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REGULARITY AND EXTENSION OF MAPPINGS IN SEQUENTIAL SPACES 

R. FRIÖ, Ž i l i n a 

Abstract: The class of all topological spaces Y with 
unique sequential limits that satisfy the following proper­
ty C# ) is characterized: 

( # ) For each sequential space X and each continuous 
mapping f of a dense subspace X 0 of X into Y if f can be 

continuously extended onto each subspace X0U (x) ,xeX, 

then it can be continuously extended onto X -
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§ 0 

For the reader's convenience we shall in this section 

briefly outline how to construct a sequential space by means 

of convergent sequences (cf.C4l,C53,C6]) and recall some 

facts about sequential spaces needed in the sequel. 

In a non-empty set X we define a convergence «C , i.e. 

we declare some sequences of points to converge to their li­

mit points such that: 

(«£.)- constant sequences converge, 

(a£«) - subsequences of convergent sequences converge, 

(5f ) - the set of limit points of any sequence is se-
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quentially closed. 

Notice that the condi1£on 

(0>Q ) - each sequence has. at most one limit point 

implies (Jf). The convergence of sequences in every topo­

logical space satisfies Conditions iSt^ ), (# a ), (̂f ), while 

it may not satisfy ( «f0 ) • 

Now, the set of all sequentially open sets forms a to­

pology for X . In this sequential space a sequence < Xm, > 

converges to a point x iff every subsequence (x'n, > of 

<#/>»,) contains a subsequence ( .x^, > which A -conver­

ges to X * The convergence & is sometimes called a prio­

ri and the convergence in the sequential space X is call­

ed a posteriori. Similarly, as in t6, Lemma 51 it can be 

proved that if £«j*f2 a*« continuous mappings of a sequen­

tial space X into a sequential space Y with unique se­

quential limits such that £̂  and £-, coincide on a dense 

subset of X , then they are equal. Finally, to each topolo­

gical space Y 9 a sequential space /$Y * corresponds such 

that if f is a mapping of a sequential space X into Y, 

then f is continuous iff £ is continuous as a mapping of 

X into foY. The topology of the sequential space /$Y con­

sists of all sequentially open sets in y . 

§ 1 

It is well-known that if f is a continuous mapping of 

a dense subspace X0 of a topological space X into a re­

gular space y and f can be continuously extended onto 

each subspace X0 U(x), x e X , then f can be continuous-
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ly extended onto X • Moreover, the regularity assumption 

is essential (cf.[l , pp.857])* However, if X ia supposed 

to be sequential, then the regularity condition can be 

weakened and, in view of § 0, the weaker condition should 

concern the space A>Y • 

Definition 1. A sequential space Y in whixh a sequen­

ce <^/n>> converges to tty whenever every closed neighbour­

hood of ty contains n^^ for all but finitely many /n, is 

said to be convergence regular or briefly c-regular. .A topo­

logical space y is called c-regular if foY is c-regular. 

Theorem 1. In a sequential space Y the following 

conditions are equivalent: 

(a) y is c-regular. 

(b) If <<y^> is a sequence and n^ G.Y- U(afa) , then 

there is a closed neighbourhood 0 of AA, such that afa s Y-

- 0 for infinitely many ett » 

(c) If <' r̂rv> is a sequence and ty e Y- U(<ifa,) , then 

there is a subsequence <^>/n,> of </tyn,> such that ty, and 

U C / ^ ) can be separated by disjoint open sets. 

Proof* (a)-====> (b). If < !^ n ,> is a sequence and <y, c 

e y- U (ty^ f then <tysn,y does not converge to ty> and (3a) 

follows from Definition 1. 

(b) =====> (a). Let < /̂ -̂  > be a sequence and let every 

closed neighbourhood of nfr contain ty^, for all but finite­

ly many m. . Then the same holds for any subsequence < 'nf^ > 
ol? (fym,** and by ^b) we nave ty- c UC/j^,) for any such 

< Ajfft > . It follows that < tyfo > converges to ^ . 

163 



The proof of (bX====>(c) i s easy and omitted. 

Theorem 2. Let X9 be a dense subspace of a sequen­

t i a l space X • Let f be a continuous mapping of XQ into a 

c-regular space Y . If f can be continuously extended on­

to each subspace X0 U Cx), x e X } then i t can be conti­

nuously extended onto X • 

Proof* Without loss of general i ty we can obviously sup­

pose that Y s .4>y . In th i s proof the bar always denotes 

the closure in X $ Y respectively. Let for each x e X the­

re be a continuous extension f̂  of f onto the subspace 

Xo U Cx ) . Prom the continuity of f̂  i t follows that 

(i) f^Cx) e f CA1 for each A c X0 > x e A . 

Moreover, 

( i i ) i f t^ € X0U(x) and O c Y i s an open set such 

that fxC^) e 0 , then n^ e f * C 0 J , 

since f*t 01 *=• f x *£03f .X 0 and X0 i s dense in X* Denote 

by T the mapping defined on X as follows: 

( i i i ) PCx)«fCx) for x e X0 , 

PCx) m f^Cx) for x e X - X 0 . 

