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Commentstionec Mathematicae Universitatis Carolinae 

14,4 (1973) 

LATTICE OF E-COMPACT TOPOLOGICAL SPACES 

J. PELANT, Praha 

Abstract: This paper is concerned with the following 
question: Let £ > F be spaces such that 3C(£) $ XCT) , 
where 3CCP) is the class of all P -compact spaces; when 
there exists a space G such that 'X(E) % 3CCG) % XC£) ? 
A new class of atoms is found* 

Key words: Epireflective subcategories, atoms, ordi­
nals. 

AMS: 18A40, 54F99 Ref. 2. 2.726.21 

E -compactness of a space was defined by Mrowka and 

Engelking in 1958. Let E be a topological space. A space P 

is said to be E -compact iff P is homeomorphic to a closed 

subspace of E'*1' for some suitable cardinal tm, . Let us de­

note a class of E -compact spaces by 3CCE) . It holds for 

any non-discrete space E having more than one point: 

XC«0) fit 3£<E) 7 where & is a two-point discrete space. 

There is the following natural question: 

(Q): Let E be a space, «D a two-point discrete space 

(or more generaly: let £ , F be spaces such that 3C(?) & 

S X C E ) ) 9 when there exists a space Q such that 

#(#)$3CC0)$ XCZ) (XCT) % 3TC0) $ 3CCB) respe­

ctively) • 
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If no such G exists, then we shall call E to be 

an atom (atom above P , respectively); this is a brief say­

ing instead of M 3CCE) is an atom in the lattice of all 

classes of all P -compact spaces". 

Mrowka discovered in C93 that the discrete space of 

natural numbers in an atom. The conjecture that the same si­

tuation occurs for any T(co^) ( o^ is an initial ordi­

nal) was based on this fact. However, in CI], Blefko con­

structed spaces P^ such that # < # ) % OCC?^) % VCCTCc^)) . 

It was not difficult to correct the proof and to generalize 

the construction - it will be introduoed here as a construc­

tion M • In [21| Blefko published some results from CI] in­

cluding his construction corrected in another way than our 

M - denote it for a moment by 3) . First, we supposed that 

both constructions M and J give homeomorphic spaces Z ^ 

or A& , respectively; but it is not the case: we shall prove 

that W($) § 3CCA*) $ SCCZ^) § JCCTCv^)) for «, * 0 . 

Blefko conjectured in [23 that there is no atom between 

3CC<0) and O^CCTC^)) , i.e. if 3C(£) % X(T) £ XiTCco^)) , 

P is a space, then there exists a space Cf such that 

X(£» §, XtG) % %<T) . But this conjecture was 

based on an example containing an obvious mistake. We will 

show that this conjecture is not true; the most general re­

sult in this direction which was achieved by us is Proposi­

tion 10 which solves some further special case of (Q). 

This paper is based on [111. 

I wish to thank M. Hu§ek for his attention and valuab­

le advice. 
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All spaces under considerations are supposed to be u-

niformizable Hausdorff; all spaces will be supposed to be 

nonvoid. A class of these spaces will be denoted by T . 

Morphisms are continuous mappings. A set of morphisms from 

X into Y will be denoted by C(X , Y) . 

First of all we introduce some well-known definitions 

and theorems which are necessary for the purposes of this 

paper. 

Definition. Let X , E be spaces. JC is said to be 

E -regular iff there exists a cardinal number ttn such 

that X c E'"1', X is said to be E -compact iff there ex­

ists a cardinal number tm, such that JC cCĴ  E'"1' . 

A class of E -regular spaces will be denoted by &CE). 

A class of E -compact spaces will be denoted by # C E ) . 

3C(E) is epireflective in S* and moreover if C 

is an epireflective subcategory in tt containing E , then 

Jt(E) £ C (it follows from Kenison's theorem). 

