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ON CHANGES OF INPUT/OUTPUT CODING II 

Michal P. CHYTIL, Praha 

Abstract: This paper is an immediate continuation of 
the paper "On changes of input-output coding I" also pub­
lished in this journal. 

The structure given by a formalization of the intuiti­
ve notion of changing output coding is studied* It turns 
out that,this formalization yields a correspondence between 
the Blum s complexity measures and the weak complexity mea­
sures* 
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§ 4. vz&sm&asm. 

In this paragraph we investigate the structure given 

by o*-dependence. There are some features in which this 

structure resembles the one given by ^-dependence. We pro­

ve that 

1) there is an c -class maximal wrt cr-dependence, 

2) the property of being an acceptable enumeration is 

hereditary wrt a-dependence, 

3) C-classes of acceptable enumerations can be cha­

racterized in a way similar to the characterization of -£-

classes. 



There are, however, features in which o'-dependence 

differs from i -dependence. For example, or -classes seem to 

be too wide. That is why we introduce a more restrictive no­

tion of HO* -dependence. 

The paragraph is completed with an application of the 

concept of -̂ cr-dependence in the abstract complexity theory. 

Theorem 4.1. There is an O"- class maximal wrt cr - depen­

dence. 

Proof. Let < > : Jf >c H — « • Jf be a recursive pai­

ring function. We define <x,<^,*> = «xt^>,a?> - Let <p 

be an acceptable enumeration and let ?0 , P4 , Pa , ... be 

an effective enumeration of algorithms evaluating the func­

tions <p0 , gfy, $>£,••• -(The use of P0, P..j ,-.* and of the 

steps of P4, in this proof is a bit informal. The proof can, 

however, be entirely formalized e.g. with the aid of an ab­

stract complexity measure - cf. Definition 4.2 .) 

Observe that for every effective enumeration 00 7 there 

is a partial recursive & such that &C<Z*f x» «£ oc^(x) 

for all Ji*9 x c Jf . We can therefore define a r«.e. set A £ -W 

as- follows: 

«4/,x>,<^.,t,^»€A iff p£«*,x>) stops in the t-th 

step and P*C<4/,x>)=* ^ » 

Let Wj, denote J)gj, for all ^eJf . Since X is a r.e. set 

and since <p is acceptable, a recursive ĝ  exists such that 

(x,f>£A(-«> f* cf to) for all x,^cAT . 

Obviously 
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**>*>&> *\c<+,*» iff ?j.«i9x» stops in the i-th 

step and P*(<-<>,X>) sr y- -

We define f^Cx) ̂  9.C<*tr,x>) for all 4,,x«K and con­

clude the proof by showing that £tf 1°* is a maximal <r-

class, i.e. we show that for every effective enumeration cc 

there is an Jk> e 0* such that ec- ̂ ^^r via H . 

Choose an arbitrary effective enumeration OG . There 

is a j>0 cjf such that (Vi>, x > C$yo «<t >x» a* oc^Cx) J . 

Every r.e. set B can be interpreted as a relation. 

Integers x , ^ are in the relation iff < x , ^ > € 3 . The 

relation is called single-valued iff <x,<y^> e3 3c <X,^J2> € 

e B mmi> i^ 9 ^ 2 for every *> 1ft > 1^.2 c ^ * Tbe single-

valuedness theorem (cf. T1J § 5#7) asserts that there is a 

recursive JO such that W*,cx) *s single-valued for all 

X € Jf and for f# single-valued is ^f^(x) equal to 

yr# . We use this function n, .Then we can define 

J*Cx>=-^ i » C 3 t ) C < £ 0 , t , ^ > •W^Cx)) 

A, is a (partial) function by single-valuedness of l-^Cx) 

and is partial recursive by the Projection theorem (cf. C13 

§ 5.4 ). Furthermore XJb m X . (E.g. singletons of the 

form i<*$>oiOf*fr)i ensure this fact.) 

