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COMPLETELY ADDITIVE DISJOINT SYSTEM OF BAIRE SETS IS OF
BOUNDED CLASS

David PREISS, Praha
Abstract: The theorem in the title is proved; this

result corrects  the proof of Lemma 2 in [F], and thus ma-
kes sll-deep results in [F] verified.

m Completely additive systems, Baire classi-
fication of 'sets.
AMS: Primary 28405 Ref. Z. 7.518.11

Secondery 26421

1. Prolfk [F] claimed to prove several deep results
om-completely metrizable spaces concerning Baire measurab-
le maps: and maps of bounded class. His proofs are based on
Hensel's lemma (see [F]) and on its converse (see Lemma 2
[F, p.140]) which gives a characterization of disjoint
Baire completely additive systems. But the proof of Lemma 2
in [F) does not seem to be correct. (Why should the sets X,
be clesed in X’ 7). To give a correct proof of this lemma
it would be sufficient to answer positively the following
‘question: If. {Xy[a € A} is a disjoint family in an ab-
‘s0lute Souslin space such that the union of each subfamily
of {Xgo% is a Baire set, is it true that the family

4£X,3 ranges in some Baire class?

In this nete we prqve that the answer is yes even in
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more genieral setting. In spite of what was said before it

would follow that the theorems in F hold.

2. Let X bhe any aet and let J3, be any family
of subsets of X . Let B = {B, |« <w,F be defi-
ned as follows:

B, is the collection of all countable unions or
intersections of elements of U{B; | 3 <cc} according
to as o i8 odd or even.

For B e putclasa B=min foc |Be B ? -

As an' example we can have X a topological (or uni-
form) -space apd B, the family of zero sets.

©ur- result can be expressed now as follows.

Theorem. Let {Xg |aeA} be a disjoint family

of  subsets of X . If the union of each subfamily of { X, 3
belorigs to J3 then the family {X, 3 ranges in some B_.

3. A limit ordinal number €& is called regular if

‘any co-final subset of Tg is of the type € .

Lemma. Let € be a regular ordinal number. Let A
be any set and ¢ & map of egp A inte T¢ . Suppose
thet there is amap n : Tg x Te—> T¢ such that:

A NnANE (9 lA), 9(A))

Then there is an o« < € such that g(a)£ o far any
aeA.

Broof. Suppose that the family {g(a)|la eA? is
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not boundéd by any. «« < € . By induction we can, for any

«< < € , chaose.an a, € A  such that ‘

9la ) Z e, @lay) >supiglay)|p<wi .
(If a, have been defined for ov < ocy< w , then
hup{@lag) | < 3 < €& since g is regular.)
Using the correspondence between o« and a, we see that

we only have to find a contradiction in case A = T¢ and

@ (x) 2 for any « < € .

Let X, be the set of all limit ordinals <« ¢ and

let X o be the set of all limit members of ) X in
B<ox

itself (x < €) . For any e« < € the aet.poxli,, is
a closed subset.of Tg . By induction we easily show that
thie set is also co-final. (If this holds for amy o < «(,< €
then, for given o < & , put. ¥p =min (Kzn (T\T,)) Sin-
ce-the set {95 | B < o ! is not co-final, we have

rup £ 9 | B < ex,3 smeKﬂ )

Now chanse o¢, ef@nx?\x,, such that

9tocp) >n(fp, o (7Q,3J{7\KP)) .
('e pj,lt OJQO Kac = Te -)
{The existence.of o follaws from the co-finality of the

N .

sets 7@,3]{7 X, )

Since 9(ccﬂ)=g>(-iocr'}ff< e?n(«/‘\ﬂK?\Kp))é

£qlpifa, |y<el, Q(VQISK'@’\Kﬁ))

we obtain the contradiction putting B = @ (4 eorlg*é e3).

- 43 -



Remark. The preceding lemma holds for arbitrary or-
dinel numbers if we suppose that 7 ia monotone (i.e.
m(c,B)2mle’, ') ife £’ and B.£ B3’ ). For
non-limit ordinasls the proof is obvious. To prove it fer
a limit ordinal € one finds a co-final subset T of
‘Pe of the smallest possible type and defines P (B) =

=min{yeT|e®Icy? and 7 (x, ) =inf{y eT|
gl ,B) £ 3% for«,BeT. uning'fheorem 2 (whe-
re T¢ is replaced py- T ) one obtains the proof.

Proof _of the Thegrem. Put, for Bc A, @ (B) =
= clo./ng% Xa) . Using the lemma for € = @4 (put

mCec,B)=max (x,B) +1 ) we obtain that the family

{gla)|'a € A} is-boonded, i.e. {Xo [a€A? ranges
in gome B, -
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