Notation: Let E e T, X € T. Let H. : X i—• JC(X) be 

a XCB) -reflection. A apace KCX) will be denoted by 

/3£X , a morphism x* by fig . It is easy to see that fa 

is an embedding iff JC is E -regular. We introduce some 

examples: 

1) I is the closed interval < 0, 4 > , ft(I)» T9 %<I) is 

the class of all compact spaces, |3j is Cech-Stone compac-

tification. We shall denote it only by /3 * 

2) R is the space of real numbers. %(\) = T} X>(JL) is 

the class of all realcompact spaces. /3~ is Hewitt real-
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compactification. 

3) i> i s the two-point discrete space. %CS>) i s the 

class of a l l 0 -dimensional spaces, X(&) i s the class 

of a l l 0 -dimensional compact spaces. (A space X i s said 

to be 0 -dimensional i f f <m<d X ~ 0 } i.e. X has a basis 

of clopen s e t s . ) 

4) X i s the discrete space of natural numbers. Jl(H)s? 

- ftC0), JCOO $ XOL) n 5t C4D) . (As P. Nyikos pro­

ved, P. Roy's space i s an element of XCK) n #C«0) but 

not of 3COO , see CIO J •) 

Convention: Symbols I , H , W, JC wi l l be used only in 

the sense as above. Let oc be a l imit ordinal number* 

c£o6 =s /rnvn < fl \ oc i s cofinal with /3 } . 

F o r E j X c O " denote £ « TT-Cô  I ^ c C < X , E ) * . Clear-
-cwuL CCX,E> 

ly /S£X » £CX) . It follows immediately 

from this fact: if X is E -regular, then X is E -com­

pact iff for each divergent net 01 ^i^*}^ . in X there 

exists £ c C(X,E) such that £ o 71 is divergent. It is 

proved in 112] that the assumption of E -regularity of X 

can be omitted. 

Theorem (Blefko fl]). Let «c, (h be limit ordinals. 

#CTCat» m 3CCTC0)) iff c£ec » c££ -

This theorem shows that it is enough to consider only 

regular ordinals for solving the problem of atoms* 

Proposition (Mrowka C93 ): Jf is an atom* 
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Theorem (Mrowka 193 )• Let E , F be spaces. Let 

Jt(E) m fr(F) .Let X be £ -regular space. Then flBX = 

ar/3pX-X0 where X0 m i#,0*fiFX I there ex i s t s Y&3CCT) 

such that E c Y and there ex is ts f e C (ftfX ^Y ) such that 

f C X ) c £ and €(jp,0) eY-E * . 

A mapping £ from a space X into a space Y i s said to 

be perfect i f f £ i s continuous, closed and £~*(ty.) i s com­

pact for each / y , c £ ( X ) . Let X ,Yc &CT). £iX—*Y i s said 

to be £ -perfect i f f £ i s continuous and Zfcp^X - X ) £ 

£ <(&fty - y ) , £ i s an extension of £ . This definition 

i s a natural generalization of perfect mappings because any 

perfect mapping i s just I -perfect (and, clearly, any per­

fect mapping i s E - perfect for any £ )• 

Theorem. Let X, E be spaces. Let Y be £ -compact 

space. Let X be E -regular. If there ex is ts an £ -perfect 

mapping £s X—>Y , then X i s £ -compact. 

Proof: X i s £ -regular, hence figtX—• (3fcX i s an 

embedding. £:X—>Y i s E -perfect , hence /3E>* £ : X —• 

—»/3EXx y i s an embedding on a closed subset of (5£I x 

x y which implies £ -compactness of X # 

Convention:!. We shall use for denoting of cardinality 
womegaw instead of "aleph". We hope i t wi l l be clear when c^ 

denotes cardinality and when cj^ i s used as an i n i t i a l or­

dinal number. 

2. If we say that a space P has loca l ly some property H , 

we suppose that each point of P possesses a basis of 
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neighbourhoods consisting of members with a property H . 

