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Abstrgct: This paper is an immediate continuation of
the paper "On changes of input-output coding I" also pub-
lished in this journal.

The structure given by a formalization of the intuiti-
ve notion of changinf output coding is studied. It turns
out that this formalization yields a correspondence between
the Blum s complexity measures and the weak complexity mea-
sures.
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§ 4. o=dependence

In this paragraph we investigate the structure given
by or-dependence. There are some features in which this
structure resembles the one given by i.-dobondcnce. We pro-~
ve that

1) there is an ¢ -class maximal wrt o -dependence,

2) the property of being an acceptable enumeration is
hereditary wrt o -dependence,

3) o’-classes of acceptable enumerations can be cha-
racterized in a way similar to the characterization of < -

classes.




There are, however, features in which or~dependence
differs from 4 -dependence. For example, o -classes seem to
be too wide. That is why we introduce.a more restrictive no-
tion of xo -dependence.

The paragraph is completed with an application of the

concept of Aao~-dependence in the abstract complexity theory.

Theorem 4.1. There is an o’-class maximal wrt o--depen-
dence.

Proof. Let < Y: Nx N —> N be a recursive pai-
ring function. We define <X,y ,z> = X, 4 >,2> . Let g
be an acceptable enumeration and let P,, Py , Py, --. be
an effective enumeration of algorithms evaluating the func-
tions @,, ¥4, P;,:-- - (The use of P,, Py,... and of the
steps of P; in this proof is & bit informal. The proof can,
however, be entirely formalized e.g. with the aid of an ab-
stract complexity measure - cf. Definition 4.2 .)

Observe that for every effective enumeration o , there
is a partial recursive & such that & (<4, x?) ¢ o« (x)
for all i, x e N . We can therefore define a r.e. set Ac N
as follows:

Ko, x2,$3,t,g0eA iff P;(K4,x>) stops in the t-th
step and P;((L,x>)= 4 -

Let W; denote Dg; for all 46N . Since A is a r.e. set

and since @ 1is acceptable, a recursive g exists such that

<x,/g->£A(==)vyfeW9(_'> for all X,y e N .

Obviously



<g.,t,g.>el;«‘-"x>) iff P;(C4,x>) stops in the t-th
step and ?d_(bb,x)) =9 -

We define ;(x) = @(<{,x>) for all i,xe N and con-
clude the proof by showing that Ev’Jf is a maximal o -

class, i.e. we show that for every effective enumeration
'

there is an s € 0 such that ¢« <° ¢ via % .

Choose an arbitrary effective enumeration oc .There
is a 3, € N such that (Vi,x)[g; (4,x>) = ety (x)] .
Every r.e. set B can be interpreted as a relation.

Integers x,q are in the relation iff <x,4>€ B . The
relation is called single-valued iff <X,a,> € B & <X,4,)€

eB =)q, =4y, for every X,4y,%, € B . The single-

valuedness theorem (cf. [1] § 5.7) asserts that there is a

recursive % such that Wy (x) 1is single-valued for all
xeN and for Wy single-valued is Wy(x) equal to

Wy . We use this function s .Then we can define

H(x)= Y iff (3t)(<g’,,t,g«>e'ﬂ»¢,,)

% is a (partial) function by single-valuedness of Wy (x)
and is partial recursive by the Projection theorem (cf. [1)
§ 5.4 ). FPurthermore RM = N . (E.g. singletons of the
form {<}¢,0,%4 >3 ensure this fact.)

Hence / is an o -convention and it remains to prove

that
<;,=hy; forall L eN .

But for every i,x,? e N



o (X) = g <= (3)[P; (K4,x)) stops in the t-th step

and Péo((ia,x)) = npl (=

(== (3t)[<éro,t,/y«> € ws‘(c‘_’x» Je==» (31:) f<3'¢o ,t,@)‘w,‘,’((,;’x))]
==> g (i, xN == by, (X)=y .

The theorem follows.

Theorem 4.2. Let o, be two enumerations, ¥ =7 3
and let ¢ be acceptable. Then 4 is acceptable.

Proof. Analogous to the proof of Theorem 3.14 - part
2.

Note 4.3. Every enumeration o can be treated as a
function of two variables Adix [oy (x)J . So Ree will

denote the range of the function A4x [ec,(x)J

Theorem 4.4. Let @, ¥ be two acceptable enumera-
tions. Then
L @ 5’7 J¢==> L there is a recursive permutation ft such
that pg; =; forall L eN] .