Hence Jb is an o—convention and it remains to prove 

that 

xc^ m Hifji for all i, m H * 

But for every -£, x, nx, c If 
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oc^Cx),/^ <===-> C3i)[P.| «v,x>) stops in the t'-tb step 

and ?j, « - i , x » m yl <=*•=> 

<-==> C3t)C<£,,t ,^> e \ f a , x » ^ — > « t ) R ^ > t , ^ > € W ^ ^ > < > > D 

<.==:> #<V^C<i ,X» ar ^ < = > J l ^ f o ) » ^ • • 

The theorem follows. 

Theorem 4.2. Let y , f be two enumerations, <p 2? y* 

and let $> be acceptable* Then *̂r is acceptable. 

Proof. Analogous to the proof of Theorem 3*14 - part 

2. 

Note 4.3. Every enumeration cc can be treated as a 

function of two variables A i x C ot̂ , Cx)J • So jloo will 

denote the range of the function XX>x Hoc. (x) J • 

Theorem 4*4* Let g?9 i|r be two acceptable enumera­

tions. Then 

T cp &?Y -J <=5s=» L there is a recursive permutation 41 such 

that -fko;̂  ss ijr̂  for all i e «M ] » 

Proof* <ssms : immediate. 

Let y .̂ r f via Jh, and f £T <p via f -

Then $j, s» Jh-f <pj, and ifT-v » - ^ Y * f o r a 1 1 ̂ K . £Jk « 

.»Jh*f=:-id , since H y » .Rtf =* It . Consequently f is a recur­

sive permutation. 

<y -dependence of acceptable enumerations can be cha-
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racterized in a simple manner as the following theorem shows. 

Theorem 4.5. Let 9 , ifr be acceptable enumerations. 

Then 

[<j> 2.(fy3<^M>>l(yjl(x) ^y^C/jfO-^^C*) — Y ^ , ^ * for all 

Proof » 1) -BBBS> ; Immediate. 

2) ^=== : There is an As0 e Jf such that g?̂ , » -i-sl . 

Let us define Jh> » ^ # We prove that iff-, =» ity^ for all 

icjf . 

a) Let <p^(x)ir . Then gfc6<) s-r ^ for some /^ t s l l . Appa­

rently $i(x)~<Pi (<$>) and hence tf^OO ai ijr- (y.) czz 9v(ty) s* 

cz to, (<p.(x)) . 

b) Let 94 ,00 4 . We show that ^ OO t . Assume on the con­

trary that Y ^ ^ ) * ^ 0 for some /^0 . Then ^(x) m /j^0 

whenever 9^<»>+ . XJh, u - t^ 0 J =x X , as y i s accep­

table and .R o|r » H . Apparently there exis t s an m, € X such 

that Jv (m>) # /y0 . 

There i s a $0 e H such that 

r flriv i f y y C x ) i 
g^Cx) « .J 

otherwise* 

Then by assumption 

* * / * > ' 
A.CmO if, җ^CxU 
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This i s a contradiction. Consequently YiCx)t and f* ** 

****><9i f o r al l \, e K . It implies tHsH and the theo­

rem follows. 

* Corollary 4.6. Let 9 ^ ip* be acceptable enumera­

t i o n s . Then 

Cthere is a recursive permutation Jft, such that -ffc ŝ, -* Vi, 

f o r a l l £ € N 1 <*-ss> 

<=.-=-> Cg^lx) -» $iC4 )̂<===> ^ ^ ) 2* ^fi(^ for a l L ^ ^ . x ^ e . N L 

As it can be expected, the structures given on the 

class of enumerations by -^-dependence and o~-dependence 

respectively differ in many eassential properties. For ex­

ample, in contrast to Corollary 3»15 there are o'-conven-

ticns f, a> such that for every acceptable enumeration 

gp f and enumerations oC> ^ (i ^ <x -dependent on <p via £ 

and o^ respectively, Hoc-1 f €01 have no least upper 

bound. 

In spite of the essential difference between changes 

of input and output codings, it seems to be natural to choo­

se the formalization of changes of output coding so that two 

enumerations would be equivalent iff they equal up to a re­

cursive permutation of outputs, i.e. similarly as the con­

cept of 4* -dependence was chosen (cf. Theorem 3.8). In 

this sense, however, the concept of & -dependence proves 

to be too weak. 

