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UNIONS IN E-M CATEGORIES AND COREFLECTIVE SUBCATEGORIES x)
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Abstract: The concept of M -unions in categories is
defined and discussed and a characterization of coreflecti-
ve subcategories by means of this concept is given.

Key-words: M -union, M-image, factorization, coref-
lective subcategory.
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1. Introduction. This paper will be concerned with
categorial unions ‘in two settings. First, in an E-M catego-
ry, M -unions will be defined and discusses. It will be
shown that the definition of M -unions.can be made stron-
ger than the expected definition and that M-unions exist
in many E-M categories.

Second, looking at coreflective subcategories, a cha-
racterization of M -coreflective subcategories will be ob-
tained with the use of M -unions and M -images.

Categorical unions have never attracted much attenti-
on because coproducts are generally a stronger and more ba-
sic idea. However, categorical unions are the generaliza-
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tion-of a very intuitive concept that appears in many si-
tuations. For example, unions in the category of all topo-
logical spaces take on a simpler form than do coproducts
and are more useful in applications.

The categorical definitions not staled in tfxis paper
can be found in Mitchell [4], MacLane [ 3], or Herrlich and
Strecker [1]. v

2. E-M category. E-M categories arise naturally in
all categories where some notion of images is introduced.
This is stated categorically in terms of factorizations of

morphisms.

Definition 1. Let § be a category and let E and M
be classes of morphisms which are closed under composition
with all isomorphisms. We callg an E-M category if and
only if:

1) Every morphism in t has an E-M factorization. That
is, given & morphism f£: A— B , there exist morphisms e :
tA=—>C and m:A-—>C witheeE and meM such
that me =€ .,

2) § has the ynigue E-M disgonal property. That is,

given a commutative square mg, = fe with e eE and m e
€ M , there exists a unique morphism ¢ such that mq = £
and qe = % -

Examples. Any category is an E-M category, where E
is the class of all morphisms (all isomorphisms) eand M is

the class of all isomorphisms (resp. all morphisms).
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The categories of all sets, semigroups, monoids,
groups, Abelian groups, rings, commutative rings, and com-
pact Hausdorff spaces are E—M categories where E is thé
class of all surjective morphisms and M is the class of
all injective morphisms.

The categories of all topological spaces, Hausdorff
spaces, compact spaces, and connected spaces are E-M cate-
gories, where E is the class of all dense maps (surjec-
tive maps, quotient maps) and M is the class of all clo-
sed embeddings (resp. embeddings, injective maps).

The categories of all topological spaces and all Haus-
dorff spaces are E-M categories, where E is the class of
all final maps and M is the class of all bijective mapvs.

The categories of all topological spaces, compact spa-
ces, and connected spaces are E-M categories, where E is
the class of all bijective maps and M is the class of all
cofinal maps. '

It follows from the definition that, in an E-M cate-
gory, E-M factorizations are essentially unique. Therefore,
given a morphism g:A-—>B in an E-M category, 9e A—g(A)
and ¢yt @(A)— B will denote the essentially unique
E-M factorization of ¢ .

3. M -—union. M -unions are a generalization of usu~

al categorical unions.

Definition 2. Let M be a class of morphisms and let
{dy:Di—>X|4 eli be a family of morphiems in M . Let
(D, &) be a pair, where D is an object and o :D— X is
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a morphism in M such that there exists a family of mor-
phisme {4y :D,—D|4i €1} for which hawy = d; for all
4el.

We say (D, &) is the M -union of {d; |+ el} if
and only if

(U) Whenever ¢: C— X is a morphism in M and
{%;,:D,—>C|+ ¢I? a family of morphisms such that ck, =

=d; fof all L €l , it follows that there exists a uni-

que morphism” ¢ : D—> C such that cq = h -

%

We say (D, /) is the strong M -uniog of {d;|i €1}
if and only if ’ ’

(SU) Whenever £:X— A is a morphism, ¢ : C—A
a morphiem in M , and { & : Di—> Cli eI} a femily of
morphisms such that £d = cfk; Tfor all 4+ el , it follows
that there exists a unique morphism @:D—C such that

OQ,=£X& .
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Strong M -unions are more useful in E-M categories
while M -unions suffice in other settings (such as core-
flective sﬁbcategorios)-.-

Although the two unions differ by definition, they

coincide in E-M categories under very weak hypothesis. Mo-
re precisely:

Theorem 1. In an E-M category that has weak pull-
backs, let {ds:D;—>X |+ e 1}
in M.Let h:D—X

be a family of morphiem
be a morphism in M through whic
each d,.‘-' factors. Then the following are equivalent:

1) (D,4) is the strong M -union of {fd; |4 eI}.

