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LATTICE OF E-COMPACT TOPOLOGICAL SPACES

J. PELANT, Praha

Abstract: This paper is concerned with the following
question: Let E,F be spaces such that X(E) § X(F),

where ¥ (P) is the class of all P -compact spaces; when

there exists a space G such that X(E)§ ¥(G) § X(F ¢

A new class of atoms is found.

Key wordg: Epireflective subcategories, atoms, ordi-
nals.

ANS: 18440, 54F99 Ref. Z. 2.726.21

E -compactness of a space was defined by Mrowka and
Engelking in 1958. Let E be a topological space. A space P
is said to be E -compact iff P is homeomorphic to a closed

subspace of £™ for some suitable cardinal m .Let us de-

note a class of E -compact spaces by X (E) . It holds for
any non-discrete space E having more than one point:
H(D) & XC(E) , where D is a two-point discrete space.
There is the following natural question:

(Q): Let E be a space, 9 a two-point discrete space
(or more generaly: let E,F be spaces such that X(F)s
s X (E) ), when there exists a space G such that

XD EGHKBGEKE) (X(P) § X(G) § X(B) respe~
ctively).
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If no such G exists, then we shall call E to be
an atom (atom above T , respectively); this is a brief say-
ing instead of " Y (E) is an atom in the lattice of all
classes of all P -compact spaces".

Mrdwka discovered in [9] that the discrete space of
natural numbers in an atom. The conjecture that the same si-
tuation occurs for any T(w, ) ( @, is an initial ordi-
nal) was based on this fact. However, in [1], Blefko con-
structed spaces P, such that X (D) § H(Px) §F XL (T(wy))
It was not difficult to correct the proof and to generalize
the construction - it will be introduced here as a construc-
tion M . In [21, Blefko published some results from [1l] in-
cluding his construction corrected in another way than our
M - denote it for a moment by D . First, we supposed that
both constructions M and D give homeomorphic spaces Z,
or Ay ,respectively; but it is not the case: we shall prove
that KH(D)§ X(AL) § X (2,) § H(T(w,)) for « + 0.
Blefko conjgctured in [2] that there is no atom between
H(D) and XH(T(@w,)) ,i.e. if X (D) § X(F) € X (T(w ),
P is a space, then there exists a space G such that
D) S X(G) G K(F) . But this conjecture was
based on an example containing an obvious mistake. We will
show that this conjecture is not true; the most general re-
sult in this direction which was achieved by us is Proposi-
tion 10 which solves some further special case of (Q).

This paper is based on [11].
I wish to thank M. Hu3ek for his attention and valuab-

le advice.
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All spaces under considerations are supposed to be u-
niformizable Hausdorff; all spaces will be supposed to be
nonvoid. A class of these spaces will be denoted by T .
Morphisms are continuous mappings. A set of morphisms from
X into Y will be denoted by C(X,Y) .

First of all we introduce some well-known definitions
and theorems which are necessary for the purposes of this

paper.

Definition. Let X,E be spaces. X is said to be
E -regular iff there exists a cardinal number m  such
that X cE™. X is said to be E -compact iff there ex-
ists a cardinal number m such that X c,p E™ .

A class of E -regular spacas will be denoted by R(E).
A class of E -compact spaces will be denoted by X (E) .

X(E) is epireflective in § and moreover if ¢
is an epireflective subcategory in & containing E , then

X(E)Ye C (it follows from Kenison’s theorem).

Notation: Let E € ¥, Xe J. Let £:X > x(X) Dbe
a X(E) -reflection. A space x(X) will be denoted by
BgX , a morphism % by @Bg . It is easy to see that f¢
is an embedding iff X is E -regular. We introduce some
examples:
1) I is the closed interval < 0,45, R(1)=T, X (I) is
the class of all compact spaces, 3; is Cech-Stone compac-

tification. We shall denote it only by 3 .
2) R is the space of real numbers. R(R)= T, X(R) is
the class of all realcompact spaces. ﬁg is Hewitt real-
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compactification.

3) & is the two-point discrete space. R (D) is the
class of all 0 -dimensional spaces, X (D) is the class
of all (0 -dimensional compact spaces. (A space X is said
to be 0 -dimensional iff imd X =0, ,i.e. X has a basis

of clopen sets.)

