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REGULARITY AND EXTENSION OF MAPPINGS IN SEQUENTIAL SPACES
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Abstract: The class of all topological spaces Y with
unique sequential limits that satisfy the following proper-
ty ?*) is characterized:

(%) For each sequential space X and each continuous
mapping £ of a dense subspace X, of X into Y if £ can be

continuously extended onto each subspace X,U(x),xeX ,
then it can be continuously extended onto X .
Key words: Sequential space, regular soace, extension
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§0O

For the reader’s convenience we shall in this section
briefly outline how to construct a sequential space by means
of convergent sequences (cf.[41,[5],[6]) and recall some
facts about sequential spaces needed in the sequel.

In a non-empty set X we define a convergence &£ , i.e.
we declare some sequences of points to converge to their li-
mit points such that:

(21) - constant sequences converge,
(é&z) - subsequences of convergent sequences converge,

(4) - the set of limit points of any sequence is se-
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quentially closed.

Notice that the condition

(éﬁo) - each gequence has.at most one limit point
implies (¥ ). The convergence of sequences in every topo-
logical space satisfies Conditions (£,),(£,),(F), while
it may not satisfy (&,). '

Now, the set of all sequentially open sets forms a to-
pology for X ., In this sequential space é sequence  Xp, >
converges to a point x iff every sub,se'quence' (.x:,,) of
{%Xyn? contains a subsequence { x), > which & -conver-
ges to X ., The convergence & is sometimes called a prio-
ri and the convergence in the sequential space X is call-
ed a posteriori. Similarly, as in [6, Lemma 5] it can be
proved that if £,,f, are éontinuous mappiﬂgs of a sequen-
tial space X into a sequential space Y with unique se-
quential limits such that £, and £, coincide on a dense
subset of X , then they are equal. Finally, to each topolo-
gical space }', a sequential space Y - qorresponds such
that if £ is a mapping of a sequential space X into Y,
then £ is continuous iff £ is continuous as a mapping of
X into AY. The topology of the sequential space AY con-

sists of all sequentially open sets in Y .

§1

It is well-known that if £ is a continuous mepping of
a dense subspace X, of a topological space X into a re-
gular space Y and £ can be continuously extended onto

each subspace xo U(x), xeX , then £ <an be continuous-
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ly extended onto X . Moreover, the regularity assumption
is essential (cf.[l , pp.857]1). However, if X ia supposed
to be sequential, then the regularity condition can be

weakened and, in view of § O, the weaker condition should

concern the space 4 .

Definition 1. A sequential space Y in which a sequen-
ce (g,M) converges to o whenever every closed neighbour-
hood of g contains a4, for all but finitely many m is
said to be convergence regular or briefly c-regular. A topo-

logicel space Y is called c-regular if »Y is c-regular.

Theorem 1. In a sequential space Y the following
conditions are equivalent: '

(a) Y is c-regular.

(b) If {44, > is a sequence and 4 € Y- Uly,), then
there is a closed neighbourhood 0 of 4 such that 4y, & ¥-

-0 for infinitely many m .

(¢) If (4> is a sequence and g4 eY - U(yy) , then
‘there is a subsequence (a44),> of {4y, > such that 4 and
U(ag,) can be separated by disjoint open sets.

Proof. (a)==)(b). If (4, > is a sequence and 4 €
eY- m , then {4y > does not convérge to sy and (h)
follows from Definition 1.

(b)==>(a). Let ¢ a4, > be a sequence and let every
closed neighbourhood of 4 contain g4y, for all but finite-

ly many m , Then the same holds for any subsequence <"J"m7

of {ny, > and by (b) we have #4 € U(y'm) for any such
<"é"m > . It follows that {ay, > converges to 4 .
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The proof of (bX==)(c) is easy and omitted.

Theorem 2. Let I, be a dense subspace of a sequen-
tial space X . Let £ be a continuous mapping of X, into a
c-regular space Y, If £ can be continuously extended on-
to each subspace X, U (x), xe X , then it can be conti-
nuously extended onto X .

Proof. Without loss of generality we can obviously sup-
pose that Y= 4Y . In this proof the bar always derotes
" the closure in X , Y respectively. Let for each x& X the-
re be a continuous extension fy of £ onto the subspace

XoU(x). From the continuity of £, it follows that

(1) £4(x) € LA for each AcXy, xe€h .

Noreover,

(ii) if 4 € X,U(x) and 0cY is an open set such
that f,(y) 6 0 , then 4 €£%00] ,
since £€[0]= £5[01NX, and X, is dense in X . Denote
by T +the mapping defined on X as follows:

(ii1) P(x) =£f(x) for x € X, ,
F(x)-fx(x)ror X sx-xo .