Construction M : 

Definition 1. Let P be a non-discrete locally compact 

locally sequentially compact space. Put P̂  » *x e P I there 

exists a non-constant sequence ^K^l^yj in P converging 

to x J and suppose that for each point x e P*, there exists 

its neighbourhood U^ such that tl^-^xJ is normal. Defi­

ne a set Z(P)« Um«x,x>}u U ixi x (&<&?- <*}) -

-Co>P-x) where a)? is the Alexandrov one-point compac-

tification of P . Define for each y e P a space P x and a 

mapping £M : ZCP) — > P^ , Put Py » P for x e P - F* , 

P^ =r (biof- 4x5) - (o>P - P) for x e P* . If x eF-F* , 

then £y (<iy^,^>) «r ̂  for /j, € P, £M (< <ty, »>) =• (%, for n^ e 

eP^, x € /&CcuF--C^!)- <o>P--Cy.?).If x e ?h , then fxC<^,«»* 

« /y, for <^,#>£Z(P), ̂ # x , £^ C<x,« >) » a* for 

< x , £ > c Z C P ) . Furnish a set 2(P) by a topology % 

protectively generated by K f^ I x c P 1 . 

Remarks: 1) Definition 1 is correct because it is easy 

to see that <ZCP),#,> is a uniformizable Hausdorff spa­

ce ( P^ is uniformizable for each x e P )• 

2. Speaking about the space Z(T) , we shall have always in 

mind a space <ZC?),1t> just defined. 

3) Obviously, we could use in Definition 1 other sorts of 

compactifications instead of ft • It will be clear that if 

could simplify sometimes our situation. 

Definition 2. Let P satisfy the conditions of Defini-
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tion 1. Let ZCP) be a space defined in Definition 1. 

A mapping 411 Z C P ) — • P is defined in the following 

way: 41 <<<^,x,» s y , for < / ^ ; * > « Z C P ) . 

Proposition 1. • JQ, from Definition 2 is perfect. 

Proof: 1) 41, is continuous* Choose x c ? and a 

neighbourhood U of x . If there exists x0 e P - 7h , 

then £# ( VL )m j(CA (U ) , hence J(CACVL) is a nei^ibour-

hood of a set *p,**Cx) , If p r P^ choose some x. e 

6 ? , X 4» JC4 . £# : Z C P ) —*> Px is continuous. 

There exists the only mapping y K : P^ — • P such that 

f s % • ̂  . It is easy to see that gp̂  is continuous 

and y^ CP^. - y^ ( x ) ) is even a homeomorphism. It imp­

lies immediately that ^t"4U is a neighbourhood of the 

set #~A (x) . 

2) For each x c P ; JQTA (*) is compact. Either x cP~P^ , 

then jpT*(x) s- <x,x> , or x c P^ , then ̂ (^O-r/K<i>P-<Cxl)-

- (P- 4x1) , hence the preimage of any point is compact. 

3) 4* is closed. The following assertion will be used: 

A mapping 9,: A — * B is closed iff for each neighbourhood 

U of the set gr'Cx) , x € 3 , there exists a neighbour­

hood Y of x such that gT^CV) c U . 

Let x € P . Choose some neighbourhood II of the set 

ft («x) . One can assume that U * £ J (0) where x* £ P « 

*e ° 

0 is a neighbourhood of a set fw (to,~A(x )) . If x + X* « 

then 0 - £ x <4i/"*0x >) is a neighbourhood of 

£# C-fir"" (#)) and it is enough to find out that 
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cfly / P ^ - £# CfiT*Cx0)) i s a homeomorphisnu Let X = x0 

now. If we find a neighbourhood V of x0 such that 

9v (V) c 0 f then the proof i s finished as -fiT CV) » 
~o 

m£Z^Ccpl IV )) c £~4 (0) 3* U . Suppose the contrary: For 

each neighbourhood Iff of x 0 , there ex is ts x^ c If such 

that y^ Ca^) • 0 ( i t implies x + X0 ) . Choose some 

compact neighbourhood Oy of x_ . Put Kf« <Tf 1 W i s a 

neighbourhood of X and V c 0^ J . The net V » ^ r ^ t y 

converges to o<0 . J)^ • 7l«r<f^ C x ^ ) } ^ ^ *3 a n e t 

in the compact space fi(0# ~ i « 0 f > . There ex i s t s a sub­

net %, of gf « % converging to some X. c (MO^ -ix^}). 

