyg X)) .

From a result by F, Brickel ([3], Theorem 1) we can ob-
tain:

Theorem 1. For a regular 4 -structure {s,? on (M,g)
the symmetry tensor field § is always smooth.

An p -structure {sy% is called of order & (& =2)
if, for all-x & M, (s ) = identity, and % . is the least
integer of this property.

Using an unpublished result by A.W., Deicke we can pro-
ve

Theorem 2. If the Riemannian manifold (M,g) admits
a regular A -structure thén it also admits a regular » -
structure of finite order.

On account of Theorem 2 we introduce

Definition 1. A generalized symmetric space (g.s. spa-
ce) is a Riemannian manifold (M,g) admitting a regular
A -structure. Qrder of a g.8. space (M,g) is the least
integer & such that M admits a regular 4 -structure of
order R .

Let us remark that the g.s. spaces of order 2 are
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nothing but the Cartan symmetric spaces, and the g.s. spaces
of dimension 2 are homogeneous spaces of constant curva-

ture.

Let (M,g) be a g.s. space and 4,3 a fixed regu-
lar 4 =-structure on (M,g) ., Then the triplet (M, ¢, f4,%)
will be called a (Riemannian) A4 -manifold. Let now V ‘de-
note the Riemannian connection of (M,g) and S the sym-
metry tensor field of {my3 . Following A.J. 'Ledger L[1], we

introduce a new linear connection 6 by the formula
VY = WY -Dwy,X), wnere

DY, X) = (V$)(S™Y, (I-8YTx)= (¥, S (S™X) .

1-5)-1x
~
The basic properties of the connection V are the follo~-
wing:
1) All symmetries Ay, X € M , are affine transformations of
the affine manifold (M, V) . '
2) The affine manifold (M, V) is complete.
~
3) (M, V) has parallel curvature and parallel torsion,
~ ~ A
j.ee, VR=0, VT =0 .
» ¥s=0, Vvsr=0, Vg=0.

The next definition brings together all the algebraic
compatibility conditions among the tensor fields ¢, s, f
and 5 H

Definition 2. An glgebraic .4_-manifold is a collection
(¥, 90,5, Ro, T,), where V is (real) vector space, ¢, is
a positive inner product on V , So, iD,ATJO are tensors of

tyres (1,41), (4,3),(4,2) respectively, and the following
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conditions are satisfied:
(i) Both Sp, I-S, are non-singular transformations

of ¥
- (ii) For any X,Y eV the endomorphism.fo (X,Y) ac-

ting as derivation on the tensor algebra (V) satisfies

K, x, 1%, =x, X, 1T, =X, x,7)9, = K, x,718, = 0

(iii) The tensors ia , To ) 9 are invariant by S,
iv) XX, v =-X,0x0, 5, =-Tw,10

(v) The first Bianchi identity
o (R, (X,V)Z-T (T (X,Y),2))=0 holda
(vi) The second Bianchi identity &(X, (% (X,7),22=0

holds.
We shall make use of the following theorem by A.J. Led-

ger ([1]):

Theorem A. Let (M,@,14y3) be an 4 -manifold. Then the
group of all isometries of (M, @) keeping the tensor field
s invariant is a transitive Lie group. Hence (M,g) is a
homogeneous Riemannian manifold G/H and it is a complete
Riemannian space.

On- account of this theorem we can make

Definition 3. Two A -manifolds (M,g,{mc3), (M) g/, {A5})
are called locally isomorphic if for any two points peM, n'e
e M’ there is an isometry ¢ of a neighbourhocod U 24 on-
to & neighbourhood W > 4/ such that ¢, (S|y) =8y .

Definition 4. Two algebraic 4 -manifolds (V;,¢;,S;,%;,T;)
4 =4,2 will be called isomorphic if there is a linear iso-
morphism f \f‘-—* ¥, of vector spaces such that £(g,)=g,,
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£(s)=9,,£X)=R,, &(T)=T0, .

Theorem 3. Let (M,qg,{sy3) be an 4 -manifold. Then
for each point fo€ M the collection (M, , gy, S,,,,fm T’rv)
is an algebraic 4 -manifold and for any two painta 4,96 M
the corresponding algebraic A -manifolds are isomorphic.

