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DUAL PROPERTIES FOR UNCONDITIONALLY CONVERGING OPERATORS

Joe HOWARD, Stillwater

Abstract: An operator T:X—Y (X,Y are Banach
spaces) is unconditionally converging (uc) if it maps
weakly unconditionally converging series into unconditio-
nally converging series. It is known that T’ (the dual of
T ) is a uc operator if and only if T is £4-cosingu-
lar. The £, -cosingular operator is classified and then
used to characterize Banach spaces with property V’ (stu-
died by Pelczynski). :

Key words: Unconditionally converging operator, weak-
ly compact operator, dual space.
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It is shown in [9) that an operator T: X—Y  whe-
re X and Y are Banach spaces is an L, -cosingular
operator if and only if its conjugate T’ is an uncondi-
tionally converging (uc) operator. This paper is a study
of 21 ~cosingular operators and other dual properties for
uc operators.

We intend to preserve the notation and terminology
of [2). All operators are to be continuous and all spaces
are to be Banach spaces. A series % Xm  of elements of
a Banach space X 1is weakly unconditionally converging
(wuc) [respectively unconditionally converging (uc)l if

for every real sequence it,}1 with Lcknt,,» = 0 [ respect-
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ively for every bounded real sequence it,} ] the series

% tm X,  is convergent.

Definition O.1. Let X and Y be Banach spaces.

A linear operator T:X—»Y 1is unconditionally converg-
ing (uc operator) if it sends every wuc series in X into

uc series in Y.

Definition 0.2. A linear -operator T: x-f Y is £~

cosingular provided that for no Banach space E isomorph-
ic to £4 does there exist epimorphisms 4,: X—E and

Mg Y—>E such that the diagram

x————)'

\ /M

From [3] we know that T 1is a uc operator if and on-

is commutative.

ly if T has no bounded inverse on a subspace E of X

isomorphic to Cp -

1. X4 -cosingular operators

From definition 0.2 it is clear that if T :X—»Y and
if in either X or Y a subspace isomorphic to £, cannot
be complemented, then T is an ,2.., -cosingular operator
(see also [9], p.38). Some Banach spaces which satisfy
this condition are 4, ,C(S), ¢,, ¢, and reflexive spaces.

It is shown in [4] that every weakly compact operator

is £4 -cosingular. The following proposition gives a
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weaker conditien for an operstor to be «8., ~cosingular,

Propgsition 1.1. If T:X—Y takes bounded sets
of X into sets of ¥ such that every sequence contains a
weak Cauchy subsequence, then T is an £,-cosingular ope-
rator.,

Proof: Assume that T is not an £,-cosingular ope-

rator, i.e. that there exist epimorphisms A, :X— £,

and b, t ¥Y—> £, such that the diagram
x:—-—» Yy

is commutative. Since T maps bounded sets into sets such
that every sequence contains a weak Cauchy subsequence, then
g = fy T: X — £, must do the ssme. Let X deno-
te the unit sphere of X . Then since A£,; is weakly comple-
te, every sequence of M, (K) contains a weakly convergent
subsequence. Hence M, is weakly compact, and since h4
is an epimorphism, £, must be reflexive. This contradic-
tion completes the proof.

From [4] we know that if T’: Y'—> X’ is an Z,-co-
singular operator, then T:X—>Y ' is a uc operator. The

following example shows that the converse is not true. This

example was communicated to me by A. Pelczynski.

Example 1.2, If T: X-—*»Y 1is a uc operator, then
T’ is not neceasarily an £, -cosingular operator.

Proof: Let X be a Banach space with a boundedly com-
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plete basis. Then by theorem 1 of [5) there exists a se-
parable space E such that E”=JE+ F where JE is the
natural image of E in E” and where F is isomorphic

to X .

Now put X = £, and Y=E’., Since E” is sepa-
rable, ¥ = E’ is separable. Hence Y does not contain a
subspace isomorphic to ¢, because if a conjugate Banach
space contains a subspace isomorphic to ¢, , it contains a
subspace isomorphic to £, by theorem 4 of [1]) and hence
Y could not be separable.

Thus the identity operator I1:Y-—Y is a uc ope-
rator but its conjugate I’ is clearly not an £, -cosin-

gular operator.

2. Property V'

We now consider property Y’ defined by A. Pelczyn-
ski in [7].

Definition 2.1. A Banach space X 1is said to have
the property V’/ if every set X in X satisfying the
condition (+ +) Axm m X X =0 for every wuc se-
ries % Xy in X’ is weakly sequentially compact.

The following proposition gives a connection between
property Y’/ and £ 4 -cosingular operators.

