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15,1 (1974)

STRONG EMBEDDINGS INTO CATEGORIES OF ALGEBRAS OVER A MONAD
II.

Jir¥1 ROSICKE, Brno

Abstract: Hedrlin, Isbell, Kufera, Pultr, Trnkové and
others have intensely investigated full and strong embed-
dings of concrete categories into categories of algebras.
This paper considers the pcssibility of replacing usual ca-
tegories of algebras by equational and varietal categories
in the sense of Linton. All considerations are carried out
for an arbitrary category in the place of the category of
sets.

Key-words: Equational category, varietal category, U-
algebra, monad, algebra over a monad, full embedding, strong
embedding, Kan extension, Beck s theorem, absolute limit,
split coequalizer.

AMS: 18Bl15, 18C99 Ref. Z. 2.725.11,2.725.3

This is the second part of the paper which appeared in

this journal in 1973.

§ 3. Reflection of limits and colimits

Lemma 2. Let (Mb,U.) be structured over A, (N, W)
over B, F: A— 3B a functor and H:M— N an
F -nice embedding. Let J be a category, D:J—> M a
functor, m € M and »: m —»D a cone to the base D
from the vertex m (i.e. a netural transformation from the

constant functor with the value m to D ) such that
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U»: Um—=>UD , Hy: Hm —>HD and Fupy:Flm — FUD
are limiting cones. Then » 1is a limiting cone, too.

Proof: Let'xe M &and #: x—=> D be a cone
to ) from x . Since U ,Hp» are limiting cones, the-
re exist unique arrows t; : Ux—>Um in A and
t,_ : Hx —> Hm in N with Uz, = Uy; -t; and
He; = Hpy - t, for any 4 € J. Since FU» isa
limiting cone, one gets that Ft, =Wt, .Now, from the
fact that H is T -nice we obtain an arraow t: X —» m
in M such that Ht = ¢, . Finally, »;t = ¥; becau-
se H is faithful and this equality determines t unique-
ly by the same argument.

Before stating the following theorem we recall that
an absolute colimit is a colimit which is preserved by
any functor whatever. Let £,g : a—> &  be two arrows
in A. Anarrow e: &#—> ¢ in A 1is called a split
coequalizer of £ and ¢ if there exist arrows 4:c —
—> & and t: &r—»a in A such that the following
conditions are fulfilled: ef = eg -, ed=4d, , £t = idy ,
9t = »e . Any split coequalizer is an absolute coequa-
lizer (see [14]). If h:a—> & , g: &—>a  are in
A =nd gh =4d, , then ¢ . is called a split epi and

Av a split monic. Of course, £ is epi and A monic.

Theorem 3. Let (M,U) be structured over A
FP: A—3 and there exist an F -nice embedding
He A—V-Alg for some V: X—> B . Then

a) U reflects limits which are preserved by F

’

b) U reflects colimits which are preserved by F
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and F™ for each m € B

c¢) U has the property
ifa,#,ceM,f:c—>a,gic—& in M, Uf is a
split epi and

(%) Ug = LUCE) for an arrow S: Ua —> UL
in A , then there is an M :a —»4& in M such that
U = »

d) U  has the property
if a,r,ceM,f:a—>c,g:br—>c in M, Ug is a
split monic and

(*)0’4'» Uf = UCg)h  for an arrow h: Ua —UL

in A ,then there is an A’: & — & in M such that

Uk = & .
Proof: a) Iy creates limits for any category
V-Alg (see [12] § 6). Let A: x 3D be a cone
to D: J— V-Alg from x e V-Alg for which
PhyA: Jlyx —— 11, D ' is a limiting cone. Let = :
: yp—>D Dbe the created limiting cone in V-ALg , i.e.

llyz =1, A . Hence, there exists a unique V -homo-

morphism t:x—>4 with A; = 2, t for each 4t € J.

Loreover, |lyt = "'d‘ll\,x and therefore t is an iso-

morphism. Thus ||y reflects limits.

