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Abstract: It is considered the existence of the solu-
tion of the boundary value problem Au + Au + ¢ (w) = h
on O, wu|y,=0 in the case Um ¢ (x) = Lm g(») =0

S + 0 S~

and under some other additional conditions.

Key words: Equations involving nonlinear operators,
boundary value problems for ordinary and partial differen-
tial equations, weak and classical solutions, positive ei-
genfunctions.

AMS, Primary: 47H15 Ref. Z. 7.798

Secondary 34BlZ, 35J60

1, Introduction. Let £ be a bounded domain in Ry
(N =24) and suppose
le|
Lu= 2 (-4 D*(ay, x)2%u)
ll,| @124 p
is a uniformly elliptic, formally selfadjoint linear diffe-
rential expression defined on £ , with real-valaed coeffi-
cients Uyp = %, € L, ., Let further q:R1—>R4

be a bounded continuous function. We are concerned with the

solvability of the Dirichlet problem

(Ll lx) = gl (x)) - (x), xeli

(1)
w(x) = 0 , xedl
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for a given real-valued function h .

In the series of papers (see e.g. [31,[61,[10],...)
they are given sufficient conditions for the function ¢
to be the boundary value problem (1) weakly solvable for
each "right hand side" h e L,(f2) provided the linear boun-

dary value problem

(Lw)(x) =0, xel
(2)

Mm(x) =0 , xe ol
has only trivial weak solution.

The question about the weak solvability of (1) in the
case of the existence of nontrivial solution of the homoge-
neous linearized problem (2) is more complicated. in [9) it
is proved that if O is a single eigenvalue of (2) and the
null-space of the operator I is spanned by the vector

w (£ 0) then under the assumptions

(3) tim g(x) =g(+w) ,

S=>+c0

4)  fim gs)= g(-) ,

S—-c

(5) @l-w) < g(r) < ¢ (+ ) for each /aeJt,,

the necessary and sufficient condition for the existence of
e weak solution of the problem (1) with 4 £L,(Q) is the

validity of the inequalities

(6) g (-c0) L+lw(x) lobx - ?(+w)£Jw(x)ldx < [ A G0 (Odx<

< q,(+ao)_fn+lau'(x>ldx - gC-@) [ lwldx,
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where L, =ix el ; w(x)Z0} .

Short and elementary proof is given in [7]. This re-
sult was generalized in [15] to the case of multiple eigen-

value of the operator L . The assumption (5) is replaced

by
(1) g~V g(s)€g(+m), g (0% q(-m), g(0)% g (+ )

in the paper [5]. The ébstract setting of the method from
the papers [9],[15] is given in [1),[4],(5],[11] - [141.
Moreover, in these papers the higher order equations and
also the more geﬁeral nonlinear perturbations are conside-
red.

In all previously referred papers about the solvabili-
'ty of (1) it is substantial that the limits @ (+w), g (-e0)
are different from zero. The purpose of this note is to pro-
ve that under some assumptions in the case g (+@)=g(-w)=0
there exists a solution of (1) for each & which is ortho-
gonal in L,(Q) to the eigenfunction - (see Sections 3
and 4). The proof is based on the abstract theorem which is
mentioned in Section 2 (this section serves also as a pre-

liminary communication for a paper [41]).

2. Abstract result

The proof of the result from this section immediately

follows from [4, Theorem 2.3.10].

Assumptions: I. Let H be a real Hilbert space with

the inner product (., ) and the norm || « "H . Let
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(X,0ely), (Z,l+l,) be Banach spaces. Suppose X c
cZcH.

II. Let L:Dom [(Ll1cX— Z be a closed linear
operator with the domain Dom [ L] dense in the space X
end closed image Im [L1 in the space Z and with a
finitedimensional null-space Xerx [LJ . Moreover, sup-
pose Z=Im [LI® Xex [LJ .

(Particularly, it means that L is a Fredholm operator the
index of which is equal to zero.)

III. Let N:X—Z , Dom [NJ= X , be a completely

continuous nonlinear mapping such that

-y ||N(.x)liz< + 0 .
xsX

IV, Suppose that for arbitrary . > 0 there exists
an interval <e,,€,7, 0<e ;<g,

3 such that

ifF LNGtw ) ) 5 weX, larlly & 0,

weXew L], IlmrNHsd, ts(sﬂ,ez)} >0 .