Clearly x^ « ft C 0# - <*01) - C 0* - <xQi ) , i *e . 

7# *4 m *o • However j ^ i s continuous, hence g^ o VL 

converges to gp̂  (x^ ) which i s a contradiction with pro­

perties of Tl and of Hausdorff spaces. 

Remark: No special properties of Cech-Stone compactifi-

cation have been exploited in the proof of Proposition 1. 

Corollary 1. If ZCP) i s P -regular, then ZCP) i s 

P -compact. (In particular, i f both P and ZCP) are 0 -

dimensionsl, then ZCP) i s P-compact.) 

Corollary 2. ZCP) i s local ly compact. P i s compact 

i f f ZCP) i s compact. 

TifWft I- ket P be a space satiafvnng the conditions 
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of Definition 1, Z ( P ) a space defined in the same defi­

n i t ion, -ft the mapping from Definition 2. If <^m}nvmf{ i s 

a converging sequence in ZCP) , then ocuuL jp, ia,^ \(nmH}<cdQ. 

Proof; Proof follows immediately from the fact that 

there ex is ts no sequence -CA^l^eH *n £>?-•(#$* x c P ^ 

which converges to a point of (ifo>P- i x 3 ) - CCDP - <x3 ) • 

Remark: We must employ also the fact that for each 

# € P^ , there ex is ts i t s neighbourhood U such that 

U - *ixJ i s normal and properties of ($H , 

Proposition 2. Let A be a sequentially compact spa­

ce. Let P be a space satisfying the conditions of Defini­

tion 1, If £:A—> Z(P) i s continuous, then ooucdi jfvf(Q,)< 

-£ cbo . 

Proof; Suppose eo/tal jp£ C A) ^ cdQ . A i8 the sequen­

t i a l l y compact space, hence there ex i s t s a sequence 

**«i*<n,«N i n A s u c h t h a t C i , ^ e U , - l 4 i ^ - » 4 i £ x 4 , + <ifji^) 

and 4*^1 converges to x 0 e 0» , f,-p, are continuous, 

consequently i t contradicts Lemma 1. 

Corollary 1« If A i s sequentially compact and non-

compact, then fil # 3CCZ(P)> • 

Corollary 2> If A i s a loca l ly sequentially compact 

connected space and £s A — * ZCP) i s continuous, then 

cwcd jv£ ( A) < o>0 • 

Proof: Proof follows from the fact that for any point 
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£ a Q, there exists its neighbourhood U such that 

ctJvdL 41, £ C U) m 4 . 

Corollary of Corollary 2: If d. is a locally sequen­

tially compact connected non-compact space, then fl $ 

4XCZCB)) . 

Proposition 3* Let P satisfy the conditions of Defi­

nition 1. Let ZCP) be P-regular (it holds, when both T 

and ZC?) are 0 -dimensional}* Then XM»£XCZ(P))$0r(P) 

whenever one of the following conditions is satisfied: 

1) P is sequentially compact and non-compact, 2) P is lo­

cally sequentially compact connected non-compact* 

Proof: It follows from Corollary 2 of Proposition 1 and 

from Proposition 2 and its corollaries. 

Application* Let <0A be a regular initial ordinal num­

ber, cc + 0 . (It was mentioned above that the case of singu­

lar ordinals is not so interesting, moreover, it could be 

shown that if c f o ^ « c£<o^ , then XCZCTCo)^)) a» 

sr 3CCZ CTCaj^)) .) The space T C G ) ^ ) satisfies the con­

ditions of Definition 1* The space ZCTCo)^)) will be de­

noted merely by Z^ . TCc^) is sequentially compact and 

non-compact* It means: for proving the fact that %iS>) Sp 

£ CKCZ^) f # ( T (*><*)), it remains to show that Z ^ 

is 0-dimensional (see Proposition 3). But it follows from 

the following two propositions and Definition 1* 

Proposition 4. Let X be a space* Then imd (&X » 0 iff 

ImxL X * 0 . 

- 728 -



Proposition ?, Let I be a generalized ordered space. 

Then Xmd, X - 0 iff Jmt X * 0 . 