Let »:m 23D beacone to D:IJ—> M from
m €M for which U»: Um —>UD and FlU»: Film—,
=3 FUD are limiting cones. Hv:Hm =» HD is g li-
miting cone because | IV reflects limits and Lemma 2

asserts that »: m —» ) is a limiting cone. Hence U
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reflects limits which are preserved by F .

b) At first, we shall show that |l :V-Alg — B
reflects colimits which are presei'ved by (Ida)"" for
each m ¢ B . Let »: D—=» (a ,¥) be a cone from
D: J—>V-Aly , Di = (ay, @™) for L € J,
to Ca, k) e V-Alg- for which Illy»:ay—> a and
(i)™ Qy —> a™ are colimiting cones. To prove
» colimiting, consider any other cone % : D —» (&, )
from D to (&, &) E.V-Alg« . Then there is a unique
arrow t:a — & in B such that 2, =t.»; for each
ieJ . Take ieJ,m,b eB, 0: V" >V*® o

consider the diagram

Both triangles commute, the top and the left hand trape-
zoids commute by the definition of a V -homomorphism, too.

Hence t".aﬂthGJ»‘? = ,H.‘cm.t“.v_".:

for any 4+ € J . Since 91" form a colimiting cone, it
holds ™, @, 4 () = %, 5 (6)+™  and thus +t:

i (a,U)—> (&, &) is 2 V -homomorphism. Hence »

is a colimiting cone.-

- 134 -



Now, b) follows from the dual of Lemma 2.

¢) Any category VY-Alg  has the property (% ). Na-
mely, let Ca,¥), (&, &) and (e, ) be V-algebras,
£i0—>a and g¢: ¢c—>& V -homomorphisme, £ a
split epi in B and g = hf for an arrow ki a—>&
in B .Let m, % eB and 8: VY™—=5V® | It holda
Iy g (0) £ = 5™ L g (8) = G, 4 (0) = (6).
Gl (@) AT £™ ,since £ is a eplit epi, £ is a
split epi and thus A%, 4, g (8)=3, o (8). 4™ . Hence

A is a YV -homomorphism.

Let a,&,c,f,g and v be from (x). We have to
find &' with Wh'= 4 .Since FUf is a split epi, the-
re exists a V -homomorphism M :Ha —> H& such that
Pl =llys, . Since H is an F -nice embedding, there
exists h'ia—> & in M with Hh' = s, .It holds
| lvH(h’f)za | lv(h,‘H(f))- F(R)FU(£) = F(HU(E)) =FU(g)=
=11, H(g) . since | ly H is faithful, it holds A'f =
=g ,ie. UWHDIU(E) = Ug = LU(E) . Hence USK =

= £, because Uf is epi.
d) Analogously.

In particular, U reflects absolute limits and co-
limits whenever (M, ) is nicely embeddable into some
V-AMg . If V-Alyg = BT for a monad T in B , then
u reflects colimits which are preserved by F and TP
and in d) it suffices to suppose that WUg- is monic. In
the case B = Emb in b) we can confine ourselves to the

sets m for which caxd m & namk $c M . If A=B=Ems,
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then c¢) and d) are proved in [19] 3.14 for strong embed-
dings.

Theorem 4. Let (M, U) be atructured over A and
U have a left adjeint P'. Then the following conditions
are equivalent:
(1) L:M—s A" is a realization
(ii) M 1is strongly embeddable into V-Afyg  for some
V: X—3B :
(iii) M is nicely embeddable into V-Alg  for some
V: X—3B
(iv) U has the property (% ) from Theorem 3

usf
(v) U reflects split coequalizers (i.e. - —>. —uﬁ» .
n e

£
. . . . L= . R
a split coequalizer implies _— a coequalizer).

Proof: Clearly (i)=—=>(ii) ==(iii) and by Theorem
us -
3 (iii)===(iv). Since .—> . Uk, 4 split coequali-
Ug
zer implies that UM is a split epi, the implication

(iv) == (v) is true. It remains to show that (v)=—=>(i).