Proof. <= : Immediate.

==>: Let © &” ¢ via h and 1?'5-’9 via £ .

Then @ =hfg; and 4y, =fhy; forallieN. fh =
=hf=4id ,since R = Ry = N . Consequently £ is a recur-

sive permutation.

o’ -dependence of acceptable enumerations can be cha-



racterized in a simple manner as the following theorem shows.

Theorem 4.3. Let @, ¥ be acceptable enumerations.
Then

[ 274 Je=>[g; (x) 2@ () =y (x) = Y, (g) for all
i,3.%x,4eNT .

Proof. 1) ==> : Immediate.

2) ¢&= : There is an 4, € N  such that P5, = 4d .
Let us define % = ¥i, - We prove that 4 = kg, for all
4eN .
a) Let @3(x)¥ . Then g;(x)= g for some y & N . Appa-
rently 91;(3().-.-@;_0(9.) and hence y, (xX) = y; (y) = b(y) ~
2 (g, (x)) .

b) Let @i (x)4 . We show that ¥: (x) 4 , Assume on the con-
trary that 4, (X) =g, for some 4, . Then wp (x) = 4,
whenever @ (%)% | RM U {4yt =N, as y is accep-
table and Ry = N . Apparently there exists an m & N such
that h (m) + 49 .

There is a 4, € N such that

m if @, (x)d
q’-_(.x) SN

4 otherwise.
Then by assumption
him) if @ (x)d

m\ra-,o(.x)a .
%, if @ (x) ¢



This is a contradiction. Consequently w;(x)t and ¥; =
=g, for all i e N . It implies Rh =N and the theo-

rem follows.

- Corollary 4,6. Let @, ¥ be acceptable enumera-

tions. Then

Lthere is a recursive permutation o such that @i = 9,
for all 4L eNJ <=

= Lo, (%) 2 @, () = y; (x) = y; () for all 4,4, x,4eN].

As it can be expected, the structures given on the
class of enumerations by 4 -dependence and o--dependence
respectively differ in many eassential properties. For ex-
ample, in contrast to Corollary 3.15 there are o’-conven-
ticns f, g such that for every acceptable enumeration
@ , and enumerations o , 3 , o ~dependent on @ via f
and g respectively, L’eo]"’, C B]‘r have no least upper
bounad. '

In spite of the essential difference between changes
of input and output codings, it seems to be natural to choo-
se the formalization of changes of output coding so that two
enumerations would be equivalent iff they equal up to a re-
cursive permutation of outputs, i.e. similarly as the con-
cept of A -dependence was chosen (cf. Theorem 3.8). In
this sense, however, the concept of o -dependence proves

to be too weak.

Fact 4.7. There are two O -equivalent enumerations



<, such that (V4 eN)(powy = B;) does not hold for
any recursive permutation

Proof. Recall the recursion theorétic.notion of recur-
sive isomorphism. Two sets A ,®» c N are recuraively
isomorphic iff threre is a recursive permutation fo such
that pC(AY =3B .

Observe that if o« 2% I via some recursive permu-
tation Av , then R« is recursively isomorphic to Rps .
Thereby, to prove the fact it suffices to exhibit o -equi-
valent « , 3 such that R« and R@ are not recur-
sively isomorphic.

Let o« be an enumeration such that R« is an r.e.
nonrecursive set and there is an infinite recursive set C
in the complement of R« (i.e. Rec is not simple set).

Let 3 be an enumeration such {hat R is an infi-
nite recursive set with infinite complement. Then Rx and
RR are not recursively isomorphic (cf. [1]). We show that
w =7p3.

R and R are infinite r.e. sets. Hence a partial
recursive 1-1 function W exists such that Dy = Xec and
¥(Rew) =R @ . Similarly there are partial recursive ¢,
@ suchthat Do =C &Re = N  and Dp = R@ &
Re =N .

Then the functiona

& (x) if x e C
S (X) =2
¥ (x) otherwise
and



® (x) if xeXp@
fix)~
'qr"’(x) if xeR@

are evidently o -conditions and 3 £« via &
« <f via £ .

H

This concludes the proof.