We shall prove that P i s continuous ( i . e . sequential­

ly continuous). Let # =-J&m< X^ in X and suppose that , on the 

contrary, PCx ) e Y - UCPCx'^.)) for some subsequence 

< X ĵ, > of ^X^ > 4 Since Y i s c-regular, there i s a subse­

quence ^ X ^ > of <X,
/n,> and disjoint open sets CXj , 0% c Y 

such that PCx) € 0,, , UCPCxJ^)) c fla . From ( i i ) i t fo l ­

lows that for m, e H we have x ^ ef^CO-1 ana hence 
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x e UCxJJ,) implies * e £*"COa3 . On the other hand, 

from (i) and (iii) follows ?(*) € £t£*t 0211 c \ c Y- D1 . 

This is a contradiction and the theorem is proved. 

Theorem 3. Let Y be a topological space with unique 

sequential limits which is not c-regular. Then there exist 

a sequential space X , a dense subspace XQ of X and a 

continuous mapping £ of X$ into Y such that £ can 

be continuously extended onto each subspace X0 U Or) , x e l , 

but cannot be continuously extended onto X * 

Proof* Again, it is sufficient to prove the theorem in 

the case of y » *Y . According to (b) of Theorem 1 there 

is a sequence <4J^> and a point ^ in Y such that nfr&Y -

~ U (n^^) and for every closed neighbourhood 0 of/j^ we 

have fif/fr c 0 for all but finitely many m, . There are three 

possibilities: 

1. The sequence < 4^, > is totally divergent. We can 

suppose without loss of generality that < ty>m,> is one-to-

one. Then there is a natural m, such that the set Y -

- U (*~) is dense in y . For otherwise there is a subse-
<n,>m m' 

quence (ty\> of </^> such that the points /y^ are iso­

lated. Thus U (<$?#,) is a closed-open set not containing 

y , and we have a contradiction. Now, we enlarge the conver­

gence in y declaring all subsequences of < ^ ^ > to be con­

vergent to ty. and denote by X the induced sequential spa­

ce. Clearly, the topology of X is coarser than that of Y • 

Finally, let X*mY~ LS (ntm.) # let £ be the identical 

mapping on X0 considered as a mapping of X0 into Y * Sin­

ce JC0 is dense in y # it is also dense in X - The identi-
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cal mapping on each subspace X 0 U < ^ > , m. vim, *is clear­

ly the uniquely determined continuous extension of £ , but 

it cannot be continuously extended onto X * 

2. There is a one-to-one subsequence <^ , t t> °*" ̂  tym > 

converging to a point j e 7 , Since Y is a sequential 

space with unique sequential limits, the set (%,) is clo­

sed and the open subspace Y9 &Y- (%,) is sequential (cf. 

[2]). It is easy to see that in Y9 we have fy,eY'~ U (<tfm) 

and t£^ c 0 for all but finitely many m> for every closed 

neighbourhood 0 of ty t Now we proceed similarly as in 1 . 

3. There is a point % e Y and a subsequence < / j ^ > 

of < ^ > such that a£n s »9 m,m 49fL7,.. # Notice that Y is 

not Hausdorff in this case, since ty and % cannot be sepa­

rated by disjoint open sets. Let X be the union of a one-

to-one double sequence <Xm<ru > a one-to-one sequence 

<Xm>> and a point x .We introduce into X a sequential 

topology by means of convergent sequences as follows: for 

each eu m X the constant sequence <ci/ > converges to cu f 

for every m, each subsequence (&m> of <x<w,/n,> conver­

ges to x^ , each subsequence of <X/n,> converges to x • De­

note X0 « X - U C x ^ ) the dense subspace of X and de­

fine a mapping f of X0 into Y in the following way: 

f (X/fMi} ** z , £(X) m tfr . Then £ can be uniquely continuous­

ly extended onto each subspace X0 U (x^) 9 but cannot be 

continuously extended onto X . This completes the proof. 

Corollarer» Let Y be a topological space with unique 

sequential limits. Then the following conditions are equiva­

lent; 
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(d) Y i s c-regular. 

( # ) For each sequential space X and each continuous 

mapping f of a dense subspace X0 of X into Y i f f can 

be continuously extended onto each subspace X0 U(x)9 x e X 9 

then i t can be continuously extended onto X . 

Example. Let Y be the rea l l i ne the topology of 

which i s enlarged in such a way tha t the se t s C- e, e,) — 

- U(tf/m,)t e > 0 , are also neighbourhoods of 0 . Then y i s 

a Hausdorff (Fr^chet) sequential space which i s not c-regu­

l a r . 

§.2 

In th i s section we shal l study further propert ies of 

c-regular s;.aces. We s t a r t with mutual r e la t ions between c-

regulari ty and the separation axioms. 

Theorem 4. A regular space i s c-regular . 