2) (D,4) ia the M -union of {d, |+ eI} .

Proof. That 1) implies 2) is clear by setting £ =4y
in the definition of strong M -union.

To show 2) implies 1), let £: X— A be a morphisn
¢31 C— A amorphism in M , and {&k;:D;—Cli eI}
a family of morphisms such that ch; =£d; for all v el.

Then let the following diagram be a weak pullback diagram.
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By the unique E-M diagonal property, there exists a morph-
ism g: &#(P)—> C such that cq =£4y and & = 4 . The-
refore the following is a weak pullback diagram.

9 £

HP)—F—1X
M

Since ok, = £d; , from the definition of weak pullback
there exists for each 4+ € I a morphism =zy: D, —» & (P)
such that gz; = &,; and Ay z; = d;

Hence, from the hypothesi.s, there exists a morphism
a:D —> &(P) such that 2yn = & , Therefore gx:D—>C
ie a morphism such that cgx = foyx = £ .

To show unigqueness, let m,m*:D-:-)C be morphisms such that
com =cm*= £h .From the definition of weak pullback, there exist
morphisms d,d*:D—» &(P) such that gd =m, byd = b, 9d* = m*,
and 2, d*= M . But from the hypothesis, d = d-"' . Therefore m =
=qd = gd*=m* .

Examples. In the category of all sets, let M be the
class of all injective functions. Given a family of sets
{9,X |4 el?, the M -union of their inclusions dj: D; —»

— X is the pair (UD;,Ah), where UD, is the usual
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set-theoretic union and A : UD, — X is the inclusion
function.

In the c‘etegory of all groups, let M be the class
of all injective homomorphisms. Given a family of subgroups
{D; |4 €I% of the group X, the M -union of their
inclusion functions d;:D; — X is the pair’

(<42, 3>,4) , where <{Dg1> is the subgroup genera-
ted by the subgroups D; and M:<{Dy3>—X is the
inclusion homomorphism.

In the category of all topological spaces, let X be
a topological space and consider a family of spaces {D; |

|+ e 1%, where each set D; is a subset of the set X .

1) When M is the class of all embeddings and each
inclusion dj:D;—» X is an embedding, the M -union of
the d; is the pair (UD; , A) , where UD; is the set-
theoretic union of the sets D; . Here UD; is endowed
with the subspace topology and A UD, —> X is the in-

clusion map.

2) When M is the class of all injective maps and
each inclusion d; : D; — X -is an injective map, the
M -union of the d; is the pair (UD;,4), where UD,
is the set-theoretic union of the D; , Here UD; is en-
dowed with the topclogy defined by the following:

A subset 0 is open in UD, if and only if 0N D,
is open inD; for all 4 €l .

. The map 4:UD;— X is the inclusion map.

3) Let M Dbe the class of all closed embeddings and

each inclusion d.&:D&-—» X a closed embedding. Then
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the M -union of the d, is the pair (el(UD;), ) where
el (VD) is the closure of the set-theoretic union of
the D; . Here o¢£ (UD;) is endowed with the subspace
topology and A : e (UD,) —> X is the inclusion map.

For an arbitrary E-M category § , it is next shown
that the existence of strong M -unions is guaranteed when

% has coproducts and M consists entirely of monomorp-
hisms.

Proposition 1. In an E-M category where M 1is a class
of monomorphisms, let {d;:D;—X|4 eI} be a fanily of
morphisms in M . Let the family of morphiems {«,: D;—>
— D, ]% €l? be the coproduct of the D; . Furthermore,
let fo: UD;~—» X be the unique morphism gumranteed by
the definition of coproduct such that pu,; =d, for all

4 eI . It then follows that (p (UD;), py) is the
strong M -union of the d,‘; .

Proof. First, there exists the family of morphisms
{pgay 1 D;— p (UD) |4 613 such that pypip = puy= d;
for all v+ eI .