4) N is the discrete space of natural numbers. R (N)=
= RD), XN) § X(R)A RCD) . (As P. Nyikos pro-
ved, P. Roy’s space is an element of X(K) A R(D) but
not of X (N) , see [10] .)

Convention: Symbols I, R , @, N will be used only in
the sense as above. Let « be a limit ordinal number.
efet = mim {Bloc  is cofinal with B3 3% .

For E,Xe T denotef:ﬂ(g«lq«eC(x,E)} . Clear-

g card C(X, E)
ly (.%Ex = £(X) . It follows immediately

from this fact: if X is E -regular, then X is ¥ ~com-

pact iff for each divergent net M =4 in X there

itied
exists £ e C(X,E) such that £ 0o 7l is divergent. It is
proved in [12) that the assumption of E -regularity of X

can be omitted.

Theorem (Blefko [1]). Let o, 8 be limit ordinals.
K(T(et)) = X(T(R)) iff cfo = c£f3 .
This theorem shows that it is enough to consider only

regular ordinals for solving the problem of atoms.
Proposition (Mrowka [9] ): N is an atom.
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Theorem (Mrowka [9] ). Let E ,F be spaces. Let
R(E)= R(F) .Let X be E -regular space. Then ;X =
= X~X, where X, = {fs,€ 3. X | there exists Ye X (F)
such that EcY and there exists £e C(f3-X,Y) such that
f(X)cE and f(p,)eY-E3 .
A mapping £ from a space X into a space Y is said to
be perfect iff £ is continuous, closed and £"4(4;) is com-
pact for each g4 € £(X) . Let X,Ye R(F). £:X—>Y is said
to be E -perfect iff £ is continuous and 'f(pex -X) s
€ (R Y-Y), £ is an extension of £ , This definition
is a natural generalization of perfect mappings because any
perfect mapping is just I -perfect V(and, clearly, any per-

fect mapping is E -perfect for any E ).

Theorem. Let X, E be spaces. Let Y be E -compact

space. Let X be E -regular. If there exists an E -perfect
mapping £: X—Y , then X is E -compact.

Proof: X is E -regular, hence fl,:X —> B, X is an
embedding. £:X—Y is E -perfect, hence f3gx£: X —>
B XxY is an embedding on a closed subset of X x

% Y which implies E -compactness of X .

Convention:l. We shall use for denoting of cardinality
"omega" instead of "aleph". We hope it will be clear when @)
denotes cardinality and when @, is used as an initial or-

dinal number.

2. If we say that a space P has locally some property H ,

we suppose that each point of P possesses a basis of
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neighbourhoods consisting of members with a property H .

Construction M :

Definition 1. Let P be a non-discrete locally compact

locally sequentially compact space. Put P, = {xeP | there

exists a non-constant sequence 4x,3° , in P converging
to x§ and suppose that for each point x € P, there exists
its neighbourhood U, such that U,~-{€x} is normal. Defi-

ne a set Z(P):a“g‘{<x,x>}uxt‘Jp.{x3 x(BCwP =~ {x3) -

~(wP-x) where wP is the Alexandrov one-point compac-
tification of P , Define for each x € P a space Py and a
mapping £, :Z(P)—>P, .Put Py =P for xe«P - P, ,

P, = PCwOP-4x3) - (wP-P) for xe P, . IfxeP-F, ,
then £, (<op,4)) =y for 4 eP, £,(<y,x>)=n for g e
el,, zep(wP-i43) - (wP-143).If x € Py , then £, (<y,2>)=
= for (g ,x2€Z(P),yp$x, £4(KX,2>) =2 for

{x,z> € Z(P) . Furnish a set Z(P) by a topology U
projectively generated by {£,IxeP3 .

Remarks: 1) Definition 1 is correct because it is easy
to see that <Z(P),U> is a uniformizable Hausdorff spa-

ce ( Py is uniformizable for each x € P ).

2. Speaking about the space Z (P) , we shall have always in

mind a space < ZC(P).U> Jjust defined.

3) Obviously, we could use in Definition 1 other sorts of
compactifications instead of B . It will be clear that if

could simplify sometimes our situation.