We shall prove that F is continuous (i.e. sequential-
ly continuous). Let x= &m X, in X and suppose that, on the
contrary, F(x)eY-U(F(x),)) for some subsequence
(x’“) of (X, > . Since ¥ is c-regular, there is a subse-
quence (x% > of (x},)> and disjoint open sets 0,0, c ¥
such that P(x)e 0y, U(F(xp)) e 0y . From (ii) it fol-

lows that for m € N .we have X, € £%(0,] and hence
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x e U(xp) implies x € £¥C0,] . On the other hand,
from (i) and (iii) follows F(x) € £L£¥[0,11c OycY-0, .

This is a contradiction and the theorem is proved.

Theorem 3. Let ¥ Dbe a topological space with unique
sequential limits which is not c-regular. Then there exist
a sequential space X , a dense subspace X, of X and a
continuous mapping £ of X, into Y such that £ can
be continuously extended onto each subspace Xp U(x), xe X ,
but cannot be continuously extended onto X .

Proof. Again, it is sufficient to prove the theorem in
the case of ¥ = Y . According to (b) of Theorem 1 there
is a sequence (4, > and a point 4 in Y such that €Y -
- -U—(—a;,:) and for every closed neighbourhood 0 eofgy we
have a4y € 0 for all but finitely many m . There are three
possibilities:

1. The sequence { 4, > is totally divergent. We can
suppose without loss of generality that {4y > is one-to-
one. Then there is a natural m  such that the set Y -

- U (.xm‘) is dense in Y . For otherwise there is a subse-
n >m

quence (Ap'm > O0f (A ¥ such that the points Aym ere iso-
lated. Thus U(n‘,}u) is a closed-open set not containing

n and we have a contradiction. Now, we enlarge the conver-
gence in Y declaring all subsequences of {4y > to be con-
vergent to 4 ard denote by X the induced sequential spa-
ce. Clearly, the topology of X 1is coarser than that of Y.
Finally, let Xo=Y- L) (4p) , let £ be the identical

mapping on X, considered as a mapping of X, into ¥, Sin-

ce x, is dense in Y ,it is also dense in X . The identi-~
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cal mapping on each subspace X, U(#y,), m>m ,is clear-
ly the uniquely determined continuous extension of £ , but

it cannot be continuously extended onto X .

2. There is a one-to-one subsequence {@'n > 0f < 4y >
converging to a point 9 € Y, Since Y is a sequential
space with unique sequential limits, the set (q) is clo-

sed and the open subspace Y’ =Y - (q) is sequential (cf.

[2]). It is easy to see that in Y’ we have g eY'- U (y,)
and 4, € 0 for all but finitely meny m for every closed

neighbourhood 0 of %4 . Now we proceed similarly as in 1 .

3. There is a point x € ¥ and a subseqﬁence ym D
of {aypy > such that I“:ﬁu z,m=1,2,.. ,Notice that ¥ is
not Hausdorff in this case, since 4 and  cannot be sepa-
rated by disjoint open sets. Let X be the union of a one-
to-one double sequence <°‘mn > a one-to-one sequence
{Xpn> and a point X , We introduce into X a sequential
topology by means of convergent sequences as follows: for
each @ € X the constant sequence {@ > converges to a ,
for every m each subsequence {@Um?> ©0f {Xmm > conver-
ges to X, ,each subsequence of { X, > converges to X , De-
note Xy = X~ U(x,) the dense subspace of X and de-
fine a mapping £ of X, into ¥ in the following way:
2(Xpp) =2, £(X)= @ ., Then £ can be uniquely continuous-
ly extended onto each subspace Xo U (xp,) , but cannot be

continuously extended onto X . This completes the prcof.

Corcllary. Let Y be a topological space with unique
sequential limits. Then the following conditions are equiva-

lent:
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(d) .Y is c-regular,

(%) For each sequential space X and each continuous
mapping £ of a dernse subspace X, of X into Y iff can
be continuously extended onto each subspace X, U(x), x.e X ,

then it can be continuously extended onto X .

Example. Let Y be the real line the topology of
which is enlarged in such a way. that the sets (- ¢,e) -
- Ulat/m), ¢ >0 , are also neighbourhoods' of 0. Then ¥ is
a Hausdorff (Fréchet) sequential space which is not c-regu-

lar.

