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ON A QUESTION OF PULTR REGARDING CATEGORIES OF STRUCTURES

James WILLIAMS, Bowling Green

Abstract: It is known that every constructive struc-
ture can be realized as a structure based on a power (un-
der composition) of the contravariant power-set functor.

It is proved here that one can use the covariant one instead.

Key-words_snd phrases: Categories of structures, reali-
ze, majorize, covariant power set functor.

AMS: Primary: 18B15 Ref. Z. 2.726.11
Secondary: 08A20

Aled Pultr has given a definition which allows one to
describe models of higher order theories in terms of first-
order structures defined in the range of a functor from
Set to Set . This suggests the question: which functors
generate structures comparable with those of ordinary nth
order logic (for some m )? Pultr has given a partial answer
by finding a class of categories of models that can be rea-
lized in S(CP™)™o ¥, ) , the category of all models
(X,U) . whose atructure Il consists of a distinguished

subset of ((P7)™ o V) (X) where P~ is the usual

>
contravariant power set functor and V, 1is a sum of the
identity functor and a constant functor. The present paper
gives a similar partial answer by showing that these same

categories can be realized in S((P*)”oV,), where P*
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is the usual covariant power set functor. As with Pultr’s
work, if one is willing to allow infinite powers of P*,
then the class of functors involved can be enlarged by ta-

king limits and colimits over small categories.

When not specified, the terminology is as in [1].
Set  denotes the category of sets and functions. For any
function £: X—> Y , let £¥ equal (P )(£): P(¥V)—> P(X),
and let £~ ambiguously represent (P*)®(g): PR — PRy .

1 Lemma: SC((P-)2) is realizable in S((P*)4);
(P-)? is majorized by (P*)¥

Proof. For any % s P(X) and AsX , define A to
be 2 -substantial iff YUueX, el iff UNA € .
Step I: For any function f£: X—Y and % = P(X), if A
is % -substantial, then £LAJ] is £"V(U) -substantial.
Since £YW(%) =4VsY:£fY(V)e 2% , we have that
YVeY, VOfLAl e £v¥(2) iff £Y(VNELAD e U
but £Y(YN£LAJ) =£Y(V)NEY(FLAT) , and »
£Y(VINEY(LLAL ¢ U iff £Y(V)NAe U , iff

£V(V)el iff Ve £¥YY(U). Hence £L[A] is £YY(U)-
substantial.

Define a functor R: Set— Set as follows: for any
set X, R(X) ia the set of all pairs {%, &3} such that

i) £sdui:UsX3 ,

ii) felU@, B =4{8,,8,3:8,,8, =X} and @ =2
=244Q,,8,3: 6, + 8, =and G,,8,eUB3 ,
iii) UUZX e UUG
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for any map £: X— Y let R(£)= (PH)4(£) . By nonstan-
dard convention, we shall consider phrases such as.
"4%,83 e R(X) " to abbreviate " {X,B¥IeXR(X),

X satisfies (i), and @ satisfies (ii)".

Step II: If £: X—=Y, 42,83 R(X),{4{Y,R3 e R(Y), and
YEX,®3)=4Y R}, then £Y(X) =Y and £Y(B)=R .
Suppose not; then £f¥(@)=Y and £Y(E)=R . Now if

uv g were non-empty, £Y(@)  would contain a nontri-
vial pair of the form 40 ,fL313 . But ¥ contains only
singletons. Hence @ =4{@3} since f e UQ . Consequent-
ly £V (@)=4{P33% . Similarly, UU£V(Z) = UUR  must
be empty, so that R = {{033=% . Hence £V(Z)= ¥ and
E£VB) =R .

For any 4%£,8% €« R(X) , define @& to be signi-
ficant iff V{Q,,8,3e@, @ NG, =7 .

Step III: It is easy to see that given f:X—>Y and
{%X, 8% e RCX), £Y(@) is significant iff @ is sig-
nificent and ¥8,,8, e UB , B %+ B, impliea
£L0,IN£LQ,1=4 .

A realization of S$((P~)%) in S(R) can now be
given as follows: for each X and % g P2(X), let U*
be the set of all {X,@ 3e R(X) such that if @ 1is si-
gnificant, then for some Y e U, UUQ is U -substan-
tial and UL =4fUeU:30 s UB, U=UQF . Let
£:X—Y, U s P*(X), and ¥ < P2(Y) be arbitrary.