Theorem 1. Let s &€ Z . Then the equation

Liw) = Nw) = &

is solvable in Dom [L ] provided (A ,w)=0 for each
weXer [L] .

Remark 1. Under the same assumptions (and with the
same proof) we can strengthen the assertion of Theorem 1
in the following way:

For each J, orthogonal to Kex [L] in H there
exists an open neighborhood W(kh,) < Z of the point k,

such that the equation L (u)= N(w)- % 1is solvable in
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Dom LL1 for any Jh e UCh,) .

3. Main result

Let 2 be a bounded domain in Ry . Let H = L, (2)
with the usual inner product. Suppose that X and Z are
the Banach spaces satisfying the condition I. Moreover,

let X be continuously imbedded into L, (J) .

(A} Let L be the linear operator satisfying II. Assume
that the dimension of Xer [L ] is one and let Xex [L]

be spanned by w, € Xex [L3, Hagl, o = 4 and the Lebes-
2

gue measure of the set {x e L ;w,(x) & 0} is zero.
(B) Let N be a nonlinear mapping satisfying III. Suppose
that there exists a bounded continuous function ¢:R,— R,

such that for any u,w € X it is

(Nw), w) = [ g (u(x)otx)dx .
- n

Let = .
et M g/:4‘cR4‘1;l<;,<§>)>0

For § >0 denote
T(§)=4x e 2; wy(x)< §} . Suppose that meas I'(x)> 0
if x>0 .
(C) Let the function @ introduced in (B) satisfy the fol-
lowing condition:

There exists m > 0  such that

4
. G() M
Aim, X
x=+ 03 rmean [ (x) measr O’
‘ HE4) M
%50, mean I (X) meas JL !



where

Theorem 2. Under the assumptions (4) =’ (C) the equa-
tion L(w) = NCw)- M is solvable in Dom [L ] provided
meZ eand [M(a(x)dx =0 .

Q2

Proof. From the assumption (C) it follows that
¢(§)>0 for §>7 and ¢(f) <0 for f<-~-17 .
According to the result from Section 2 it is sufficient to
prove the following assertion (x ):

Let x > 0 ., Then there exist w > 0 and an inter-

val {e,,¢,>, 0<t ,<ge, ,such that
L_g,(t%(x)i-v(x))wa(x)du >w ,

fa Fl=tw, (x) + #(x)) w(Ndx <~ @

for each te <eq, ¢,) and veX, ol €2 .

Denote a = llwoul_ . Since

0 ()

Um  maonr T (x) = 0
¥—>0+

there exists d"> 0 and w >0 such that

1
mml"(A)<mews_O.

and y
G(Z) ) M
meas T (A) meab L - mean I'(A)

zZu,
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1

H(- =) M
) . c-w,
meanr T (4Q) meas SL - meas T'(A)
where
_ d
- 2+ n)a+rd
Set
nuy n+n w
&= —F —T w= TAmm.QmI‘CA).
Thus we have for t e<g,, €, , v e X with harll, ,,t.m
the following relations
Ct = o VA
qu w, (%) + ar (%)) g (x)dx f F(A)/ + IP(AJ/

2 G(—-)A(mwa)a.fl rmmI‘CA))—MA meas T(A) =

G( A M J
measT(d) | mead -maeasl (A z

= A (mear L - meon F(A))WT(A)[

2 %—Amﬂmml"(&\)= 3]

and

[actug s v tde = [ e [ o4 &

éHC——}-)ACMﬂ—MF(A)A)+MAWAT(A)$-0 .

Remark 2. If meas I'(x) = 0 for x € (0,d})
then the assertion of Theorem 2 is valid if the assumption
(C) is replaced by (C’):

There exists m > 0 such that @ (§)>0, ¢(-§)<0
for €=>m .

(The proof is the ssme as the previous one.)
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4. Applications

Firstly we note that the investigation of the problem
about the existence of simple eigenvalue of the linear map-
ping such that the corresponding eigenvalue is nonnegative
is included e.g. in the book [8], where also the special
cases of linear integral and differential operators are stu-
died.