Fact 4.7. There are two or --equivalent enumerations 
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oc , /S such that ( V<L 6 -N ) C^oc-^ m fa) does not hold for 

any recursive permutation 42- . 

Proof. Recall the recursion theoretic.notion of recur­

sive isomorphism. Two sets A,ft £ it are recursively 

isomorphic iff there is a recursive permutation jfr such 

that jp, (A) ss 3 -

Observe that if cO £? fi via some recursive permu­

tation /p> , then Roc is recursively isomorphic to X/3 . 

Thereby, to prove the fact it suffices to exhibit or -equi­

valent cc ., /S such that Hoc/ and Hj3 are not recur­

sively isomorphic. 

Let oc be an enumeration such that 31 oo is an r.e. 

nonrecursive set and there is an infinite recursive set C 

in the complement of 3£ot> (i.e. Hoc- is not simple set). 

Let (3 be an enumeration such that 31/3 is an infi­

nite recursive set with infinite complement. Then 31 co and 

31 (& are not recursively isomorphic (cf. £!])• We show that 

cO 3 * 0 -

X cC and 31(3 are i n f in i t e r . e . s e t s . Hence a pa r t i a l 

recursive 1-1 function y exis ts such that Dip » ILcc and 

i|K-R-Oo) -»3t(S * Similarly there are pa r t i a l recursive 6* , 

rt> such that D e r = » C 8c 3ltf « .K and D$> » R(S k 

Then the functions 

Яb(x) ZL 

and 

®(x) i f ^ c C 

Y^K) otherwise 



f ( * ) Ä J 

f Cx) Іf .X c Tß 

.4 [ <p-'(k) i f x e Kß 

are evidently er -conditions and (3 4& oC via A, , 

xO £? ft via £ . 

This concludes the proof. 

In practice, when changing the output coding, we im­

p l i c i t l y demand the possibil ity of deciding effectively 

what outputs wil l be without interpretation and what out­

puts will code numbers in the new coding. That i s why the 

following concept of JUT -dependence does not seem to be 

too restrictive. 

The x*'-classes coincide with the classes of enume­

rations equivalent up to a "permutation of outputs". 

Furthermore, the notion of Key -dependence yields a 

correspondence between Blum's complexity measures and the 

weak complexity measures introduced by I.M. Havel and G. 

Ausiello Ccf. C31,£43,151 ) . 

.Definition 4 .1 . £et tc ^ (I be two enumerations. 

Then we define: 

1) oC JUT -depends on j$ yjja, f C t* &*"$ via £ ) 

i f f xfr 4? |& via f and $f i s a recursive set . 

2) oc K& -depends on ($ C ou &wrf% ) i f f there i s 

an f 6(? such that <a> <£**' (& via f # 

3) «--i§ yiy-eQuivalent to fS C eo m"(Z ) i f f 
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co s ^ / 3 and /3 £^oc . 

4) tec} denotes w -equivalence class contain­

ing eC . 

Note 4.8. Part 4) of the previous definition makes sen-

since s* £ K : 

easily be verified. 

se, since s / e £ K i s really an equivalence relation as can 

Theorem 4.9. Let ec } f$ be two enumerations. Then 

I oo as ***/$ 1 <==s> [ there i s a recursive permutation Stu 

such that 4vo6; & fi • for a l l 4, e Ji J . 

Proof. 1) <===-=- : Immediate. 

2) ===> : Let oc >**(*> via £f fiZ^cC via %, • 

Evidently ^.foc^ » oc^ and £g-/S^ sr ^ for a l l <, e Jf , 

Therefore 

( * ) (Yx eRoo)C^fCx)-r x3 and CVx e X/J) Cffr (*>--» x 3 

We define the sets A , B as follows: 

A m € x c Df : f fx) 6 B9. Be ^ f Cx) * x ? 

B » i x eBg.; 9/x) eBf & ffrCx)-* i . 

Apparently X and B are recursive and A 3 Roc, B 3 31/S 

by (* ) . Moreover, £ i s 1-1 on A and f (A) » B . We pro­

ve that 

( # * ) cc^UA *-• caveat B 



£~4tI)cX and cwtclS . c^t<£If"1CB)] aa Xf m H . 