Step IV: If R(£)LU*] ¢ U* , then £WILUI £V . Pick
L el . Let B, be the set of all pairs {£Y(A),£v(B)}
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such that A,BsY, ANB=f , and caxdA,caxdB<1.
let £E=4{U3:UeU and 3 sUG, U=UQ3% . Then
{2,803 € U* , and thus £V({X,B3) e V™, £V(Q) is cle-
arly significant, and thus we may choose %'eV .80 that
UU£~Y (@) is Y -substantial and U~V (%) =1{Ve ¥ :
:3B sU£Y@),VY=UB3 . We need to show ¥'= £¥V(%). From
the choice of % and the definition of @ , it is clear
that Uf~ (&) s.{Ve’If: Ve£LX13% .- THence UFfY(Z) =

= VJ]£LX] since £[X] is 7 -substantial. From the
definitions of & and @ , it is clear that

UEM(E) = 4AVEFIX1 £V (V) e UL

= {Ve fYY(UY;s Ve £LX]3
Hence U£™(®) = £YY(U)I£LX] since f£LX]1 is
£YY(U) -substantial, so that YIf[X]=£YVC(U)IFfLX] .

But then ¥=£vYV(%) by substantialnegs. Therefore
£WILUIE VY

Step V: If £YW[Uls V', then R(£ILU*] = U* , Pick
{2,803 € U*. If £¥(Q) isn’t significant, then
REIHLE,R3) = 1£€V(x), £Y(R)3 € ¥ ¥ . If £7(Q)
is significant, then so is @ , and for some L ell, UUM
is O -substential and UX =4{UleZ:30 = UG, U =UQ3} .
But then £V(UUQ@) is £YY(U) -substantial .and
V(WY eV . To see that £V (SXE,Q3)e ¥* , we need
to show that

UEV(XE) =4{Ves"(W): 30 s UR , V= UsYa>3 .

Pick Ve U™V (%) ;s then for some W el andlslU@,
UW=UQ and £CUI =Y. We have £¥C£IUDNUIR = U ,
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since if not, there would be some G e @ =and 8,cV@ -~

- @ such that fIA,1NfILR,] + # , in which case
£~(Q) wouldn’t be significant. Consequently,

£Y(£IUl) e U since WQ is 2 -substantial. Hence
fLUle £YY(U) . Conversely, if Ve £YV (%) and for
some @ s U@ ,V=U£v(Q) , then £V(V)NUUG = Ua
again since £Y(@) would otherwise not be significant.
Since f¥(V)e U and UUQ@ is % -substantial,
SYCV)NUUR € % . Hence £(VINUUG € UX , and

LLEVAVINUUBT = £LUART = Ve Uf™(E)

Therefore f£V({%,B3) e ¥* , as required.

We have just shown that the map U ++2%* induces a
realization of SC((P~)?) in S(R) .Since for each struc-
ture U € PA(X), U* s (PHH)*(X) , the same construction
may be considered as a realization of $((P~)?) in
S((P*)¥) . Using a similar comstruction, we can now show
that (P*+)® majorizes (P~)2 , For each set X, each
U e P(X), and each U-substantial A< X, let %,
be the set of all {%X,B3 € R(A) such that U@ = A
and if @ is significant, then UX¥={UeU:30 s UG ,
U=UQ3%. Define a functor E: Set—Set as follows:
for each set X , let E(X) = {%y : U & P(X) and A
is % -substantial} ; for each function £: X—Y  and
- Uy e ECX) , let E(£ICUA)=(P*)5(¢(£), E isin

fact a functor, as a result of the following

Step VI: For any given £: X—>Y and %y € E(X) ,
Ed) (U = £V (U)o ay - The argument of.astep V
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shows that E(£)(UA) S £¥V(Up)poray . Now pick
1Y,R3 € £¥CUVgpa; . Let X =4{£VIVINAT: Ve UY3,
and let @ ={{£v(R NA),2"(R, N A} :4R R 3 e R Clearly,
£fYHUX,Q3)={Y,R§ and UUX s UUQ =A , - so that
{%,R¥eRCA). If & isn’t significant, neither is @ ,
and thus {X,Q3e %y ., Assume R is significant; then so
is @ . To see that {%,83 ¢ %, ,we need to show that U® =
=4l e%:30 s UBR, U=UA? . First pick U e UZ;
then £LUJ e UY , so that for scme B s UR, £F[UI=UB
and fLUle£Y(U) . Butif Q=4{£V[BINA:BeB?,
then A s UG, U=£Y£IUD NA = U
A is QU -substantial and £Y(£LU1) e % , since £[U] e
e £YY(U). Conversely, if lelU, A= UQ , and U=UQ ,
then £LU] = Uf~v(QA) with £¥(A) € UR . Moreover,
fYELUDNA=ULe U » 80 that £V(£[U]) e U and
fLUT € £¥Y(U) , 8o that £CLUI € UY . But then
U=£Y£[UINA € UX . Therefore 12,83 U, .