We shall not prove these propositions, the proof of the first 

one is well-known (see e.g#C43), the proof of the second one 

is similar to the proof of normality of an ordered space. 

Remarks. 1) If we use Banaschewski compactification 

(i.e. (&$ ) in Definition 1, we need not Propositions 4 and 

5 and the constructed space for 0 -dimensional T must be 

0 -dimensional* (For Lemma 1 consider that /3Jf- £* .N • ) 

2) It might be interesting for someone that 2 ^ , <c + 0 , has 

the one-point Cech-Stone compactification. It holds more ge­

nerally: If P satisfies the conditions of Definition 1, P 

is countably compact and has the one-point Cech-Stone com­

pactification, then Z C P ) has also the one-point Cech-Sto­

ne compactification. 

Lemma 2. Let X be a compact space. Let x c K . If 

K -4o<} is realcompact, then every infinite closed subset 

of (h CJC- <x?) - (X - ixl ) contains a copy of pH . 

Remark: If * e X is a 0^-point then X - { * ? is 

realcompact. 

Proof: See [4]. 

Proposition 6. Let P satisfy the conditions of Defi­

nition 1 and, in addition, the following one: there exists 

for any point X e P^ its neighbourhood U x such that 

U* -4x1 is realcompact. Then there are no converging 

sequences in Z C P ) . 
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Proof: Easy..«Compare with Lemma 1.) 

Corollary* Let V be a space satisfying the conditions 

from Proposition 6. Let Q, be a space* A £ X(ZCV)) whene­

ver one of the following two conditions i s sat i s f ied: 

D A i s sequentially compact and i t i s not 0 -dimensio­

nal; 2) 0, i s local ly sequentially compact space containing 

an inf in i te connected subspace £ . 

Proof: Similar as in Proposition 2 and i t s corollaries* 

Application* 

xo))%xcz(i))% 3cm 
4 n 4 n 

4 n II 

Remark: We do not know whether %tZO?))% XCZCT?*)) 

for £ > 4 . 

Note: Let o)^ be a regular ordinal, ot 4* 0 . One can 

construct a space, call it P^ , such that XCY^) m JC(Z<) 

but P & is not homeomorphic to Z ^ .The main reason why we 

are going to introduce this new construction is a possibili­

ty of a generalization of Construction Jt using this new 

one* 

Put s - < t 1 r <* *>* t c£T =* &0* • 

Choose for each x e S a strictly increasing sequence *>x m 

****iiAt*lf sucn "tlia"t ** converges to x and each member of 
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flit 

&X is an isolated ordinal. Put U^ =r<^U^^^<'«x^L^JJj)efine 

a setP,r U «Ux,x>J u U<*lx(AN-M). We shall 

define a mapping 41: P^g-^TC^) s >f*(<x, <gp>) » x for 

<X,y-> e P^ • Define a topology on P^ : take as a basis of 
neighbourhoods of xe^C CTCa^)- S) a family -C >fiT CU) I U is 
a neighbourhood of 4i(x)} . A family I^^L-C U U ? u 

1 * € & « * * 

u CO o C(hK- H) I 0 is a neighbourhood of (^i ({Uf-jf) in 

(bH } is a basis of neighbourhoods of <x,*y,> c jfi CS) . The 

topology will be the same if we define M '* m <B IB a U f 

U el $ tf't*) *a a neighbourhood of Jfi(U)} as a ba­

sis of neighbourhoods of < x,/g, > c ft" CS) • Clearly P^ 

with this topology is a space* It is easy to see that PtJt, 

has really the promised properties. 

After a little modification of the construction, we can 

apply this construction e.g. to spaces with the first count-

ability axiom and these spaces need not be 0 -dimensional. 

Take a basis of a point x , Denote this basis by 3# . One 

can suppose that By« ^^mfumH an(i ^«v ° ^m>+4 ' 1>u* 

^m, " X ^ - X ^ ^ • D«fine a family H as a basis of 

neighbourhoods of <X,<y,> . 