Definition 2. Let P satisfy the conditions of Defini-
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tion 1. Let Z(P) be a space defined in Definition 1l.
A mapping pp: ZCP)—> P is defined in the following
way: (<, 2>)=q for <g,zd>e Z(P) .

Proggsitign. « 4 from Definition 2 is perfect.

Proof: 1) g is continuous. Choose x & P and a
neighbourhood U of X , If there exists x, € P -TF, ,
then £;: (W)= 41,"4(‘!1) , hence p~'(U) is a neighbour-
hood of a set 4~f(x), If P =P, choose some X, €

eP, x4+x . f.x,' : Z(P)—> Px1 is continuous.

There exists the only mapping @y : ?,‘4——» P such that

p=q, i“,,4 - It is easy to see that g,  is continuous
1
and Fx, (Px,,'?;g: (x,) is even a homeomorphism. It imp-

lies immediately that 4~*U is a neighbourhood of the
set 41'4(.’() .

2) For each x € P, p~"(x) is compact. Either x eP-F, ,
then f'(x) = (X,x>, or xe P, , then ﬁ’(a)-{&(wl’-&.x!)—

- (P-4x1) , hence the preimage of any point is compact.

3) 4 is closed. The following assertion will be used:
A mapping ¢ : A—B is closed iff for each neighbourhood
U of the set g*(x), xe€B , . there exists a neighbour-
hood ¥ of x such that 9,“'0’) clt .

Let x € P . Choose some neighbourhood U of the set

a~%(x) . oOne can assume that u-;;‘co) where x, & P ,
°

0 is a neighbourhood of a set £, (R 1(x)) . If x 4 X, ,

then 0 -~ £,‘° (@"(xo ) is a neighbourhood of

£, (p"(\x)) and it is enough to find out that
°
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930/?,0-1‘,0 (@“'Cxo)) is a homeomorphism. Let X = X,

now. If we find a neighbourhood V of X, such that

9;: (v¥>e 0, then the proof is finished as n~ (V) =
0

:£;:(93:0(V)) c f;: (0)=1U . Suppose the contrary: For

each neighbourhood W  of x, , there exists x, € W such
that g::o (x,)& 0 (it implies X = X, ). Choose some
compact neighbourhood O% of X, LPut W=4¥WI|¥W is a
neighbourhood of X, and We 0%! . The net W= {x 3, o
converges to X, . 9;:0 o ﬂ,:{y';o(xw)}w" is a net
in the compact space (uoxo -~ ixai) . There exists a sub-
net M  of 9;:, s N converging to some X, € /3(0%-4.!6}).
Clearly x, e {5(0,‘0- fx,3) = C0x = 4x,1) , i.e.

Px, X4 = X, . However gy = is continuous, hence g, o n
converges to P, (x.,) which is a contradiction with pro-

perties of 1 and of Hausdorff spaces.

Remark: No special properties of Tech-Stone compactifi-

cation have been exploited in the proof of Proposition 1.

Corollary 1. If Z(P) is P -regular, then Z(P) is
P -compact. (In particular, if both P and Z(P) are 0-
dimensional, then Z(P) is P -compact.)

Corollary 2. Z(P) is locally compact. P is compact
irf Z(P) is compact.

lemma 1. Let P be a space satisfving the conditions
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of Definition 1, Z(P) a space defined in the seme defi-

nition, i the mapping from Definition 2. If {a'm}m.eN is

a converging sequence in Z(P) , then card 2 {a, Im&Ni<a),.
Proof: Proof follows immediately from the fact that

there exists no sequence {&,3, N in wP-i{x}, x e P,

which converges to & point of 3(wP-4x3) - (wP-4{x3).

Remark: We must employ also the fact that for each
% € P, , there exists its neighbourhood U such that

U -4x} is normal and properties of AN .

Proposjtion 2. Let @ be a sequentially compact spa-
ce. Let P be a space satisfying the conditions of Defini-
tion 1. If £: 68— Z(P) is continuous, then card puf(G)<
< Wy -

Proof: Suppose corol nf () =2 @, . @ is the sequen-
tially compact space, hence there exists a sequence
{Xp3neNn in B such that (i,3eN, i j=dpfx + pfx;)
and 4x,% converges to x, e G . £,p are continuous,

consequently it contradicts Lemma 1.