This assertion is a part of the Beck’'s tripleability theo-
rem which proof can be found in [14]. Following considera-
tions in [14], we shall draw the proof of our implication;
full details are given in 14 . At first, W has a coden-
sity monad R = Xy = UP (the monad defined by the ad-
Junction) and U is the usual comparison functor for which
UL =G "L anda PR = TP holds. Let g: Idy— UP

and & : PU—>1Idy, Dbe the unit and counit of the ad-
Junction M -—}_—_: A . Let m eM and consider the dia-

P

gram
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LX) €
1) PuPum ——=> Pmn— = m

—_—

Ue,,

It holds €., ° €pym = €+ FUE,, by the naturality of € .
If the functor W is applied to this diagram, we obtain
Uep, Ue,,
UPUPUm ———— S UPUm ——— Um
UPUe,,

which is a coequalizer in A split by

UWPUPUM &———— UPUm <«<——1Um
TNuPum Lum

By.(v) (1) is a coequalizer in M .
.Now, consider £: Umv —» Um' such that £: Um —>
—> Um’ is an R -homomorphism, where m,m’e¢ M , In

the diagram

E'PUI»‘» Com
PUPUM ——————> PUm — om
Pue,, !
|
(2) PUPs . Pr : £
!
8F’llrm‘ i em® Y
PUPUm’ T, Y .m
€,

both left squares commute, so €., - Pf must factor
through the first coequalizer €,, by a anique arrow <’

as shown. If the functor 1  is applied to (2), we obtain
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R R R R 2-F"G"U"m« -
FGE

U

Fretre Fr s

y L
| _
R R T 2 R g~ . _

R R~ — )
P66 Im 2 F¢ I — T
FG g,
because Ueg =8 U , where € is the counit of the
R

o s g_E .
adjunction A —"<_1_ A . But the right square commutes
P
also for £: Um —> Um’ and since EUm is the coe-

qualizer of € and PRGREUm , we get e =

FRGR Um
= f . Hence U is full and (i) holds.

If A has kernel pairs of split epis, then any condi-
tion of Theorem 4 is equivalent with the following one:
£3m — m’ in M, Uf split epi implies that £ is

a coequalizer (see [13], Lemma 4). The equivalence

(i)Y¢&=>(iv) is proved in [11 for the case A = Emb ., The

supposition that W has a left adjoint is necessary.

Example 1. Let PY:Ems —»> Emn be the covariant po-
wer set functor. Let X be an infinite set, & X an
infinite subset and 2 : P*x—» P*x a constant mapping
with the value 2 .Let M be a full subcategory of the
category Emn (Id,Id-)P+ having one object (x,x) and
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UCx,x) = x . Therefore (M,U) is P*-nicely embed-
dable into the category of unary 'algebras and we are go-
ing to show thaAt M cannot be realized into any Ems T .
Let C be the set of all arrows of M ., Clearly C =
={f:x—x ~P¥(£)x =23 .We shall use the characte-
rization of endomorphism semigroups of T -algebras given
after Theorem 1. Assume that M can be realized into so-
me EmpT . Let u, " ex, uex,r ¢ x and define g:
‘X —> X by g,t =t for wtHa, Qu = v and gv =
=4 .Since P*(g)2¥ %2, g ¢ C and by our characteri-

zation there exists ('y"F )few"’ e ;l;\'“y X such that

Ihrfe = thpe for any b e C and guy,, =+ Yy . Let
My, My € 2 such that w, uy, u, are mutually different
and &,, R, 2z -4u4j—> z be bijections with e, ()=
£, i X —> X be defined as follows for 4 = 1, 2 :
fit=Jt for t ez~ 4ud, 6=t fortex-(zuivd),
fiu =u and f34 = uy , Clearly £;,£;9 & C for

i1 = 4,2 . Hence 'f‘_;,.g,(ry—.i,d') = Yo = £i(¥y) - Since
F%id * Yy the set {oa, 7"3’9—? has to be equal to
'fu,u«,’? or 4w, 4,3} by the definition of f4 and on the
other hand the construction of £, implies that this set
must be equal to {a,u,% or far,u, % .But this is a contra-

diction.