, and UL € UL since

For each set X, let <y be the inclusion map from
E(X) to (P*)5(X), ¢ is clearly a monotransformation
from E  to (P*)5 , Now define an epitransformation
from E to (P)?  as follows: Y2, e ECX), 7y (U= X .

Each 9y is well-defined since each %, contains a pair
42,83 such that UZ = AUJA (just let @ = 4a,,8,3 :
:8,8,€A, 0,08, =g4 , and card @, card G, =13) .

Each 9y is clearly onto; to see that ¢ is a natural trans-
formation from £ to ¢(P™)% s Pick £:X—>Y and U, €

€ ECX) ; then (P2() (a5 (Up)) = £YYCU) = 9y (£ (U g a3 )

= 9, (ECE) (U, .

- 118 -



Therefore (P majorizes ¢ P2 .

2 Theorem. If @;,..., 65 are constructively majoriz-
able functors and A,,..., 4, are types, then SG, Ay ...
voey-COp,8y)) is realizable in sccp™. ¥,) for some
set A and natural number fe .

Proof. The numbered theorems which will be referred
to are those of [1]. By Theorem 6.5, S((Gy,4),-.., (6m, 4n))
is realizable in S((P-)* . Yu) for some number % and
set M . If & is 0dd, then Sc(P)®, Vy ) is realizeble
in SCCP-)***.v,) by Theorem 1.5. Hence S(CG,,4,), .
veey (G, A,)) is realizable in some s«pH™. Vy) - By
Corollary 3.7 and the above lemma, (P~)2™.o ¥y,  is majori-
zed by (P*) oV, . Hence by Theorem 6.1, S((P-)*™s Vj)
is realizable in S((P*)*", V) -

Problem: Characterize the class of all categories
SCF) which can be realized in some S((P*®oV;) (or,
equivalently,S((P")"oYA) ). Characterize the class of all
categories S(P,A) which can be realized in some

SWP*I™* T) (equivalently, in S((P-Y™*,T) ).

The above theorem may be extended to the infinite case

with the help of the following result.

3 Lemms. For each monotransformetion <« : L—»(BP¥)™
there is an m =Zm and a monotransformation 8:(P%)™— (PH)™
such that 91-?” ,\vhere §:I1— P* is the unique monotransfor-

mation.
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Proof: First we need some facts about natural transforma-
tions from I to (P+)™, By Remark 2.9 of (2], the natural trans-
formations from I to (P*)™ are in 1-1 correspondence with the
elements of (P+)™({gf3) and for any set A e (P*)™({g3), we may
let T, A be the transformation such that for each set X and
XeX, Tpax(x) = (P*)"(e,)(A), where g :ifi—sX is given
by €x (f) =x,Since Y 4, X doesn’t depend on X in a signifi-
cant way, we will usually drop this third subscript. Notice that
if A s (2™ g5y | then

Tyt h () = (PN (€ ) (A) = (B (g, )(a): a6 Ad=1r, ,(:aeAS.

1) The following are equivalent:

a) %, a is a monotransformation

b) xamnk A=m (where gwamfk A is inductively defined ss the smal-
lest ordinal greater than xamka ,for all a eA) .

¢) Vx, Un'e“,A (x) = x , where for any set S, U°S =S and ™=
=UiU™r15e83 .

a) 3y, U"c,,,,A (X)* g .