We shall call the isomorphism class of all )
cMm%,s‘,,i’@fT},), feM , the algebraic_type of the 4 -ma-
nifold (M,g,4hy¥) .

Theorem 4 (Equivalence theorem). .Twe A -manifolds are
locally isomorphic if and only if they have the same algebraic

type.

Notice that two locally isomorphic simply connected » -
menifolds are globally isomorphic.

Using a construction by K. Nomizu (I4]), we can prove

Theorem 5 (Existence theorem). Any algebraic 4 -mani-
fold is- the algebraic type of a (unique) simply connected

/ -mamifold.

We have also the following result by A.J. Ledger, which

corresponds to Theorem 6.2 of [1].

Theorem B. For any A -manifold there is a simpiy con~
nected covering A -manifold such that the covering map is a
local isomorphism in the neighbourhood of each point.

The following result is useful in all kinds of classifi-

cation' problems:
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Theorem 6. Let (Ji,g,) be a simply connected g.s.
space and let M = Myx My x ... M,  be the de Rham
decomposition of (M, g) (i.e., Mg is the Euclidean part
and M4y..0y My are irreducible components). Then all
Riemannian spéces MosMyseeey My  are g.s. spaces.
Moreover, any regular 4 -structure of order & on (M,Qv)
determines a regular A -structure of order ﬁ&i, on each

Mi , where deylh for 4 =0,4,..., £ .

A modest classification problem.

According to Theorem 5, if we succeed in classifying
all algebraic 4 -manifolds of a given dimension, then we can
clagsify all simply connected m -manifolds and thus all sim-
ply connected generalized symmetric spaces of this dimension.

In the rest of this note we present a complete classifi-

cation of all simply connected and irreducible g.s. spaces of

dimensions 3, 4, 5 and of orders greater than 2 (we shall

call these spaces briefly "exceptional" ones). It means, we

leave out all symmetric spaces of E. Cartan which are well-
known. In éach case we shall give a representation in the
form of a homogeneous Riemannian space (cf. Theorem A). As a
rule, we shall describe first the underlying homogeneous ma-.
nifold and then we give the family of all admissible invari-
ant metrics in a different, more explicit form.

The details of the method and the complete proofs will
appear as a special issue in the edition "Rozpravy CSAV”,

Czechoslovak Academy of Sciences, Prague.
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Dimension m =3 .

All exceptional spaces are of order 4 and of the fol-

lowing type:
¥ 0 x
As a homogeneous space, M is the matrix group 0 ¥ Y| -
0 0 4

Also, M is the space X°(xX,4,%) with a Riemannian met-
ric ¢ = e*d x? 4+ e—zzd’“’z + Maz? , where A > 0

is a constant.

The typical symmetry at the point (0, 0,0) is the transfor-

mation “,="‘f: fyf:,x, 2 ==z .

Dimension m = &4 .

All exceptional spaces are of order 3  and of the fol-

lowing type:

a ¥ cost -t 0
M is the homogeneous space || ¢ o sint  cost 0
‘ 0 0 4 0 0 4
a &
where det =1.
c d

Also, M is the space R*(x,a,4,r) with a Riemann metric

g = (-x +Vx2e g2s Ddu?+ (x+ Vx+ 2+ Ddoie

.(1 -g-g,a')d-atz-'- (4+x?) dny,’- 2xydxdy

-2 dudv+ A% (A>0)

4+x2+n;7'

Each transformation u' = covt,u-asint, v, X=cos2t.x-sm2t, oy
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v's pint.u+ cost v, 4= sin2b.x + cost2t. g

for t + k3 is a symmetry at the paint (0,0,0,0) which

extends to a regular A -structure en M .

Dimension m =5

A1l exceptional spaces are of order 4 ar 6 , and of

the following 12 types:

Type 1.
41 0 0 x
010 n
As a homogeneous space, M is the matrix group
a v i g
0 0 01

Also, M is the space R_s(x,rg,,x,,w,m') with a Riemann met-
ric ¢ = dx2e dyp+ dvle A¥ (xdm +yovr-dz)t (A >0).

The typical symmetry at the point (0,<.., 0) is the trans-

. - /. ’_ I—
formation x'= 4, @'=-X, X' =—%, 4 ==, ¥V =4 .