Clearly, we can join Construction Jft and the new one in a 

construction which generalize both of them (i.e. the last 

construction can be applied to a larger class of spaces and 

the question A might be answered in more general cases). 
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II. Atoms 

Notation; TXo^) is a discrete space of cardinality 

x) 

Definition 3. Let P be a space, o)^ an initial or­

dinal. P is said to have the property U ^ iff each sub­

set of P of cardinality less than ca^ has a compact 

closure. 

Remarks: 1) Clearly, the class of all spaces with the 

property U^ is an epireflective subcategory in T • 

2) See Q33for the property U^ . 

Definition 4. Let P be a space. Let H m {<nih€3 D e 

a net in P . tfl is said to be an cc -net ( tc is an ordi­

nal) iff there exists &0 e D such that oajv&ix lxcP&3i€D: 

: «£ Si & & x « tn^\ « a)^ for each ^ m J, ^ > ,̂ . 

Remark: For each co^ there exists a space containing 

an eC -net any of its subnets is also an oc -net (take 

(SDCG)^) )• Such a net is said to be a regular oc-net. 

Definition 5. Let P be a space, cd^ and initial or­

dinal. P has the property X ^ iff: 1) P has the proper-

ty U^ . 

2) For each regular oc-net Tl in 3 (£>«*) there exists 

fsDCo)^)—* P such that each subnet of f * TL diverges. 

x) After finishing this paper I found out that spaces with 
the property U^, are called oc-bounded in C143 . 
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Remark: We do not know whether P having the proper­

ty #<£ , but not 11^4 , has to have the property Koc • We 

do not know whether there is a space with U^CX^) but not 
with ^^Z for *>*, s i l i S u l a r -

Proposition 7. Let o)^ be a regular initial ordinal. 

The space TCo)^) has the property X ^ . 

Proof is obvious. 

Proposition 8. Let o)^ be a regular initial ordinal. 

A ^ * /SDCo)^) - Y0 where Y0 «• <*e 0(3(0^)) I there 

exists a regular ©c -net of points of J> Cco^) converging 

to * J • (Obviously YQ =? «f* € /SDCo^) I (for all AcJCa)^): 

Proof: Let £i'Jb(c^aC)—^TCo)^) be a bisection, ?: 

rf&CJKc^))—^TCo^+4) the Stone extension of £ .There ex­

ists no ec -net converging in TCft^) , hence fC 3^) » 40)^3 . 

It holds further: if Tl is a net in TCo^,) converging to 

c ^ in Tico^ + 4) , then % is an esc-net. It means that 

g, Co^) c y0 for each ^ e C C/iD (<*>«*), T CCD^-I- 4 )) . Now 

the proposition follows from Mrowka's theorem. Proof for 

tc as 0 is self evident. 

Proposition 9. Let cd^ be a regular initial ordinal. 

Let P be a space with the property X ^ # Then A ^ is ? -

compact. 

Proof: The characterization of E -compactness using 

a concept of nets shall be employed. Let TL be a net in A 
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no subnet of which converges in A^ . There ex i s t s a subnet 

tit of t l such tha t 1H oonverges in (33(0)^) to 

d « ^J) Co**) . Necessarily: oi s Y0 (see Proposition 8 ) . 

Hence there ex i s t s a regular oc -ne t if in DCo)^) con­

verging to d , P has the property K ^ , consequently 

there ex i s t s £ : DCcO^)—» P such that each subnet of 

£ • *f diverges. Consider £s (ITHcc^} — • P C ? i s 

the Stone extension of f ) . A^ as pTH&igJ-Y0, P has the 

property 11^ , 3? i s continuous, hence ? ( A ) c ? , %CdL)) 

must be an element of (3P - P : & converges to ci e 

c / S J C C D ^ ) , hence ? o t f converges to £Cct) in (3P 5 i f 

£ ( d ) • P , £ • fcf would converge in P which i s impos­

s i b l e , Let us denote fy » ?XA . Then a net 0/ * 71 diver­

ges in P : i f <$> o ft —> j « P , then also ^ © fll-*£ P , but 

q, o HI m £ o 1tL converges to ?(c t ) in |3P • 

T,<HM It Let P be a space having the property t i^ 

(<&*, 3»s a regular i n i t i a l ordinal)* If there e x i s t s a con­

tinuous mapping £ : P — • T C o \ c ) such tha t ewuL£CT) «* dfcc , 

then P has the property K ^ • 

Eroof i s obvious. 

