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SOME PRIMITIVE CLASSES OF LATTICES CLOSED UNDER THE
FORMATION OF PROJECTIVE IMAGES

Véclav SLAVK, Praha

Abstract: In this paper it is shown that there exist
infinitely many primitive classes X of lattices such that
LeX, Sutr(L) = Sutr(L’) imply L'e X , where
Sufr (L) denotes the lattice of all sublattices of L .
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A lattice 1' is snid to be a projective image of a
lattice L if there exists an isomorphism of Sw&r (L) onto
Sulr (L') , where Sulr(L) denotes the set of all sub-
sets of L closed under both meet and join; Suwl (L) is
e lattice with respect to the set inclusion. G. Gratzer sug-
gests (see [1], Problem 8) to find primitive classes of lat-
tices which are closed under the formation of projective ima-
ges. It is known (see [2],[4])) that the primitive class of
all distributive, and the primitive class of all modular lat-~
tices, as well, has the property mentioned above. The purpose
of this paper is to show that there exist infinitely many
primitive classes of lattices closed under the formation of
projective images.

Let . and L' be latticea and let 4 be an isomor-
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phism of Swufr (L) onte Sul (L’). This isomorphism
induces a bijection F of L onto L' defined by
Fx) = iff o ({x3) = {4% .

Since the elements x , Y of 1. are comparable in L
(i.e. 4x,438 Sw& (L) ; it has the length two in

Sukr (L) ) if end only if the elements ¥ (x), ¥ ()

are comparable in L’ , we have

Lemma 1. Let M be a lattice which is as lattice de-
termined by the comparability relation uniquely up to iso-

morphism., Then Sw&r (M) = Swtr(M") implies
MM,

Lemma 2. Let M be a lattice which is as lattice de-
termined by the comparability relation uniquely up to iso-
morphism. Let L and L' be lattices such that Su& (L)
is isomorphic to Swulr(L’) and let M € Swlr(L) . Then
Me Swtr (L) .

Proof.'Let % Dbe an isomorphism of Sw& (L) onto
Swlr (L) . Swlr (M) is a sublattice of Su&r (L)
and ¥ (Swl (M) = Sw&r (y (M) is isomorphic
to Sulr(M) . By Lemma 1 we get that W(M) is iso-
morphic to M , i.e. M e Sub (L) .

Given a lattice L , we denote by L* a lattice which
is obtained from I by adding exactly three elements o, <,
@3 © is the smallest element of L*, 4 is the grea-
test element of L* and @ is comparable with no element

of L , The following Lemma 3 is evident.

Lemme 3. If a lattice L is as lattice determined by.
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the comparability relation uniquely up to isomorphism then

L* has the same property.

Define two sequences of lattices by the following rules:

(1) ]'..‘1 is the five-element non-modular lattice;

(ii) JL4 is the five-element non-distributive modular lat-
tice;
(iii1) L

- L* *
m+4'Lma and Mm+4=.Mm for all m = 1.

It is easy to show that the lattices L, and M, are as
lattices determined by the comparability relation uniquely
up to isomorphism. By Lemma 3 we can get that the lattices
Lo, My (m 2 1) have also this property. Given a lat-
tice 1L , we denote by X (L)  the class of all lattices
that contain no sublattice isomorphic to L . In the paper
{3] it is proved that the classes X (L, ) and X (L) A

n X (M) are primitive for all m = 4 .
Combining this fact with Lemma 2 we get

Theorem. The primitive classes X (L, ) and X(L,)A
AX(My) (for all m = 1 ) are closed under the forma-

tion of projective images.
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