. 2

«n

In this section we shall study further properties of
c-regular s;aces. We start with mutual relations between c-

regularity and the separation axioms.

Theorem 4. A regular space is c-regular.

Broof. Let Y be a regular space. If <4, > is a eequen;-
ce and 4 eY-m in »Y , then there exists a subse-
quence (q.',,,) of (44, > such that g4 g ¥~ m in ¥ .
Since ¥ is regular, n -and U(@’,,,,) can be separated by
disjoint open sets in Y and hence in 4Y .

For our purpose we shall generalize the notion of se-
quential regularity introduced by J. Novdk ([6]) for conver-

gence closure spaces.

~ Definition 2. A topological space Y is said to be
sequentially regular if the convergence of sequences in Y

is projectively genérated by the set of all continuous func-
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tions on ¥ , i.e. (4> converges to. 4 in Y whenever
for each continuous function £ on Y we have £(y) =
= Um £(nyy) .

Notice that a sequentially regular space with unique

sequential limits is completely Hausdorff.

Theorem 5. A sequentially regular space is c-regular.

Proof. Let Y be a sequentially regular space. If
{4y > is a sequence and g €Y~ m in »Y , then
{4y > does not converge to 4 in Y . Consequently, the-
re is a continuous function £ on Y auch that (£(4,)>
does not converge to £ (4 ) ., Hence there is a subsequence
{agn> of > such that £(g) e R - U(£(y))) and from
the regularity cf R follows the existence of disjoint open
sete 0y ,0,cR  such that £(y)e 0,, UCE(piy )Y c 0y
The sets £€L 0,3, £€10,1 are open in. AY and separate
o and Uy,) .

Proposition 1. A c-regular sequential Hausdorff spa-
ce need not be sequentially regular.

The well-knon example of a regular space on which eve-
ry continuous function is constant constructed by J. Novdk

in [4] yields a counter-example.

Proposition 2. A c-regular sequential Hausdorff spa-
ce need not be regglar.

Consider the convergence space L,, in [6, p.96]. The
induced sequential space is a Hausdorff sequentially regu-
lar and hence, by Theorem 5, c-reguler space. It is easy to

verify that the space is not regular.
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Notice that teking the disjoint topological sum (see
Theorem 7) of the above two spaces we obtain a c-regular
sequential Hausdorff space which is neither regular nor se-

quentially regular.

Theorem 6. A c-regular sequential T,, space is Haus-
dorff.

Proof. Let Y by a c-regular sequential T, space
and let x, y4 € Y, X F ¢ . Then the constant sequence <x)
and 4 satisfy the assumption of (e) in Theorem 1 and hen-

ce can be separated by disjoint open sets.

Proposition 3. A c-regular T, space need not be Haus-
dorff.
As a counter-example there can serve the space construc-

ted by V. Koutnfk in [ 3, Example 3J.

Proposition 4. A c-regular sequential space need not
be Hausdorff.
The two-point accrete space is a trivial counter-exam-

ple.

Theorem 7. The class of all c-regular s-aces is closed
under formation of subspaces, disjoint topological sums and

products.

Proof. The first two statements are self-evident. Let
Y=TTY, be a product of c-regular spaces ¥ ,Lel . Then Y is
c-regular, for if ySY—m in ¥, then there is an index
« €l and a subsequence {4y > of {gn> such that Mo (yd e~
-Ulpg (4,)) in Y, Since Y, 1is c-regular, the assertion
follows immediately.

Proaosition 5. A quotient of a sequential c-regular
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space need not be c-regular,

Consider the convergence space L, in [6, p.96]. The
induced sequential space is é—regular (see Proposition 2).
Let us identify the points (§,41), § <@y , with 1,4)
and take the quotient space. The quotient space of § sequen-
tial space is sequential (see [2]). Since the quotient spa-
ce is T, non Hausdorff ((4,4), («4,1) cannot be sepa-

rated), the proof follows from Theorem 6.

Proposition 6. Let G be a convergence commutative
group. Then the induced sequential space need not be c-re-
gular.

Consider the completion L, of the group of rational
numbers constructed by J. Novédk in [7]. The completion con-
sists of the group of real numbers endowed with the sequen=-
tial (Fréchet) Hausdorff topology finer than the usual one.
The identical meapping on the rational numbers considered
as a mapping on @ into L, can be continuously exten-
ded_onto each subspace & U(x), x  irrational, but can-
not be continuously extended onto R ., Thus, by Theorem 2,

L1 is not c-regular.

I wish to express here my gratitude to V. Koutnik for
valuable suggestions in preparing the final form of the

paper.
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