Second, let £:1. X—> A be a morphism, ¢: C— A a
morphism in M , and {k :D,—C|iL e 1? a femily of mor-
phisms such that ¢k, =£d; for all + el . Then let =z :
vild;~— C be the unique morphism such that zw; = fe;
for all 4+ € I ., It follows that cx = ££2 . By the unique
E-M diagonal property, there exists a morphism
i (UDy)~—>C such that cg=£ny and Qg = % .

Therefore q, is the required morphism. Because c is a

- 180 -



monomorphism, g, is unique.

It is well known that whenever f£: X-— Y is a
function and 4D; & X |4 € I} a family of sets, then
£(UD,) = US(Dy) . This property stated categorically is
important in the relationship between M -unions and strong
‘M -uniens.

‘Theorem 2. Let g be an E-M category. The follow-
ing are equivalent:

1) §  has strong M -unions.

2) ¥ has M -unions and E-M images distribute over
M -unions. That is, let {d;:D;—X|iel} be a fami-
1y of morphisms in M and let (D, &%) be ita M ~-union.
Then, given any morphism £: X—» Y it follows that
(£h (D) ,(£h)y) is the M -union of {(fd )y :
tfdy (D)—Y|ield .

Proof. Clearly any category that has strong M -uni-
ons also has M -unions. Therefore, to show that 1) implies
2), let -(d.,;:]l;—»XIi«eIf be a family of morphisms
in M. Let (D, &) Dbe the strong M -union of this fami-
ly. By the definition of strong M -union’ there exists a
family of morphisms {ary :D; —»D ]»& el such that
Mg =d;, for all v el .

Let f:X—Y be any morphism. By the unique E-M dia-
gonal property, there exists for each 4+ €I a morphism
Qy ¢ £y (D) — £8(D) such that (fhlygy = (£dy)y and

Oy (£ ) = (£h)p oy o

mei‘efore, to show that (£4 (D). (fh)y) is the
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M -union of (fd;)y 4eI , let c: C—Y be a
morphism in M and let < &y: foly (D;)—Cliel? be
a family of morphisms such that oy = (fd;)y for all
46l . sSince £:X—Y is a morphism, ¢: C—Y a
morphism in M , and { S (£d;)g:D;—>C|i 61} a family
of morphism such that cf;(fd ;). =fd; for all i el ,
it follows from the definition of strong M -union that
there exists a morprhism m : D— C such that em =fh .
By the unique E-M diagonal property, there exists a morph-
ism f:£h(D)—> C such that cp=(fhly and p(fh); =
= m ., Hence 4 is the required morphism.

To show uniqueness, let X, &* 3 £4H (D)—> ( be mor-
phisms such that c& = c&r¥= (£h), . Therefore c& (fh)g =
= c*(£m) = £& . But from the definition of strong M -
union, A (fh)g = &*(£4)g . By the unique E-M diagonal
- property, Ar = ¥

To show that 2) implies 1), let {d.i:Di—X|isl} be
a family of morphisms in M and let (D, % ) be ita M -
union. Let £:X—» A be a morphism, ¢: C—» A a morph-
ismin M , and <&y :D;—C|4i eI} a family of mor-
phisms such that ck; = fd; for all + € I . By the uni-
que E-M diagonal property, there exists for each < €1 a
morphism ¢ : £4;(D;)—> C auch that cg; = (fd;)y end
¥ (fd ) = Ry

Because E-M images distribute over M =-unions, it fol-
lows that (£ (D), (fh)y) is the M -union of {(fd;)y |
|1 e 1% . Therefore there exists a morphism q: £4(D)— C
such that oq = (f&)y ., Hence q(fh);:D—C is a mor-
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phism such that °‘L(”"’)E =£h .

To shaw uniquenesa, let M,&*;: D— C Dbe morphisms
such that cdr= c&¥= £4» . Applying the unique E-M diagonal
property twice, we get mérphismn m,m¥*; £ (D)— C
such that e¢m = (£h)y , m(£h)g = &, em¥* = (£4)y , and
m*(£h)g = &* , From the definition of M -union it fol-
lows that m = m* . Therefore & = m C£n)g =

= m*(f)h.)E = &* ,

4, Coreflective subcgtegories. The only subcategories
considered in this paper will be assumed to be both full

and replete. That is, given X a subcategory of § :

1) Whenever A and B are objects in X and £: A— 3B
is a morphism in § ,then £ must also be a morphism in K

(X is full) .