Corollary 1. If G is sequentially compact and non-
compact, then B & X (Z(P)) .

Corollary 2. If @ is a locally sequertially compact

connected space and £: @ —> Z(P) is continuous, then
caxd £ (B) < W, .

Proof: Proof follows from the fact that for any point
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¢ € G there exists its neighbourhood U  such that
cond pnf(U) =1,

Corollary of Corollary 2: If 6 is a locally sequen-
tially compact connected non-compact space, then Q@ &

¢ X(Z(P)) .

Proposjtion 3. Let P satisfy the conditions of Defi-
nition 1. Let Z(P) be P -regular (it holds, when both P
and Z(P) are 0 -dimensional). Then X(D)§ X(Z(P))§ H(P)
whenever one of the following conditions is satisfied:

1) P is sequentially compact and non-compact, 2) P is lo-
cally sequentially compact connected non-compact.

Proof: It follows from Corollary 2 of Proposition 1 and

from Proposition 2 and its corollaries.

Application. Let ¢, be a regular initial ordinal num=-
ber, « % 0 .(It was mentioned above that the case of singu-
lar ordinals is not so interesting, moreover, it could be
shown that if cfw, = cfwp , then X (Z(T(wy)) =
= H(Z(T(wy)) .) The space T(w,) satisfies the con-
ditions of Definition 1. The space Z(T(wq?) will Be de-
noted merely by Z, . T(w) is sequentially compact and
non-compact. It means: for proving the fact that X () §

§ H(Z,y) § X(T(wg)), it remains to show that Z.
is 0 -dimensional (see Proposition 3). But it follows from

the following two propositions and Definition 1.

Proposition 4. Let X be a space. Then ind X =0 iff
Ind X =0 .
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Proposition 5. Let X be a generalized ordered space.
Then imd X=0 iff Ind X = 0 .
We shall not prove these propositions, the proof of the first
one is well-known ‘(see e.g.[4]1), the proof of the second one

is similar to the proof of normality of an ordered space.

Remarks. 1) If we use Banaschewski compactification
(i.e. B9 ) in Definition 1, we need not Propositions 4 and
5 and the constructed space for 0 -dimensional P must be

0 -dimensional. (For Lemma 1 consider that N=Bs N .)

2) It might be interesting for someone that 2, e« # 0, has
the one-point Cech-Stone compactification. It holds more ge-
nerally: If P satisfies the conditions of Definition 1, P
is countably compact and has the one-point Cech-Stone com-
pactification, then Z (P) has also the one-point lech-Sto-

ne compactification.

Lemma 2. Let X be a compact space. Let x € K , If
K -4x1 is realcompact, then every infinite closed subset
of B(K-4x3})-(K-4x3) contains a copy of PN .
Remark: If x e X is a @4 -point then K- {x3 is
realcompact.

Proof: See [4].

Proposition 6. Let P satisfy the conditions of Defi-
nition 1 and, in addition, the following one: there exists
for any point X e P, its neighbourhood Uy such that
Uy -4x3 is realcompact. Then there are no converging
.aequences in Z(P) .
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Proof: Easy.'iompare with Lemma 1.)

Corollary. Let P be a space satisfying the conditions
from Proposition 6. Let @& be a space. & & X(Z(P)) whene-
ver one of the following two conditions is satisfied:

1) 6 is sequentially compact and it is not (0 -dimensio-
nal; 2) @ is locally sequentially compact space containing
an infinite connected subspace S .

Proof: Similar as in Proposition 2 and its corollaries.

ication.
(D) G X(Z(I1)N§ I (I)
+n #n
X (ZR)) E X
#+ n Il
X(ZR E KRY

Remark: We do not know whether 1C(Z(Ké'))$ ’JC(ZG?“))
for 4 >1.

Note: Let w, be a regular ordinal, o 4 0 . One can
construct a space, call it P, , such that X (Py) = X (Z,)
but P, is not homeomorphic to Z, .The main reason why we
are going to introduce this new construction is a possibili-
ty of a generalization of Construction M using this new
one.