Corollary. Any TCcJ^) -compact space ( a ^ i s regu­

l a r ) tha t i s not compact has the property K a . 

Corollary of Corollary: c£Ccc^) 4» c£Ca>^)«=»CX( ir^€C) n 

n t f C T C c ^ ) ) » # C « 0 » . Hence cfco + c£/l i f f 
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Theorem 1. Let co^ be a regular i n i t i a l ordinal. A^ 

i s an atom. 

Proof: Let E be such a space that 3CCoZ» QJCCE)QXLAC). 

If X(Q) #sX(E) , then E has the property X^ t hence 

JCCA^) « OfCCE) . 

Remark: We do not know how the assumption of regulari­

ty of co^ is important. 

Definition 6. Let X , P be spaces. X i s said to be 

an atom above T i f f : 1) XCP) % 1C CX) , 2) C3CCP>c#(ft)£ 

sxcx))=d>C3ccp>=:xca) or xca)«3ccx> . 

Proposition 10. Let G>^ be an i n i t i a l ordinal > o>^ a 

regular i n i t i a l ordinal. Let o^ >• Of . Let P be a space 

with the property U^ and ecwtotP 25 2 .Then P K A / i s an 

atom above P . 

Proof: A ^ does not have the property U^ , hence 

XCT) % XCTx A&) . Let ft be a space such that 

XCP)S JC(ft)fi^C(P^A€f),a5PxA<r—^A<r i s * projection. 

If a o^Cft) i s compact for each <£. e CCft,PxA<f) , then 

XCft) * 3CCP) because #C«0) £ 3CCP) . If aTjJTft) i s 

not compact for some 9* e CCft ; PxA^) , then ft has the 

property K^ , hence % C&) m 3C(PxA^) • 

Remarks: 1) We do not know whether for each space E 

with #C2>) ^ 3CCB) there ex i s t s an atom such that 

3CCA) s 3CC£> . 

2) Obviously: If A i s an atom, then X(A)»XCfKcp^-X) 
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for su i table o ^ and X G ftDCo^) . 

I l l Relation between A^ and Z^ for regular co^ : 

Lemma 4* Let P be a space sa t i s fy ing *the conditions 

of Definition 1. Let <D9 £) be a r igh t -d i rec ted s e t . Let 

TL t» -C nxj }. , , fTi » -Cmx. J- ^ n be ne t s in ZCP) such that 

1) >fi (m.^')sr^(mt^) for each <L e J 9 <fi> i s the-mapping from 

Definit ion 2; 2) 71 converges to x in ZCP) « 3) /TV̂  # 

^ 4iT C^rCx)) for each i c 3 , Then TO converges to x . 

Proof follows immediately from the def in i t ion of the 

topology on Z C P ) . 

Proposition 11 . XCA^) fp XtZ^) for regular 

Proof: Z ^ has the property K ^ i . e . i t holds 

JtCArf) £ X C Z ^ ) . I t remains to prove Z ^ # XCA^) . Sup­

pose the contrary: Then there ex i s t s f e C C Z ^ ^ A ) such 

tha t £ C Z^) i s not compact. Put D ~-(cfc TCo^) I <f> y , 

<f i s an i so la ted ordinal J for <$ c TCa)^) # If 

e o ^ C £ f ^ C J * ) ) -c co0 for some eT e TCca^) , then 

£ C Zee,) would be compact ( jfi, i s the mapping from Defi­

n i t i on 2 ) . Using proper t ies of /3Jf one can eas i ly prove 

t h a t there exis t s e t s A > B such that A c Z^93a Z^,fCA) 

and fCB) are mutually d i s jo in t countable i so la ted se t s 

and J r» B ^ 0 - a c lear contradict ion (£(A) A f (B) » 0> . 
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