Type 2.

v ]

e’ 0 0 0 «x

. ) 24t 0
M is the matrix group 0 e 0 ny
2,t
&epending of two real 0 0 e 0 «x
t

paremeters A, > 0 , 0 0 0 &%
A,z 0 0 0 0 0 4

Alaé, M is the space Rs(x,ay,z,mr,t) with a Riemann met-

ric
-23t 22t -22,t o 22,t 2 2
y=e 1dx2+5“d_q_2+e, dxz* 4+ e odw*+ dt* +
(A +2,)E Aq+Rg)t
+2m[e Aaria dxdz + € d-’y'd""’} +
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A, -2t (A=At
+26[e * 72 dyodz - e 2! d,xd./ur] .

. 2 2
Here either 1,>1, >0, «+ 3" <4 , oar A;j=2p>0,

x=0,0£B<1, 01‘&4>0,%2=0,&,=0,0<f3<4.

The typical symmetry at the point (0,...,0) is the trans-

formation .x':-/y,, n/: X, 2= —wr, w'=x,t'=-t .

Type 3. M is the homogeneous space SO(S,C)/SO(?.) , whe-

re S0(3,C) denotes the special complex orthogonal group
and S0(2) denotes
?9‘.%’-,'L-__°_“ of S0(3,0) .

0 i 4

the subgroup

The Riemann metric g in M is induced by the following
real invariant positive semi-definite form on the group

GL(3,C) of all regular

a, 2, a,
complex matrices o I ﬂr‘a :

c 4 ¢y Gg

¥ = .7!.2(@1 B+ 0,3 + 7 (wf+ 53'4-@:1- 3+ &2(331__?1.)2
where o = a,da,+ ¥ dly+eyde,, @) =a,da+fdl+

+ Cdey, @ =aqda,+dl+ede,, and A, 9, ®
are real parameters satisfying A >0, (u.>0, i271 < 2.2 .
The typical symmetry at the origin of M is induced by tpe
following transformation of GL(3,C) :
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G Ay A 5 5

o A Hyl—|-3, a, -a,f -

©4 2 % <, -T, Sy
Type 4.
M is the complex matrix St oo z Here z,w denote
group depending of a 0 e’-” w complex variables
complex parameter A : 0 0 4

and t a real va-

riable.

1
Also, M is the space Ca(z,w)xk (+) with a (real)

Riemann metric
A+ A+t

g=e dxdz + e durdi + (dt)2y Q(u [a‘“‘”tdzd,;; +
-1t -2at — =23t _ _ 5
+e dz d.w] +oxce (d+&e  (dB - o M(dw)t P am) .

Here A, &« are complex parameters, @ a resl parameter,

«x + u?<4/4 . In case that .’l+§=0, @=0

ve c =0 .

we ha-

The typical symmetry at the point (0,04 0) is the trans-

formation 2z’ =4w , w'=iz,t'=-t .
es 5a, 5b.

M is the hamogeneous space S0(3)x SOtS)/ $0(2), or
$0(2,1)%S0¢2,4)/S0(2) , where S0(2) denotes

the subgroup || cost =—mint 0 cost wimt 0
Aimt cost Oflx fj-mint cost O
Q 0 | 0 0 1

The Riemann metric 9 is induced by the following real in-
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variant positive semi-definite form on the group GL(3,R)x

x GL(3,R) of all non-singular product matrices
~ -~ ~
a, @, a, o 4, 9
Pad
v, by, b x oy % |-
cy Gy o S, & T

~ ~ ~ 2
3= oco“[(a)4+ 232)21- (w,+ coa_)Q] + /59' [(a),,— 02)2+(w,,-a),_) ]+

+ 3*2(6034- 53)2 ’

_ + ~ ~ ~r .
vhere @, = azdwa+£r‘2d1)§ fcyde, and w,a,,wd,; are given

by similar expressions in

~ ~ ~ v ~
&, %, ,2,,dd, ,ab;, d¢; .

Wy = ayda,+ by dly+ ogde,

@, =a, d.a,2+2{, au,+ c,,och

Here o, (3, are positive real parameters, « = (3 , and

the (+) and (=) signs in @, ,%,,ws correspond to the el-

liptic case 5a and to the hyperbolic case 5b respectively.