Hence w u t S « cxutoL £ f ^ ( J )} 4 cox-d J . Analogoualy 

<xwdL 3T £. ca/ui 3 • (* * ) therefore holds and aince A , 

B are recursive, a partial recursive 1-1 function y 

ex i s t s such that J>f » X and y ( I ) s B . 

We can define 

f f C x ) i f x c A 

h,(*)2i\ 
tjrOx) i f x e ï 

^ is recursive permutation and £Cx) =s Jh,(x) for ,x e Xoc- . 

Consequently Jh, &,^ =• £4, for all 4- e JJ . 

The additional condition ia the definition of Hxr -de­

pendence causes that some MniceB properties of -v-dependen­

ce are lost. E.g. Theorem 4.5 does not hold for JUT -depen­

dence. Another example is the following theorem which con­

trasts with Theorem 4.1. 

Theorem 4.10. For every acceptable enumeration g? f the­

re is an acceptable enumeration njr such that no upper 

bound twvb £&** ) of f y 07 exists. 

Proof. There is an 4*0 m H such that 

94 (*)йí . 
0 

i f <y Cx)4> 

t otherwise. 

We define t|r as follows: 
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У.Î, fҲ) Є£ < 

if 4, = Л»
0 

9. Cx) otherwiaa* 

-MT is evidently acceptable. Assume that there is cc and 

appropriate f , $- c V such that 

g> ^ ^ o G via f and iff &**<** via ^ • 

Obviously .Roc^ c Do- and cc^ (x) i> for every x e H 

0O4 Cx) 6 Df <-=-=> g>̂  Cx)i . 

It implies 

Thereby 

(-4c) gp^iГx)4<=> oc^ (*x) « D f 

Since D £ is recursive, (# ) would give a recursive pro­

cedure for deciding whether 9>wCx)A • This is a contra­

diction* 

'•Since the assumption of existence of an upper bound 00 

proves to be contradictory, the theorem follows. 

In [3], M. Blum formulated the following, machine-in­

dependent definition of complexity measure. 

Definition 4.2. Let 5? be an acdeptable enumeration, 

$ an enumeration. We say that $ is complexity measure 

(CM) for cp iff the following two conditions hold: 

1) <V*,x«jn C9^C*H<«—> $4CxH3 . 

11 



2) There is an m, 6 31., such that 

m>(i9xfiџ*) 

^ *r* §4, Cx) « ty> 

0 otherwise. 

The conditions 1),2) are so weak that they are satis­

fied by all concrete complexity measures. In spite of that, 

the first condition is a bit restrictive, as there exist 

nonterminating computations using only finite amount of a 

resource. (E.g. Turing-machine computations cycling on a fi­

nite amount of tape.) The next definition (C4l) reflects 

the fact. 

For purposes of the definition we introduce the follo­

wing notation. 

Notation 4.3. For two arbitrary enumerations <P, § , 

^ C x ) 4 A ( § ) denotes q»^(x)4 fc $j^Cx> 4-

g ^ C x H i C f ) denotes %,Cx) t t y x ) l 

g ^ C x H t C f ) denotes 9 * / * ) t & $,^Cx)t . 

Definition 4.4. Let <p be an acceptable enumeration, 

$ an enumeration. We say that $ i s a weak complexity 

measure (1CM) for <y i f f the following conditions hold. 

la) iU^€M>t^(x)l —» f^Cx)A3 . 

lb) .Caere i s a • f ? 2 such that 
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Vifx e Я : 

c$. (x)l => l K £ , x ) ш «tj 

Ą i f 9 4 C o c U 

0 otherwise. 

2) There i s an m, e J t 3 such that 

ÍTO ( - £ , * , # ) -» 

4 i f $^Cx) * ^ 

0 otherwise. 