Put S=4gly<o,,cfyr=a,3.
Choose for each X € § a strictly increasing sequence Ay =

-{x,“'!,““ such that Ay, converges to x and each member of
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mn
Ay is an isolated ordinal. Put U, ={glx <4 <x, ,3Define

a set Pco:“gmw_s{(x,x)} v xL.Js{.x! = (BN-N) . We shall

define a mapping p:FP+T(a): p({x,4>) = x for

<x,4.> e Py . Define a topology on P, : take as a basis of
neighbourhoods of xe 4;,'4(’1‘(4,‘)- S) a family -(41.’4(11) 1Y is

a neighbourhood of pn(x)3% . A family I"m,:{ v u?vu
d€0nN *

uCONCAN-N)| 0 is a neighbourhood of g & (AN-N) in
AN} is a basis of neighbourhoods of <x,q? e £'(S) . The

topology will be the same if we define l“”')s {(BIBoU,

<Xy4)
’

Uel £(B) isa neighbourhood of £(U)3 as a ba-

sis of neighbourhoods of {x,4>¢ 41,"(8) « Clearly P,
with this topology is a space. It is easy to see that T,
has really the promised properties.

After a little modification of the construction, we can
apply this construction e.g. to spaces with the first count-
ability axiom and these spaces need not be 0 -dimensional.
Take a basis of a point X , Denote this basis by By . One

can suppose that By = {X_ 3,y and X, oK, 4 . Put

<)

%
Up =X, -Kn,4 . Define a family N as a basis of

neighbourhoods of <X,4 > .
Clearly, we can join Construction M  and the new one in a
construction which generalize both of them (i.e. the last

construction can be applied to a larger class of spaces and

the question Q@ might be answered in more general cases).
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II. Atomg

Notation: D(ws) is a discrete space of cardinality

@ Dw,,) will be denoted by A .

w © Preay

Definition 3.X) Let P be a space, @ an initial or-
dinal. P is said to have the property U, iff each sub-
set of P of cardinality less than «, has a compact

closure.

Remarks: 1) Clearly, the clasa of all spaces with the

property U, is an epireflective subcategory in 7.

2) See (13] for the property u, .

Definition 4. Let P be a space. Let N = {m.é}é‘;, be
anet in P. M is said to be an « -net (e is an ordi-
nal) iff there exists 4, € J such that cad{x|xeP&3Iied:

tiz23&kx=m,} =w, foreach jelJ, 4>4,.

Remark: For each «),  there exists a space containing
an o« -net any of its subnets is also an « -net (take

BD(w, ) ). Such a net is said to be a regular o -net.

Definition 5. Let P be a space, o), and initial or-
dinal. P has the property X, iff: 1) P has the proper-
ty "(.lx .

.2) For each regular «-net 7l in D(w,) there exists
£:D(w)— P such that each subnet of £ o 11  diverges.

x) After finishing this paper I found out that spaces with
the property 1l &are called o -bounded in [14] .
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Remark: We do not know whether P having the proper-

ty Uy ,but not U, , , has to have the property K . We
do not know whether there is a space with U, (X,) but not

with U“M (X ) for @, singular.

o<+
Proposition 7. Let w, be a regular initial ordinsl.
The space T (wy ) has the property X, -
Proof is obvious.

Proposition 8. Let @, be a regular initial ordinal.
Ay = BD(wy) - ¥, where ¥, ={xeB(D(wy)) | there
exists a regular « =-net of points of D (W) converging

to x}. (Obviously Yy=qxefD(a,)| (for all AcD(w,):
)
1 x € X AP =ycardA=aw_ % .

Proof: Let £: Dlwy)—>T(w,) be a bijection, £
: A(D(@)) —> T(w, +1) the Stone extension of £ .There ex-
ists no o -net converging in T(@,),hence £(Yy) =4y} .
It holds further: if 7 is a net in T(wy) converging to
@y in T(w +41) ,then N is an o -net. It means that

g )c Y, for each ¢ € C(AD(w,), T(@ye+1)). Now
the propbsition follows from Mrdwka’s theorem. Proof for

« =0 is selfevident.

Proposition 9. Let @, be a regular initial ordinal.
Let P be a space with the property X , Then A«. is P -
compact.