Proof. Let Y be a regular space. If </^/W.> i s a sequen­

ce and ( ^ e y - U C y ^ ) in *Y , then there ex is t s a subse­

quence (n^tn,) of</y<lv> such that <y,uY~ U(nfm>) in Y . 

Since y i s regular, ty and U (*£<&) can be separated by 

disjoint open sets in Y and hence in ^ y . 

For our purpose we shal l generalize the notion of se­

quential regular i ty introduced by J . Novdk (C6J) for conver­

gence closure spaces. 

Definition 2. A topological space Y i s said to be 

sequentially regular if the convergence of sequences in Y 

i s protectively generated by the set of a l l continuous func-
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t i ons on T > i . e . <^«,> converges to. n^ i n / whenever 

for each continuous function t on Y we have £(ty) ** 

= Mm£(i^/n) . 

Notice that a sequent ia l ly regular space with unique 

sequential l imi t s i s completely Hausdorff. 

Theorem 5. A sequent ia l ly regular space i s c-regular. 

Proof. Let Y be a sequent ia l ly regular space. If 

< nfrm > i s a sequence and /jj- € y - U (ty^,) i n /*Y , then 

< ^ ^ > does not converge to ^ in T • Consequently, t h e ­

re i s a continuous function £ on Y such that (£(q>m) > 

does not converge to f <^-) . Hence there i s a subsequence 

^%U> o*<^n,> s^ch that £C/^) e ft - UCfC^.^)) and from 

the regulari ty of tR fol lows the existence of d i s j o i n t open 

s e t s 0 , , . , ^ c l such that £(y>)eOi> U(£(<*>&)) c 02 . 

The s e t s £ ^E 0 , j 3 r £*£ 0% 1 are open ixi.kY and separate 

ty, and U(ty\) * 

Proposition 1 . A c-regular sequential Hausdorff spa­

ce need not be sequent ia l ly regular. 

The well-knon example of a regular space on which e v e ­

ry continuous function i s constant constructed by J . Novi4k 

in [43 y ie lds a counter-example. 

Proposition 2 . A c-regular sequential Hausdorff spa­

ce need not be regular. 

Consider the convergence space .L40 in [6 , p .96J . The 

induced sequential space i s a Hausdorff sequent ia l ly regu­

lar and hence, by Theorem 5 , c-regular space. I t i s easy to 

ver i fy that the space i s not regular. 
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Notice that taking the disjoint topological sum (see 

Theorem 7) of the above two spaces we obtain a c-regular 

sequential Hausdorff space which is neither regular nor se­

quentially regular. 

Theorem 6. A c-regular sequential T. space is Haus­

dorff. 

Proof. Let 7 by a c-regular sequential T^ space 

and let x f ny c Yf x=fc<|f- . Then the constant sequence <x> 

and ay satisfy the assumption of (c) in Theorem 1 and hen­

ce can be separated by disjoint open sets. 

Proposition 3. A c-regular T^ space need not be Haus­

dorff. 

As a counter-example there can serve the space construc­

ted by V. Koutnik in [3, Example 33. 

Proposition 4. A c-regular sequential space need not 

be Hausdorff. 

The two-point accrete space is a trivial counter-exam­

ple. 

Theorem 7. The class of all c-regular spaces is closed 

under formation of subspaces, disjoint topological sums and 

products. 

Proof. The first two statements are self-evident. Let 

Y~ IfYi be a product of c-regular spaces 7L, L 6 I • Then Y is 

c-regular, for if ^51"-. U(/j^) in Y , then there is an index 

et e I and a subsequence C^m^ °£ (ty/ru* such that Jpk,^(ty)€,J~ 

-U6ji^0|^)) in Xc • s--nc6 YQC is c-regular, the assertion 

follows immediately. 

Proposition 5. A quotient of a sequential c-regular 
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space need not be c-regular. 

Consider the convergence space L^0 in [6, p.96]. The 

induced sequential space is c-regular (see Proposition 2). 

Let us identify the points C ̂ , 4) , € «*-"o)^, with (4,4) 

and take the quotient space. The quotient space of a sequen­

tial space is sequential (see £23). Since the quotient spa­

ce is T4 non Hausdorff ( (4, 4 ) , (<&j, 4 ) cannot be sepa­

rated), the proof follows from Theorem 6. 

Proposition 6. Let & be a convergence commutative 

group. Tnen the induced sequential space need not be c-re­

gular. 

Consider the completion L^ of the group of rational 

numbers constructed by J. Nov&k in £7.3 • The completion con­

sists of the group of real numbers endowed with the sequen­

tial (Fr^chet) Hausdorff topology finer than the usual one. 

The identical mapping on the rational numbers considered 

as a mapping on (St into L^ can be continuously exten-

dedk onto each subspace fli U(vX) , X irrational, but can­

not be continuously extended onto % . Thus, by Theorem 2, 

Lx ia not c-regular. 

I wish to express here my gratitude to V. Koutnik for 

valuable suggestions in preparing the final form of the 

paper. 
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