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Absgtract: The purpose of this paper is to characteri-
ze the generalized orthomodular lattices which are solvab-
le in the class of modular lattices.
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1, Prelimingries. Recall that a lattice
& =(L,v,A,’,0,4) is said to be orthomodular iff it sa-

tisfies the following conditions:
(i) ava =1;
(ii) a g b= a =z 2 ;
(iii) (a@’)' = a

(iv) AZt & rAt=0=>s=1t .

The element @’ is called an orthocomplement of a .
By a generalized orthomodular lattice @ , one means.

a lattice G =(G,v,A,0) such that

() for every @ % 0, a € G , the interval [0,a]
determines an orthomodular lattice
G(0,2) =(L0,2],v,Nn,a-x,0,a),
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(jj) for x € a £ & of G and for the orthocomp-
lements a-x, &/-x of x in [0,a] and of x in [0,&],
respectively,

a~-%X=(-X)A a .

Basic facts on orthomodular lattices are used here
without comment; a relatively complete background may be
obtained from [2].

Let § denote a generalized orthomodular lattice, let
Q,"m = G and let g,(”) (m24) be the ideal of G ge-
nerated by all the commutators comi, ., (x,4) =(xvy)A

AMxvla-ydAa-X)vy)Arla-x)v (a-g)) where

X, £ a € G™" Ve shall call ¢“* the n-th commuta-

tor sublattice of g, R

We remark that from (jj) above it is clear that in the

(m-1)

, a€G.

It is easy to see that 9‘”) is a generalized orthomodular

definition of ) we can demand x,q & G

lattice for every m =2 0 .

A generalized orthomodular lattice g, ia said to be
solvable in a clags € of lattices if there exists m € N
such that G’ belongs ta € . It is known that a lattice

G- is solvable in the class & of distributive lattices
iff it is distributive; see for example [1]. On the other
hand, it is easily seen that a lattice 9, is solvable in

&d iff it is solvable in the sense of Marsden [3].

2. Solvebility in the class 1! , In this section we

shall prove a characterization of those generalized ortho-

modular lattices which are solvable in the cless M of
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modular lattices. The technique of the proof has one re-
markable feature: Only some elementary facts on orthomodu-
lar lettices are used and the key construction of the pen-
tagon determined by 0,A,B,C, ¢, has a nice geometric

interpretation as a translation in the lattice G .

Theorem. A generalized orthomodular lattice G is
solvable in the class M iff it is modular.

Proof. 1) If G is modular, then @' is modular, too.

2) Let G be modular, m &1, If (}‘""'" is not
modular, then there exists a five-element nonmodular latti-
ce Mg determined by elements W< <p <L, fB .
Llet r=L-B,c=t-x,a=0L-79, +=L-@ .
The elements 0 < @ < ¢ < 1, & define a sublattice iso-
morphic to Mg , Since 4 £ ¢ , it is a sublattice of
C}m'" .For an element x € [0, 4] we shall write x* =

=4 -% , Now we have

+ +
e, = mvto,“(w,,fr) s(avt)aAla®v )

and, similarly,

e, = omr_o’“(c,lr) = (¢ \_/zr"') Alet v o),

Let Cp= c.'1 ve, . Then
¢

5= {ltavdIalar*v )T viev M) a

Adllavd)alatrv ) v (ctv 403,

since the elements a v &%, afv & commute with the ele-
ments ¢ vb+, ¢t v & and,hence, the lest two elements

also commute with the element Ca v &+) A (a¥v &), Like-
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wise, this implies that
[tav o)A (alv )] vicv ot =

s(aviltvel)aladtrvlrvev ) =cvtrt .

Similarly,

av &) Aalarv o)y ietva)=atv &,

It follows that cgq = Cev ) A(Ca vr) e G™ « Now

let C=cAacy=cAalarvl), A=anc;=anlav ),
B=trAc, = A (e v £#%) . Note that A £ C and that

4 commutes with @ and £ .Hence

BvAstC=c,5&BAA= BAC=0 .

However,

arl=A,avC=calave,)
and since

aavc,s:(a,vcvb+)/\(a,vafv1r) =

+
=avevd |,

we have a v C = ¢ , But this shows that La,c] and
LA,C] are transposes. Since a £ c , we have A < C
and from this we conclude that the five elementa 0, A, B,
C,cq of G ™)  getermine a sublattice isomorphic to 7.
This contradicts the modularity of g,""') . Hence, g,""""

is modular, and we are done.
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