Theorem ~}_'. Equivalences given in Theorem 4 remain
correct if we add to (i), (ii) and (iii) the condition that the

occurring embeddings have a left adjoint and to (iv) and (v)
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that M has coequalizers for all pairs £,g.:m —% m’
in M such that Uf, Wg have a split coequalizer in
A
Proof: Again, (i) == (ii) ===>(iii) and (iv) ==

===)(v). By the tripleability theorem (v)=—==>(i) (see
(141, p.151, ex. 5). Let H:M—>V-Alg be an T -nice
embedding having a left adjoint L :V-Alg —> M and
£,¢: m —% m’ a pair of arrows in M such that Uf ,
Ug  have a split coequalizer &:Um’—>a in A .
Hence Fh is a split coequalizer of FUf, Fllg- . Since
N ’V creates split coequalizers (see [12], § 6), Hf ,
Hg,  have a coequalizer A . L being a left adjoint
preserves colimits and thus L&’ is a coequélizer of LHE ™
and LHg} « The counit € :LH —»Idy of our adjunctic;n
is an isomorphism because H is full and faithful and the-
refore £, q have a coequalizer L', e:,; . We have

Y (v).

proved that (iii)

Theorem 5. Let A have countable copowers, (M,U) be
structured over A and U have a right ad’oint. Then
the following conditions are equivalent:

(i) M is nicely embeddable into some category monadic
over A

(ii) M is nicely embeddable into a category V- Alg
for some V:X—> B

(iii) UL has the property (x )™ from Theorem 3

(iv) U reflects split equalizers.

Proof: Clearly (i) ==>(ii) and (iii) ===p (iv). By
Theorem 3 (ii) === (iii). Let (iv) hold. The dual to the
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implication (v) ==>(i) from Theorem 4 says that M is
realizgble into a comonadic category. The condition (i)

holds by Corollary 3.

§ 4. A=Ems gand full embeddings

Lemma 3. Let (M,U) be structured over A, W have
a left adjoint P and N be a small codense subcategory

of M with the inclusion functor Xt N—> M . Then

Ry =Ry -

Proof: Since W has a left adjoint, it preserves

all right Kan extensions ([14), p. 239, Th.1l), i.e.

Ram UK =U.Ramy, X . Further, RamyK =1Idy because
N is codense in M . The functor P as a left adjoint
for W is equal to Rmu Id, (see [141, p. 245 Prop.3).
Hence Ram Ram K =P and therefore RamyX =P (by
Dubuc, see [14], p. 239 ex. 3). Putting all these facts to-
gether we obtain that B, = u?:ll.KwnUKK:RamUKuKsKUK .

TB-functors were defined in [17] as a special class
of set functors Ems —s Emp (contravariant are admitted,
too). We shall not need the precise definition of TB-func-
tors, for our purposes it suffices to know that any hom-
functor Emsn(a,~) or Emp(~,a) for a e Ens is a
TB-functor and that the class of TB-functors is closed un-
der compositions and all limits and colimits over smzll dia-

grams.

Lemma 4. Ry is & TB-functor for any small concre-
te category (M, W) .
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Proof: Denote by D: me M — EMEM a func-

tor defined by D(m’,m)= U U L:va(}.‘.m(— , Um"), Um).

It was quoted in § 1 that R, = Ram U = fm]) (m,m) .
Any functor D(m’,m ) is, as a composition of hom-func-
tors, a TB-functor and further, the subdivision category

§
M

small limit of TB-functors and thus is a TB-functor itself.

is amall because M is small. Hence Ry is a

Dually a left Kan extension L of U along U is a
TB-functor because L is a small colimit of functors

Ems (Um’,~) x Um

Supposing (M) , many equational categories.without
a rank can be strongly embedded into some €L (A) , e.g.
complete lattices, complete Boolean algebras, compact Haus-
dorff spaces and complete Boolean algebras with closure

operation (see [19]).

Theorem 6. Let (M) hold. If T is a TB-functor,
then the varietal category EmsnT is strongly embeddab-
le into a category 9 (4) for some type A . It holds
whenever T =R, for a U:M— Enp " with a small M
and particularly if EmaT has a small codense subca-
tegory. '

Proof: Ema ' is a full subcategory of the catego-
ry Ems (T, Idg,,) which is strongly embeddable into so-
me YW(A) for a TB-functor T by [19] 3.11. The rest

follows from Lemmas 4 and 3.