Proof: The only element of (PH%{f}) is % , and so Y E
tl—> 1 is the identity transformation; o, clearly satisfies
the four conditions. By induction, eassume for m = 0 that .the
four conditions are equivalent. Pick A € CE*)™*1(§03) . Then
namkA=m+4 iff for some a €A, ramk a=m ,in which case
%m,q Would satisfy the four conditions. Thus if rank Amma+1,
then

U“M""mM,A ()= UM’&'@,M, (x):a €A}

= MU, (x):aeA?
{ = Uixi, if YaeA, rank a = m
= Uix, 93, if 3a e A, rank a<m

= X >
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and so the four éonditions hold. But if ramk A<m 4+ 4 ,

then

m+1 m
U™ Bpga 0= u{u 'cﬂ,w(x):a’GA3=U{¢§=¢,

and they don’t hold.

For any set X , let ary be the unique map from X to
4{f3 . For each natural number % and C e (P*Y®(x) , define
the S -type of C to be (P*)‘"Car’x)(C) . Notice that a set
Ac(PH*™(4g3)  is the S +1 -type of € e (PH¥+(X)
iff A is the set of f -types of elements of € . We will
need the following properties of natural transformations
from (P*)¥ to (PHY* . "

2) Suppose that A e CP*Y®({f?)  and xank A<k .Then
for any set Y, A€ cPHY® Yy , as can be easily seen by
induction on the rank of A . Consequently the conatant
+)h

transformation ¢ from (PH)% +to (P , given by ¥X ,

YC e (B3 (X), 44(C)=A is natural.
3) If Ce (P*)P(X) and £:X—>Y, then (PH¥(C)
has the same 4 -type as C since
(PP () (PP (£)(C)) = CPHIF (o, £3(C)
= (ph¥amocr .
From this fact, it follows immediately that given ¢, :
((P*)*— (P*)®  and A s (P)*(4g3), one can define a na-

tural transformation 8: (PH)d, (p*y* by ¥X,VC e (P*’)é(X) ,

@4 (C) ,if the 4 -type of C is in A
8 (O)=
Yy (C), otherwise.

4) The same fact guarantees that if for each a e A , We
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, and define @: fl’*)w-»
—(P* by VX, Ve e (BAYX), g (€)=50,5¢C) :
:Ce€,aeh, and a is the j-type of C3 ,ther ¢ is

cnoose some 6, : (P+)17—s (PH)™

also a natural transformation. Notice that if each 6,y (C)
is of & -type E"’(ﬂ) , then either g C€) is of &+1-type
g‘“‘(ﬂ) » or, possibly, g (€) =4 .

5) Given natural transformations @y,--.» ¥,  from
(PH?F 1o (P"f", we can define a product transformation
. 3 o+ p R s
. (P — (P*) as follows: inducti

vely define <{x>={x3, and

(X g3eees Xp g P = 4K g5eee s Xip D 5 <RXggoeny Xy YU (Xpy ¥ .IT is
easy to see that N< Xy eee, Xy 4y = <X4y---» Xp» and (by in-
duction) that U™(XyyeeeyXmaqd = £Xgy00e5 Xm4q 3 5 80 that
this is an acceptable convention for m -tuples. Alsa, if
XgseersXy € X, then (XyyeeeyXpde (PHP(X) ; hence
if C eCP*)? (X)), then <@ (C)ye.., @ (C)>=gx-..xg(O)e
€ (PHY™P(X) . Notice that if <Dg,-.-,D,Y are of k-type
§b(ﬂ) , ‘then (D_‘,,_,,])p) is of S+ -type §~"’(¢)

We can now find the required @: (P*)™— (P*)™ as
follows: for m =0 the only monotransformation from I to
(P¥)™ is the identity. For m = 41 , the only one is § it-
self. In either case we may let © be the identity on (PH™,
Notice that if @ e (PH™({ED) , then for each set X and
X € X, T, o is characterized by the fact that the m -ty-
pe of Ty o(X) is a, since

CPIYIY (T 0 (X)) = Ty o (a7 XN =Tp olg)=a -

Our inductive assumption will, accordingly, be that for
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m =4 ,there is & k& =m such that for each monotransfor-

mation < : I—(P*)™ , there is a monotransformation

m.a
0 : CP*)™ L (P*)™ such that whenever C e (P*)™ ig of
m -type @, 0, CC) is of k-type E“(ﬂ) . We then have,
in particular that VX, Tm,q (x) is of m-type a , and

. 'S ‘
ea-"m,w(x) is of &-type § (), so that @ Tma =

= "&ﬁb(ﬂ) = gk . Let TmaaA 't I—(phm+? be any
fixed monotransformation. Let A=4@y...,ap,d U{ily,..., By F

be an indexing of A such that @yyoery X, aTE the elements
of A of rank m . For each a; ,let 6; be a monotransforma-
tion from CPHY™ to (P)%® satisfying the induction hypothe-
sis. Define @;: (P (PR by VX, V€ €

e (P (x)

9y €C€)=46,,¢C): Ce € and C is of m -type @; ¥ .