Proof: The characterization of E -compactness using

a concept of nets shall be employed. Let 7L be a net in A“'
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no subnet of which converges in A, .There exists a subnet
M of N such that M oonverges in BD(wy) to
defpD(wy) . Necessarily: d &Y, (see Proposition 8).
Hence there exists a reguler o¢ -net & in D(aw,) con-
verging to o, P  has the property Ko ,consequently
there exists f£f:D(wy)— P such that each subnet of
fo ¢ diverges. Consider £: pdC ) — P (% is
the Stone extension of £ ). A, = D(ay)-),, P has the
property U, , £ is continuous, hence £(A)cP. Zca))
must be an element of BP-P : ¢ converges to d e

e 3D (w,) , hence Zod converges to £(d) in BP; if
}‘(d_) eP, £o S would converge in P which is impos-
sible, Let us denote @ = £/A . Then a net o eoN diver-
ges in Ps ifgeN—> g & P , then also g,oM—bQ P, but
goMatoem converges to £(d) in BP .

Lemmg 3, Let P be a space having the property Ue
(wg is a regular initial ordinal). If there exists a con-
tinuous mapping £: P—> T(cwy,) 8such that card £(P) = a) ,
then P has the property K, .

Proof is obvious.

Corollary. Any T(w,) -compact space ( wy is regu-
lar) that is not compact has the property X, .

Corollary of Corollary: cf(a),) # cf (W, )=(H (T (@) n
NnX(T(ws)) = H(D)) . Hence cfoc s cfff iff
K(TCxNn K(T(P)) = X(D) .
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Theorem 1. Let @, be a regular initial ordinal. A,
is an atcm.

Ergof: Let E be such a space that H(D)SH(E)SKXWA).
If X(D)+XH(E), then E hase the property X, , hence

Remark: We do not know how the assumption of regulari-

ty of @ is important.

Definition 6. Let X,P be spaces. X is said to be
an atom above P iff: 1) X(P) G X (X), 2)(X(P)eg¥X(R)s
S X (X)) =) (X(P)=H(B) or X(B) = X(X) .

Proposition 10. Let &, be an initial ordinal, ®y a
regular initial ordinal. Let @, > &4 . Let P be a space
with the property U, and coxdlP=2 .Then PxAy is an

atom above P .

Proof: A, does not have the property U, , hence
X(P)§ X(PxAgy) . Let @ be a space such that
AP)ISK(R)s H(P=Ay),a:FPxAy—> Ay is a projection.
If m) is compact for each o e C(6,PxAy) , then
XCO) = X(P) Dbecause X (D) € X(P). If aTe—;(—Q.-) is
not compact for some g & CC®,Px Ay) ,then & has the
property Xy , hence H(R) = X(PxAy) .

Remarks: 1) We do not know whether for each space E
with H(D) § K(E) there exists an atom such that
X(A) e XCE) .

2) Obviously: If A is an atom, then ‘:IC(A)-JC([LCa)“)-I)
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for suitable @, and X g 3D<¢w) .

III Relation between A, and Z, for regular @, :

Lemmg 4. Let P be a space satisfying "the conditions
of Definition l. Let (J,£) be a right-directed set. Let
n= "'"'»i.}i,.:)a m= {m&Q&‘J be nets in Z(P) such that
1) p (m )=pnlmy) for each 4€J, n is the'mapping from
Definition 2; 2) M converges to x in Z(P); 3) m, ¢

& 4{4(41_(;‘)) for each 4+ € J, Then M  converges to X .

Proof follows immediately from the definition of the
topology on Z<C(P) .

Proposition 11. X (A,) § X(Z_.) for regular
W, ,x+0 .

Proof: Z, has the property K, i.e. it holds
K(Ay) € X(Z,) . It remains to prove Z. & X(A_) . Sup-
pose the contrary: Then there exists £eC(Z_,A) - such
that E—(—Z:) is not compact. Put Jf- {de T(w,) ) d’>. .
d° is an isolated ordinal} for o € TCw. ). If

cand £ (p"(37)) < @,  for some I e T(wy) , then
E_C__—Z,‘) would be compact ( 4 is the mapping from Defi-
nition 2). Using properties of BN one can easily prove
that there exist sets A, B such that Ac Z,,BcZ,,f(A)
and £(B) are mutually disjoint countable isolated sets
and KAB 4 # - a clear contradiction (£(A)A£(B)=0).
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