3a) There i s a o e Hft such that for a l l -t>>#">x 6 -M 

( i } »«,«,*> - ** 9* 

(ii) y a a ^ ) H C f ) if 9A.<.*.)-y.9<<3i,(<*m><-$'> f o r 9 °-

3b) There i s an x. s X 4 sach that for a l l !/*•&,* m.X 

( І ) 

%.«,*/*'--' 

<9i<x) i f x > 

ep^Cлc) if x • 0 

(ii) g ^ ^ p C x m Cf ) if either ̂ > 0 8c ̂ Cx)t4($) 

or oi - 01c g>,(x)H(<$) 

The following theorem is due to I.M. Havel. 

Theorem 4*11. $ is WCM for an acceptable enumeration 

<j iff one of the following conditions holds. 

1) $ is CM for cp . 
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2) The conditions l a ) , l b ) , 2) of Definition 4.4 are 

sa t i s f i ed by 9 and $ and there i s a fy e R^ such 

tha t 

Y * , * C J I : 

f &;/*> — 4 i f 9.4, fx) *• 0 

W x ) ~ j n ^ if 9fc|,<x>-0 
[ tt(<j>) otherwise. 

Qy this theorem, !CM are more general than CM. jtcr-de-

pendence gives, however, a t ight r e la t ion between the two 

concepts. We prove i t i n the r e s t of the paragraph. 

.Eheorem 4*12. Let 9 be an acceptable enumeration, $ 

a complexity measure for op . Let <y be an enumeration 

AO"-dependent on <jp (via some a-convention f ) . 

!Ehen $ i s WCM for y . 

Proof. i(r is acceptable by theorem 4*2. We define 

4 if yj/xHfcg^C*) «2)£ 

'*afx><~ ^ 0 if g4Co<)4& g>JLC.x)*])f 

+ otherwise. 

Evidently /£» e p ^ and i9» satisfies condition 

lb) of Definition 4.4 • la) is satisfied trivially, condi­

tion 2) holds by the definition of CM. 

Furthermore, there are functions ĉ  f K e K ̂  such 

that «> ,, _% =r o?.f CP* and 
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9/c<i,ý.) Ä 

f 9.t/x^ i f * > 0 

[ çf^fx) if x =r 0 

The existence of the functions £ , K, follows from 

Church's thesis and the definition of acceptable enumera­

tion. For more formal proof see e.g. Ill § 1.8 . 

since rtu^) - *9t,a,» " f n £ **> and 

V«.a,»(*'>-£<¥K.a,&(*)í* 

?£cg±(x) if x > 0 

\£д>i(x) if x » 0 , 

the functions o^, K satisfy conditions 3a), 3b). 

Theorem 4*13. Let g? be an acceptable enumeration 

and § a WCM for cp . Then there is an acceptable y such 

that Y 2:
W
9P ^

n d
 §

 i s C W f f Q r
 V • 

Proof. We use Theorem 4.11* 

1) If $ is CM for 9 -then take y as g> . 

2) If $ is not CM for cp , then the condition 2) of Theo­

rem 4.11 holds. Therefore the functions >#, -fv of the des­

cribed properties exist. Define: 

- cpЛx)+\ if <pгU)Ы($) 

Фд/X) --£ H 0 if җ^cxmcф) 

t otherwise. 
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i|r i s effective enumeration* By the defini t ion of accept­

able enumeration, a recursive c^ exis ts such that ifa « Jf^o,) 

for a l l <£ e K . 

We show that ify.c-u ** 9* f o r a 1 1 * 6 ^ • 

a) Let <p> Cx) > 0 . Then 

9>4C* ) s* « f > W C * ) + /| - ?*.«>> f * > . ' 

b) Let tj. (x> s 0 . Then 

9^<^)Cx)tiC§) and consequently Y^c-iO C x ) * ° # 

c) Let g?. Cx) t * Then 9^4 , ) Cx) t t ($ ) and therefore 

So i|f i s acceptable by Theorem 3.2* 

Apparently y and $ satisfy condition 1) of Defini­

t i on 4.2 . Moreover, $ sa t i s f ies the condition 2) by as­

sumption. I t remains to prove that ifr &.*** cp • 

Let us define 

X JL» 4 i f x > 0 

J^Cx)~. 4 
t i f x m 0 . 

XJh, = N and $$t* m J f X i O l i s recursive. Obviously 

if s t ^ y via Ju .The theorem follows. 
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tions studied in this paper. 
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