The typical symmetry at the origin of M is induced by the

following transformation of GL(3,R) = GL(3,R):

a, @ o, % % a, 8, -9, -'Eg ay -3 o
LA ARA PR A B A N A R
¢ 0 o g 3§ T -€ g, g, e, ¢, ¢
Types 6a, 6b.

M is the homogeneous space SU(3)/SU(2) or SU(2,1)/SU(2).
Also, M is the submanifold of 03(24, zq',xa)"‘y.é.iven by the
relation z'z7+ x2Z2+ 2%2%=+ 1, The Riemann metric cun

M is induced by the following hermitian metric on €2 :
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§=2(d2'dz s d2? dB L d2?dE?) +

+ @ (ZdZT + 2%dz 2+ 22dE?) (Blda’+ B2d2? £ i)
where A, @  are real parameters such that A >0, w0
and w* A > 0 . The (+) and (~) signs correspond to the
elliptic case 6a and to the hyperbolic 6b respectively.

The typical symmetry at the point (0,0,4) of M is indu-
ced by the following transformation of (3 :
Z1’= 22 ) %21== —'24 , ﬁ'rs/= 23 .

Remark. The case 6a was communicated to me orally by -
A.W. Deicke. '

Iype 7. .

R 0 0 0 x
M is the real matrix group 0 2t ) 0 oy
(t,x, 4, u,0) are real e 0 M0 w
variables and A is a real 0 —‘l:e.‘gLt 0 e,'M ~
parameter). 0 0 0 0 1

Also, M is the space Rs(x,nk,u,/}r,t) with a Riemann met-
ric g = (dt)?+ e 2 (tax-du)ts et (tiy +dv)? 4+

~22t
+ule dx’ + ea'ud-q,a') + 27 (dydi ~ dxdar)
where A, w, 3* are real parameters, A = 0, (“”0;?'24 “ .

The typical symmetry at the point (0,...,0) is the

transformation x'=-m, #'=X, w'=cv 4/l 4 4ot .
es 8 8b

M is the homogeneous space I%(R®) /So (2) or
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™(R*) ./S0(2)

the group of all positive affine transformations of the spa-

, where I®(R®), or I®(R?) , denotes

ce R¥*(x,4,%) that preserve the differential form dx? +
+dyl+ dxz? or da + dy?-dz? respectively. ( I%(R%) is
the semidirect product of S0(3) and t(3) and I*(R?)
is the semidirect product of S0(2,1) and t(3) , where
+(3) denotes the translation group of R? .)
Also, M is the submanifold of Ré(x,@,x; <, B, )

given by the relation w2+ 324 ¥ 2= :i_- 1. The Riemann met-
ric on M ia induced by the following non-singular invari-

ant quadratic form on RS
G = dxtrdg? £ da?s A2 (datrdpiidy?) +
+ [(002.1' (-4)](ecd..x + Bdy * g"al.z)z
where A >0, @ >0 are real parameters. The (+) and (-)

signs correspond to the elliptic case 8a and to the hyperbo-

lic case 8b respectively. In the elliptic case @ # 1 .

The typical symmetry at the point (0,0,0;0,1) of
M is induced by the following transformation of R :

x’="'l’r.’§v’=x> 2=z, x’'=03, ==, =7 .

All preceding exceptional spaces (types 1 - 8b) are of

order 4 .

Type 9. (Spaces of order 6 .)
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- 0 e,'u’ 0 ryf

M is the matrix group
0 0 eV %
0 0 0 1

Also, M is the space KS(X”U’J”"“’)”) with a Riemann
metric
g = G}(dwg‘-{- dvﬂ._* ol o) + (1)'9'-4»4) (e2(4+1r)d

+ e d2?) + (0% 2) (¥dxdy + edxdz - & “dydr) ,

-2
x%+ e d/y," +

where a >0, >0 .
The typical symmetry at the point (0, «+»,0) is the trans-

formation X'= 4y, g'= -2, 2'=x; W=, v'=-(ut+v) .

To conclude, let us remark that two Riemann spaces of
" different types are always non-isometric and within each ty-
pe, the corresponding parameters are invariants of the Rie-

mann’ metric.
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