In practice, when changing the output c;:ding, we im-
plicitly demand the possibility of deciding effectively
what outputs will be without interpretation and \vhat. out-
puts will code numbers in the new coding. That is why the

following concept of no -dependence does not seem to be

too restrictive.
The M;classea coincide with the classes of enume-
rations equivalent up to a "permutation of outputs".
Furthermore, the notion of xo” -dependence yields a
correspondence between Blum”s complexity measures and the
weak complexity measures introduced by I.M. Havel and G.
Ausiello (cf. (31,041,051 ).

Definjtion 4,1. Let o« , (3 be two enumerations.
Then we define:

1) o sor =depends on 3 yia f (oo éwp via £ )
iff o é’fs via £ and Df is a recursive set.

2) o« nozdependson 3 ( o <™ B ) iff there is

an f e (O such that «/éw{s via £ .,

3) w is wo'-equivalent to B (e =" ) iff



w B and B ¥ .

4) [ np]w denotes xo0” -equivalence class contain-

ing e« .

Note 4.8, Part 4) of the previous definition makes sen-

se, since ="  is really an equivalence relation as can

easily be verified.

Theorem 4.9. Let =, 3  be two enumerations. Then

[ee =_E"‘°'{3]<'_—-_> [ there is a recursive permutation %
such that fog; =f3; for all 4L eN J .

Proof. 1) <== : Immediate.

2) ==> :Let w2 viaf, 827 via g .

Evidently gfoc; = oy and fo Ry = @3, forall Lt e N .

Therefore
(%) (Yx eRee)[gf(x)= x] and (Yx e RBIL£g (x)= x1J .
We define the sets A ,B as follows: '
A={xeDf: £(xYeDg & ¢gf(x)=x}
B=4ixeDg:gx)eDf & fg(x)=x} .

Apparently A and B are recursive and AoRx, BoR]f
by (% ). Moreover, £ is 1-1 on A and £(A) =3B . We pro-

ve that

(k%) caxd A = card B .



£1Eck e cardF = cardl€B)] a0 RE=N .
Hence cond B = carell£~(B)1 < cand X . Analogously
conol A & cand B . (xx ) therefore holds and siﬁce A,
B are recursive, a partial recursive l1-1 function Y

exists such that Dy = A anda v (Z)=E .

We can define

£(x) if xeA
A (x) 2
() it xeX .

M, is recursive permutation and £(x) = S (x) for x € Rec .

Consequently M ec;=f; forall + e N .

The additional condition im the definition of io -de-
pendence causes that some "nice" properties of 4 -dependen-
ce are lost. E.g. Theorem 4.5 does not hold for s -depen-
dence. Another example is the following theorem which con-

trasts with Theorem 4.1.

Theorem 4.10. For every acceptable enumeration ¢ , the-
re is an acceptable enumeration < such that no upper
bound (wxt ™) of ¥, @  exists.

Proof. There is an 4, & N such that

4 it g, ()4

9& (%)~
(]
0 otherwise.

We define ¢ as follows:
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. .

4 if 4 = 4,

1}"-‘ (X') o>
9, (x) otherwise.

¥  is evidently acceptable. Asgume that there is « and

appropriate f, g € 0 such that
? = via £ and W <« via g -

Obviously Rco¢°= Dg, and <, (X)y for every xe N .

It implies

' w3, (x) € D ¢=> g?,;,o(x)l .
Thereby
(x) Py (X =) “"i’o(x) € Df .

Since Df is recursive, (x ) would give a recursive pro-
cedure for deciding whether @ (xJ)l . This is a contra-
diction. '

*Since the assumption of existence of an upper bound o

proves to be contradictory, the theorem follows.

In [3], M. Blum formulated the following, machine-in-
dependent definition of complexity measure.

Definition 4.2. Let @ be an acdeptable enumeration,
® an enumeration. We say that @ is complexity measure
(CM) for ¢ iff the following two conditions hold:

1) (Yi,xeN)[g, GOV ¢= §, (x)41]
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2) There is an m 's 13 such that
4 if Q‘L (X) = '
m(i,x,y) =

0 otherwise.

' The conditions 1),2) are so weak that they are satis-
fied by all concrete complexity measures. In spite of that,
the first condition is a bit restrictive, as there exist
nonterminating computations using only finite ambunf of a
resource. (E.g. Turing-machine computations cycling on a fi-
nite amount of tape.) The next definition ([4]1) reflects
the ‘fact.

For purposes of the definition we introduce the follo-

wing notation.