2) Whenever A is an abject in X and B is isomor-
phic to A, then B must also be an object in X (K is
replete).

Definition 3. Let X be a subcategory of § .

X ia a goreflective subcategory of § if and only

if for every object A in § , there exists an object Ay

in X and a morphism % 1 Ay—> A such that whenever B

is an object in X and £: B—> A is a morphism, it fol-

lows that there exists a unique morphism ¢: B—> AK such
that &g = f, In this case & is the coreflection morph-

ismof A in X .

Given 'a class of morphisms M , let X be a coreflec-

- 183 -



tive subcategory of g . X is an M -careflective subca-
legory of § if and only if each coreflection morphism is

a morphism in M . .

Henceforth, it is assumed that M ia a class of mo-

nomorphism which is closed under composition.

Proposition 2. M -coreflective subcategories are
closed under M -uniong. That is, if X is an M -coreflec-
tive subcategory of § , {fdy:D;—> X|i€I§ a family
of morphisms in M where each D; is en object in X ,
and (D, /) the M -union of this family, then D is al-
80 an object in X .

Proof. From the definition of M -union, there exists
a family of morphisms 4wy :D;—>D|4i e I3} such that
hwy,=d; forall i el .

Let A& :Dy—>D be the coreflection morphiam of D in
X . There exists for each 4 € I , a morphism g, :D; —»

~—> Dg such that kg = vy .

Hence Me:n,(-—»x is a morphism in M and
{giiDy—>Dliel3 a family of morphisms such that
hagi = d; for all 4+ el . By the definition of M -
unioi, it follows that & is an isomorphism.

Since X is replete, D ie an object in K .

E-M factorizations are too powerful in this setting,
8o a simpler factorization is defined.

Definition 4. Let £31 A—+»B be a morphism. The M-
image of £ is a morphism Ic: C—> B in M such that:

1) There exists a morphism e: A—> (C such that 1¢e=f.
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2) Whenever m:D—» B is a morphism in M and %:
tA—>D a morphism such that mk = £ ,it follows that
there exists a unique marphism g :C—D such that
mgq = 14. .

Remark. All categories which have coproducts and M -

images have M -unions.

Proposition 5. M =-coreflective subcategories are clo-
sed under M -imageg. That is, if X ia. an M -coreflective
subcategory of § , f£:A— B a morphism such that A is
an object in X , and I, : C~»B the M-image of £ ,
then C is also an object in X .

‘ Proof. From the definition of M -image, there exists
a morphism e : A—> C such that I.e = £. Let & :
tCk—C Dbe the coreflection morphism of C in X .Because
A is an object in X , there exiata a morphism g :A—Cy

such that kg = e .

Hence, ;& 1Cx—> B is a morphism in M and @: A —
—> C4 a morphism such that Iokg = Ice = £ . Therefo-
re, from the definition of M -image, & is an isomorphism.

Because X ia replete, C is an object in X .,

The following proposition is similar to one stated in
a paper by Herrlich and Strecker [2] except that it uses
..M -unions and M -images rather than coproducts and extre-

mal epimorphisms.

Theorem 3. Let § be an M -locally small category
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that has M -unions and M -images. Let X be a subcate-

gory of § . The following are equivalent:

1) X is an M -coreflective subcategory of § .

2) X is closed under M -unions and M -images.:

Proof. That 1) implies 2) has already been shown. The-
refore, to show 2) implies 1), let A be an object in § .
Let {di:D3— Aliel} be a representative family
of M -morphisms with codomain A auch that each D; is an
object in X .

Let (D, &) be the M -union of the d . . Because X
is closed under M -unions, D is an object in X . It will
be shown that S is the coreflection morphism of A ii: X .

Let B be an cbject in X and let £:B—> A be a mor-
phism. Let Io:C—>A be the M-image of £ . Because X is
closed under M -images, C is an object in X . Since I;:
t C—> A is a morphism in M , there exists some Z & I
and an isomorphism @ : C— Dj such that djq =1Ip .

Therefore, since there exists a morphism e : B—C
such that Ige = £ and a family of morphisms {y:D;—D|
|+ € I} such that Mwy =d; for all 4 el , then wjqe:
:B—>D is a morphism such that hwyge = £ .

Because %, ia a monomorphism, this induced morphism

is unique. Thus 4 is the coreflection morphism of A in X.
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