Proposition 2.2. The following conditions are equi-
valent.

(a) ¥ has property V'’

(b) For every Banach space X , every £, -cosingular
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operator T: X—Y is weakly compact.

Proof: (a) implies (b): Let X be an arbitrary Ba-
nach space and let T: X—»Y be such that T is £4 -
cosingular. Then T’ is uc. We show T is a weakly compact
operator. Let ix,} be an arbitrary bounded sequence in
X and let 2% be an arbitrary wuc series in Y’ .

L3
Since T’ is a uc operator, £ T’ 4, is a uc series in

X’ . Therefore by condition (H) of [6]
. ’ . 3 ’
sz st I (T %)= ,Zx;mw T Y (Xm) = i W@M(Txm) =0

where J is the canonical map of X into X” , From defi-
nition 2.11Tx,3} contains a weakly convergent subsequence.
Therefore T 1is a weakly compact operator. (b) implies (a):
Let X €Y be such that %m@;(@)-o for all wuc se-
ries % %4}, in ¥’, Then X is bounded by the Uniform
Boundedness Principle. Denote by B(X) the space of all
bounded real valued functions on X with the norm (£l =
=m £(4) and consider the linear transformation S:¥'—
— B(K) where Sy'(4)=Jg(yg’) for all 'eY’ and
g € X . By (++) of definition 2.1, S is a uc operator.
We show S =T’ where T:2,(K)—Y is defined by
T¢ =k§l( & £(%) ., We have

KTy, £> =<y, T

¥, 2 s>

"

T <y, RERDD

%‘.fﬂa)(@’,h)
and



$Sy'sf) = ZECh) Sy (%)
= %f(k)(rgﬁ,k) ,
Therefore Ty’ =Sy for every ¢'e¥’. So S=T' ie a uc
operator, i.e., T is £, -cosingular. By assumption, T is
weakly compact and hence T” is weakly compact.

Let {4, 3 be an arbitrary sequence in ¥, Set E,f =£(y,,)
for £ € B(X) and for m = 4;2,... - Then [[Fpll=4 for
every m , and {F; ? is a bounded sequence in [B(X)J’.
Now TYF(4’) =F;, (T'q') = D'y’ (yq) = Iy, (') for all
n' €Y’ , Therefore T”F; = Jy, for allm ,Since T is
weakly compact, one may choose from the sequerce {Jy, ? a
- weakly convergent subsequence. Hence {4, has a subsequen-
ce which weakly converges. Therefore X ‘'is a weakly se-

quentially compact set in Y .

3. Applications

A space X is ;aid to have the property D.P. (Dunford-
Pettis) if for every Banach space Y every weakly compact
operator T:X—>Y maps weak Cauchy sequence in X into
Cauchy sequences in the norm topology of Y . We now consider

& Banach space with both properties D:P. and V’ .

Theorem 3.1. Let ¥ have properties DP and V‘ and let
T: X—>Y . Then the following are equivalent:

(a) T is strictly cosingular [8]

(b) T 1is R4-cosingular

(c) T 1is weakly compact

(@) T takes bounded sets of X into sets of Y such
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that every sequence contains a weak Cauchy subsequence.

Proof: (a) implies (b): This is clear from the de-
finition of strictly cosingular given in [8]. (b) implies
(c): ¥ has property V’. (c) impliea (a): Y has property
DP, hence if T is weakly compact, then T is strictly co-

lar by proposition 4(b) of [81].

Hence (a), (b), and (c) are all equivalent. The proof
will be complete if (d) implies (b) and (c) implies (d).
(@) implies (b): This follows from proposition 1l.l. (c) im-
plies (d): This ie clear from the definition of a weakly

compact operator.

Remark: Examples of spaces that have properties IF
and V' are L,,4, and every abstract L -space.

Suppose. ¥ has property V‘ . What additional proper-
ties on ¥ would imply ¥ reflexive? Two such conditions
are given in [7]. We give a different proof to one of the-
se and also prove Y reflexive for the following condi-

tion.

Definition 3.2. A Banach space X is almost refle-
xive if every bounded sequence in X contains a weak Cau~

chy subsequence.

Proposition 3.3. Let ¥ have property V¥’ . Then if
either

(1) no subspace isomorphic ta £, is complemented in ¥

(2) ¥ is almost reflexive

then Y is reflexive.
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Proof: Consider the identity operator I:Y—7Y .
If (1) is true, then clearly I is &, -cosingular. If
(2) is true, I is A, -cosingular by proposition 1l.l. So
in either case I is A, -cosingular and hence weakly com-

pact by proposition 2.2. So Y is reflexive.
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