Notation 4.3. For two arbitrary enumerations @, & ,

Py, (%) H (§) denctea @ ()4 & o (X)¥-
PO () denotes @ () P & (X)L

= MEY) ") denotes g, (x) 1 & &, I .

Definition 4.4. Let ¢ be an acceptable enumeration,
. ® an enumeration. We say that § is a weak complexity
measure (WCM) for @ iff the following conditions hold.

la) (Vi,xeN) [ (x)d = §, ()] .

1b) There is a 4 e P, such that
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Vi,xe N :
1 if g, (x)d

§; () = B (L,x) =
0 otherwise.

2) There is an m ¢ 13 such that
1 if P () =np

m (4, %X,4) =
0 otherwise.

3a) There is. a qe Rz such that for all &,é-,x e N
Q) Gei, = 9%
(11) @ 5N (@) if g (x)=g & 9, (g) T () for so-

melyf.

3b) There is an x & R, such that for all 4;3,xeN

(1) @y (x) if x>0

Fci,z (%) & _
(1) gy GO (F) if either x >0 & @, ()1 (3)
or _ .x-O&ga‘(x)N,(Q).

The following theorem is due to I.M. Havel.
Theorem 4.11. & is WCM for an acceptable enumeration

@ 1iff one of the following conditions holds.
1) & isCMfor g .
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2) The conditions 1la), 1lb), 2) of Definition 4.4 are
satisfied by ¢ and $ and there isa p €R, such
that

Yi,xeN:

9 (x) = 1 if 94«("0 >0

94»(4.)(“) =~ (RS ) if g, (x)=0

M@ otherwise.

By this theorem, WCM are more general than CM. xo-de-
pendence gives, however, a tight relation between the two

concepts. We prove it in the rest of the paragraph.

Theorem 4.12. Let @ be an acceptable enumeration,
a complexity measure for @ . Let 4 be an enumeration
2o -dependent on @ (via some o -convention £ ).

Then § dis WCM for « .

Proof. 4 1is acceptable by Theorem 4.2. We define

4 it @, () &k g, (x) & Df
(L, %) = 0 if g. (& g, (x) ¢Df

4  otherwise.

Evidently & e P, and 7* satisfies condition
1b) of Definition 4.4 . la) is satisfied trivially, condi-
tion 2) holds by the definition of CM.

Furthermore, there are functions Qs X € R,Q_ such

that 9&@,&) -9, £ o and
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QL(X) if x >0

9&(&,3’.) =
cpé(.x) if x=0 .

The existence of the functions q,x follows from
Church’s thesis and the definition of acceptable enumera-
tion. For more formal proof see e.g. [11§ 1.8 .

Since ¥oting) = £P0,5 = f95 9, and

fg, (x) if x>0
4{,,_(4-‘,50(&)::1'9’,‘“’&,(:()3

fgé(x) if x= 0,

the functions @, x satisfy conditions 3a), 3b).

Theorem 4.13. Let @ be an acceptable enumeration
and ® a WCM for 9 - Then there is an acceptable 3 such
that v 29 and  is CM for ¥ .

Proof. We use Theorem 4.11.

1) If § is CM for ¢ ,then take % = ¢ .

2) If & 1is not CM for ¢ , then the condition 2) of Theo-

rem 4.11 holds. Therefore the functions %, i of the des-

cribed properties exist. Define:

@, (x)+ 1 if @ (x)4(P)
Y, (x) = 0 if g, M)

t otherwise.
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¢  ia effective enumeration. By the definition of accepl-

able enumeration, a recursive g, exists such that y; = $pei)
for a1l 4 e N .

We show that ¥y, = ¢;  for all 41 eN .

a) Let g;_i(x) >0 . Then

2, () = @ (1 ()44 = ype,x) .

b) Let g‘;‘(x>= 0 . Then
g‘“_.v)(x)?.t €} and consequently Ypcid (x)=0 -

c) Let @, (x)* . Then @,.;,(x)41(3) and therefore
Ypeay O .
So ¢ 1is acceptable by Theorem 3.2.

Apparently ¢ and @ satisfy condition 1) of Defini-
tion 4.2 . Moreover, & satisfies the condition 2) by as-
sumption. It remains to prove that w ="¢g .

Let us define

J(_:_4 if x>0
b (X))

t if x=0 .

R = N and D = N\ {03} is recursive. Obviously

4 2™ ¢ via Jh .The theorem follows.
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