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Commentationea Mathematicae Universitatis Carolinae 

14,4 (1973) 

g - MONOMORPHISMS x ) 

NGUYEN MANH QUY, Praha 

Abstract: The aim of this paper is to propose a "good" 
definition of subobjects. 

Key words: Subobject, g-monomorphism, concrete category. 

AMS: 18A20 Ref. 2. 2.726.1 

A categorial definition of subobjects should be satis­

factory from two points of view: First, in categories indu­

ced by current structures it should characterize (some of) 

the structurally defined subobjects. Second, it should sa­

tisfy some natural requirements such as preservation under 

compositions, intersections, pullbacks etc. 

In some categories, e.g. primitive classes of algebras, 

category of sets, category of compact Hausdorff spaces, one 

can represent subobjects simply by all monomorphisms. In ge­

neral, giving a definition of subobjects means to determine 

some particular ones among the monomorphisms. 

There have been many concepts proposed, e.g. equalizer, 

extremal monomorphism L8], strong monomorphism f 63 • These 

already represent e.g. subspaces in the category of topolo-

x) This is a part of my thesis. 
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gical spaces, full subgraphs in the category of graphs etc. 

On the other hand, in the category of Hausdorff spaces it 

characterizes the closed subspaces. The first two are not 

closed under compositions even in a category with somewhat 

x) 

"nice" properties . The copure monomorphisms C5] charac­

terize all subspaces in the category of Hausdorff spaces; 

they sometimes fail to compose x . 

In this paper we present a definition of g-monomorph-

isms and study their properties and then describe them in 

concrete categories, especially in the categories structu­

rally defined. We show that this notion suits well for des­

cribing subobjects. 

I am indebted to A. Pultr and M. Hu§ek for valuable 

advice and particularly for guiding in my study. 

x) For the extremal monomorphisms, see the example in [1] 
(in the section 8, Appendix). For the equalizers, at first 
see the example in § 2 of 163 which shows that a composition 
of two regular monomorphisms may not be a regular monomorph­
ism even in a category complete, cocomplete and additive. 
Then, observe that in a complete category a regular monomor­
phism is nothing other than an equalizer of a pair. For this, 
prove at first that 

1) Equalizers in a category having products are closed 
under compositions. 

2) The simultaneous equalizer of a family of pairs 
^i •> %"•* : A * £-*> (aee § * ^63) is> i n a category ha­
ving equalizers, the intersection of the family of the equa­
lizers of the pairs £4 , 9*4, $ +* * I • 

Consequently, in a complete category simultaneous equa­
lizers and equalizers coincide. At last, observe that the 
simultaneous equalizers and the regular monomorphisms are the 
same. 

xx) In 111 P. Arduini has given an example which shows that 
a composition of two extremal monomorphisms may not be an ex­
tremal monomorphism even in a canonical category. This is the 
same example for copure monomorphisms. 
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§ 1. Definitions 

Definition 1« A monomorphism <a ; A — » X in a catego­

ry A is called a g-monomor phism if for every morphism 

y : 3 —>• X the following implication holds: 

if there is a generator S of A such that for every 

3̂ . g —*. $ there is an oc ; S *• A with (*.ac,**&fi, 

then there is a morphism 9 : B —*• A such that <p& ft. 9 m 

Definition 2. Let S be a generator of A . A mono­

morphism *4 : A > X in A is called a G -in.iection 

if for every morphism y : B — > • X the following implica­

tion holds: 

if for every morphism (3 : G — > B there is an 

oc • (J >. .4 with fccc as <p/3 , then there is a morph­

ism 9 i B > A with $> m ft . 9 . 

Thus, (b is a g-monomorphism if and only if it is 

a G-injection for any generator 8 . 

Definition 3* A generator G in a category A is said 

to be absolute if it is a retract of any generator of A • 

For example, a single-point set is an absolute genera­

tor in the category of sets, a single-point space is an ab­

solute generator in the category of topological spaces. Mo-
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re generally, we have the following proposition. 

Proposition 1. Let A be a category which is not thin . 

Let G be a generator of A such that A(G9 G)* <JQ,1 .Then 

G is an absolute generator. 

Proof. Let 0' be a generator of A - Since A is not 

thin there is X and a pair of distinct morphisms JUL9AT : 

. Q — * , X . Since G* is a generator there is a <p .* G*-—> G 

such that AUG ^*W§> . Similarly, there is a ^uu : G—> G% 

such that JUU&AJL ̂ ir<p(U< .Since A(G, G)*> 44Q$ 9${L = 4$ ,i.e. 

G is a retract of G* . 