Let @:(PH)™*i_o (PpHyReP+? be given by YV e(]"’)‘"‘(x),
ex(‘e)g @y -ee x @ (€Y, if € is of m+4 -type A, and

R~m -4 .
8y (€) ={§” (€),#} otherwise. The g; are natural

by (4), and @ is natural by (3), (5), and (4) and (2).

To see that if € is of m+4 -type A , then 6y (€} is
of p+fe+4 -type gk"f"'”(ﬂ) , notice first that {ay,--apn}
is nonempty by (1) since m A is a monotransformation.
Each element of each g@,x (€) is of & -type g"(ﬂ) by the
inductive assumption. Hence each element of Py eee gg,l(‘?)
is of S+ -type g"”‘(ﬂ) 5 S0 that g, > ... %ce) is
of S+m+4 -type E"*”‘""Cﬂ) .

Finally, each 6y  is mono: let 6 (€) Dbe given.
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< may be recovered as follows: if g e Oy (€) , then
L= UPR ™9 (¢), Assume § & 6x (¢). Then € is ofm+4 -
type A. Let €=, U€, , where €, is the set of ele-
ments of € of rank less than m , and ¢, is the rest. We
know that (PH™my €)= A=hay,em, apd Uiy, .. Vg3 .
By an easy induction we have that YC & (P*)™(X) , rank
C2m iff xamk (PH™(m)(C)=m

, and that if rank
C<m ,then (P*)™(m)(C)=C . Consequently, & =
=A%y, 43 ,end 4ay,...,a,] is the ms1-type of &, .
For each.- a; ,let 7 ; be a left inverse function for
54,( 3 Clearly,

L=4N, (D) : D is the i*Melement of some 4 -tuple
in 8, (€)% .

As it stands, the number m =%+ f1 +41  depends on
A, since o does. However, a uniform m = mac fm :Ae€
€ (P*)™*(X)} is easily obtained by composing 6 with
§7TA This completes the induction.
4 Theorem. Let F_ (L &€ ') be TB-functors (in the

sense of [21), and A (L & ") types. Then there is an or-

dinal =« and a set A such that

SUF, ,A) gp)=HE SUBNT LV, ) .

Proof. Let A:I—»(P-)? be the monotransformation
given by YX,VxeX , A (x)={AsX:xe A3 . Define
:I—F by VX, VxeX, @, (x) = Ay(x)y; =4{X,B3e

eR({x3): UUB = 1x3 , and if @ 1is significant, then
U%X = §{x333 . The condition that UUE € UUB = {x}
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forces @y (x) to be independent of X , and a moment ‘s
thought shows that w is a monotransformation. As at the
end of Lemma 1, let g :E— (P*)® be the monotransformation
given by the equation @x(%,) = %, , and let 3 :E— (P2
be the epitransformation given by 4y (%Uy) = U . ' Then
Y@ = A . Finally, for some m  bigger than 5 , we may
let 8: (PH5—» (PY)™ be a monotransformation such that
Em

fow =
We need to show that any functor of the form ((P™)2)R

is majorized by some (P+, §)* . Let o« be a limit ordi-
nel larger than @ . Then (CPHPA < ((P-)2)= by
Lemma 3.7 of [2]. The equations v« = A and 8w =§"",
and Lemma 2.8 of [2] show that

¢ P A%< (B, @< ((BH)®, g < ((BH™, §7% .

But by Lemme 2.4 of [2], ((PH)™, §™) = (P+,§)% , since
the first colimit is just being taken over a subsequence of
the second. Now by Theorem 3.7 of [1], we have

P2k o v, < (1’.'"', §)CeV, , for any set A ,and thus
by Theorem 6.1 of [11, S(KPI)IZ APV SUP*, §)% e Ty ) -
Finally, let S(F,,4) ¢ be as in the statement of the
‘theorem. Then by Theorem 4.2 of [21, S((F,,A ) ¢p) =%

= SKCE, P e vy for some ordinal 3 and set A

and the theorem follows.
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