In this section we give the applications of Theorem 2
to the existence of a weak solution of boundary value prob-
lems for ordinary differential equations and to the existen-
‘ce of a classical solution of boundary value problems for

partial differential equations.

a) Weak solutions of boundary value problems for ordi-

nary differential equations.

Set X = ‘;lz (0,7r) = Z the Sobolev space of
all absolutely continuous functions & on the interval
(0,9r) with w(O)=w(mw)=0 and which derivative «’ is
square integrable on (0, ) . We .shall consider on

Volz (0, ) the inner product
ar
(u.,ar)q,z = fo wix) »'(x)dx
o1 ops o 4
For w. € W, (0,x) define Lu € W,(0,a) such that
w g
CLu.,nr)q,a_a -_I;u-’(x) v (x)dx + foa.(.x)v(x)dx

-]
for each « € W;_(O,w) . Thus we have defined a linear
continuous mapping L:X—7Z such that Xex LL] =
= Lm M {biﬂv X } .
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Let g:R,4—> R, be a continuous function,

Asup o (§)1] = M . Obviously the mapping N: X—» 2
e Ry
defined by the relation

r
(N.u.,qr)ﬂﬂ = J; g (4 (%)) ar (x)dx

Q
for each € W;_(O,sr) is completely continuous and it sa-

tisfies the condition (B) from Section 3. Thus we have

Theorem 3. Suppose that there exists g > 0 such

that
mim (t) 2M
te <, /x >Q¢ > ,
A= 04 R g
max ) 2M
. 4 €<~ 1/L-n>q' <-
= Oy X r '

Then for each J e L, (0,7) ,
x
‘fo h(x) bimx dx =0
there exists u € ﬁf;(o,ar) such that the integral iden-
tity
v L Ed
= [ ov x)dx + f ) (x)dx + f G (wlxNw(x)dx =
o 0 0
= [ rdx
0
holds for each ar e\:f;'_(o,w) , i.e., the boundary value
problem )
wrax glu) = dn
aw(0) = mlxr) =0
is weakly solvable.

Remark 3. The same result is possible to give for ge-
neral Sturm-Liouville operator of the second order and for
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the first eigenvalue of this operator.

b) Boundary value problems for partial differential
equations.

".l‘he result from Section 3 it is not possible direct-
ly to apply to the weak solvability of boundary value pro-
blems for partial differential equations since we suppose
that X e L (1) and X usually means the Sobolev spa-
ce Yﬂf}. (Q) . Thus we give the application to the classi-
cal solvability.

Let 2 be an open connected bounded subhset of Ry
with the boundary oJL ., ¢™(N) will denote the space of
the functions which are R -times continuously differentia-
ble on £l and such that the derivatives can be extended

continuously onto 5l . With the usual norm:

lwlly = sup  sun 1D )|
O¢inlste xefo
R, = . S .
T is a Banach space, Cp, () will denote the sub-
space of Ch(f‘}.) of the functions which are zero on o1 .
Finally we recall that the classical problem
A + 2 =0 on QN

U'lan =0

has countably infinite many eigenvalues {A, 3 , arranged
according to increasing magnitude and considering their
respective multiplicity. The last eigenvalue is simple:
thus we have 0 <A, < A,<%.., . Moreover, the eigenfunc-
tion wp corresponding to .ﬂ.,t does not vanish on JfL

and its values are of the same sign (this result is con-
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tained in a general theorem concerning the nodes of an ei-

genfunction - see e.g. [2, p.452]).
Set X =Cp(R), Z=C(), Lo Bu+Aya
(L: C% ()— C%X)) . Since the condition (A) from Sec-

tion 3 is fulfilled we have

Theorem 4. Let g:R4—>R, be a continuous and boun-

ded function satisfying the condition (C) from Section 3.
Then for each v e ¢*(3), Lh(x)w;(x)d.x“- 0 there

exists a solution w4 € C:(ﬁ) of the problem
b + 2w + g lu) = A on 0

“lag =0 .

Remark 4. The same result as in Theorem 4 it is pos-

sible to give for

L: ;: (0 2% +£a.<)3‘—“—+a.cm
'“'H'&,g'ﬁw“! Sughg T e ) Bea X ,

where the coefficients a.j , @;,a are sufficiently smooth

and L, is uniformly elliptic operator.
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