4An example of a varietal category with a small coden-

se subcategory is the category of compact Hausdorff spaces
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in which the unit interval [0,4] forms a codense sub-

category.

Problem 1: Can any equational (varietal) category be
strongly embedded into some ¥£(A) under (M) ?

The full embeddability of some equational categories
without a rank into <€ (A) implies (M), e.g. of com-
pact Hausdorff spaces, complete Boolean algebras, compact
Hausdorff Booleén algebras and of compact Hausdorff abeli-
an groups (see [9), [10]). We may ask whether there exists
an equational (varietal) category without a rank which can

be fully embedded into some ¥ (A) under mon (M) .

Now, we turn our attention to full embeddings of con=
crete categories into equational categories. Kulera quotes
in [9] the result of Trnkovd that any concrete category can
be fully embedded into the category of topological T, -apa-
ces and continuous open mappings. By (8] the category of
topological spaces and continuous open meppings is dual to
the category of complete Boolean algebras with closure ope-
ration, which is an equational category.

Hence any conc&ete category can be fully embedded into

some equational category.

Problem 2: 1Is any concrete category fully embeddable

into some varietal category (without (M) )7

Problem 3: Let A be an arbitrary category. To study
full embeddings of categories structured over A into mo-

nadic categories over A or into categories V—Alg/ for

V:X— A .
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As a small contribution to the last problem we shall

give the following results.

Theorem 7. Let A be a category, (Ems,W) be a struc-
tured category over A which is realizable into some mona-
dic category over A and W have a faithful left adjoint
P: A—> Emo» ., Then any category (M,U) structured
over A having a small dense subcategory N s M can be
fully embedded into some category monadic over A .

Under (M) , it holds for any (M, U) .

Proof : (M ,PU) is eoncrete and thus supposing (M)
it can be fully embedded into some <%(A4) (if M has a
small dense subcategory it holds without (M) by [71).
Let U’; €(A)—> Ems Dbe the forgetful functor. Thus
L CA) ,WW) 1is structured over A and WU’  has a
left adjoint. If we show that Wi’ has the property (x)
from Theorem 3, then Theorem 7 will follow from Theorem 4.
But it holds by the facts that W and W' have this pro-
perty and that a faithful functor reflects epis.

An example of a category A from this theorem is any
concrete category (A,P) such that P has a right ad-
joint W  which is a full embedding W: Em» —> A . For
instance, such a category A is the category of graphs
or the category of topological spaces (and continuous map-
pings).

Finally, we shall give an example of a category A and 2
small category structured over A which cannot be fully

embedded into any category V-Alg for V: X—A ..

[
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Exsmple g.. Let A be a category with the only one
object @ and with arrows £, : e —>a for any inte-
ger m . The composition is defined by £ + £,, = faermm »
i.e. fp = 4dgy . Therefore any arrow in A is an iso-
morphism. Categories structured over 4 having the only

one object are in 1-1 correspondence with subsemigroups

of the additive group of integers. Let M be a subcatego-

ry of A having arrows £, for m>0 and W:M—>A the
inclusion. Thus (M,U) is structured over A and
M(a,a) is the semigroup generated by £, . Let H: N—
—» V-Alg be a full embedding, where V:X—> A is a fup~
ctor. Hence the semigroup of endomorphisms of the V-algep-
ra Ha is generated by Hf, . Let ||, H(f,) = £, . Defi-
ne Ff, =f,, . Then' F:A—>A is a functor because
F(fge£,) = Ffgem= Emcsasm) ™= Emmsmm = Py . Py . Let £,
be an arrow of M . It holda

FUf, = =£ ... £ = || HE .1 HE = [| HEE .. £)=1 | HE, .
— —_— —_—
mx mx m X
Hence H is an F -strong embedding. But, by Theorem 3 M
is not strongly embeddable into any category V-Alg. becau~

se 1l does not reflect isomorphisms.
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