Remark. Less trival examples of absolute generators are 

e.g. the free algebras with one generator in some primitive 

classes of algebras (not in all, though). E.g., in the pri­

mitive classes of groups, abelian groups, semigroups, monoids, 

rings with or without units, lattices. 

Proposition 2. Let G be an absolute generator of A . 

Then (tu is a g-monomorphism if and only if it is a (/-in­

jection. 

Proof. It suffices to show that ^ is a G-injection 

if and only if it is a G* -injection for any generator G% 

of A . Yet, it suffices to show only one of these implica­

tions. 

Assume that QA, I G > X is a G-injection and G' 

is a generator of A . Since 6 is an absolute generator, 

there are morphisms 9 i G — * G%
 f 0\

# G'—>• G with 

x) A category A is said to be thin if for every pair A , 
B c A .there is at most one morphism A — * B % so that A 
is not thin if and only if there are A ,3 € A with dis­
tinct morphisms from A into B • 
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9*0 » idg, .Let y be a morphism : B — * X , and for 

every morphism G f — * B there be a morphism <5'—^A 

such that 

G \ _ > A . J ^ X . <r—>B-^I . 

Now l e t fl : (7—> B • Choosing /31 ~ /3 0 f : G'—>$ , 

by the above assumption, there i s an oo' : G'—> A with 

p, oc1 » <p/S* . Taking ©c » cc'0 j <?—*- A , we have 

pec =r <tc c&*0 « ^ ' S =r g>fi9%& * g>/3 . 

Since (it, is a G-injection, there is a morphism y ; 3 —> 

—*A such that 5/ ss (t^y . Thus, ^L is a G'-injection. 

§ 2. Properties and relations to the other definitions. 

Proposition 1. g-monomorphisms are preserved under 

compositions, intersections, pullbacks and under left divi­

sions in the weak sense . 

All these statements are easily verified, we will pro­

ve only one e.g. for pullbacks. 

Let £', H% be a pullback of f , Jb , where £ is a g-

monomorphism. Let <p be a morphism and let there be a gene­

rator G such that for every fi there is an oc with £cc*4?/3. 

x) i.e. the dividing factor is required to be a monomorphism. 
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Then 

Since f is a g-monomorphism, there is a 0 such that 

f 0 » #i,y . Since the square is a pullback, there is a y 

such that ffTfr w y . It finishes the proof. 

Since g-monomorphisms coincide with general subspaces 

in the category of Hausdorff spaces (see § 5), the epimor-

phi sin assumption does not suffice to make a g-monomorphism 

an isomorphism. Instead of the epimorphisms it is necessary 

to put a stronger assumption. 

Definition. A morphism <p : X — * y is said to be 

9*-onto if there is a generator G such that for every 

£ • Q—*y there is an ©c : 6 — > X such that ft =r 

=* gpoc . 

It is easy to see that every fy -onto morphism is an 

epimorphism. 

Proposition 2« If p, is a g-monomorphism and ^ -on­

to, then (U, is an isomorphism. 

Proof. Let (A. i A—* B be a ^-onto morphism, then 

there is a generator <£ such that for every 3̂ : G — * B 

there is an cc : G—>A with ($ «• ̂ <c } consequently 

4 . (I se p.. oc , and, since (b is a g-monomorphism, there 

is a y : B ** A such that (Juy^A . 

Thus, ft is a monomorphism and a retraction, so that 

it is an isomorphism. 

About the relations of g-monomorphisms with the well-

known definitions, at first we have the following hierarchy 
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that is shown in [6] : 

equalizer Vregular monomorphism J> strong monomorp-

hism £> extremal monomorphism. 

Proposition 3. In a category having coproducts, every 

strong monomorphism is a g-monomorphism. Consequently in a 

category having colimits, every extremal monomorphism is a 

g-monomorphi sm• 

Proof. Let ft i A — * X be a strong monomorphism, 

^ . B — > x a morphism and there be a generator <? such 

that for every (1: 6—*JJ there is an oc^ : G—** A with 

(C^oc^ss <p/3 . Let ' >G be a coproduct with the injec­

tions $n . 

Then, for the family 4/SI|3c<G?,B>} , there is a 

A ; ' 6 * B such that Xi>n » /S for every /3 . 

A is an epimorphism because, if £3l m <%,% , then 

£\T>P » 9"^/s > i»e* £/& **<&($ for every /3 , consequent­

ly, since ff is a generator, f » 9* • 

Moreover, for the family ice A} induced from /3 , 

there is a 9 t ^,0><J > A such that 03>£ * cc$ 

for every |3 . It is clear that (t 9 * 9 A because 

(fed?* a (U,o6̂  m gfi as <pA >>- for every /$ . 

Since <a is a strong monomorphism, there is a y « B — > A 

such that (O'f sr 9. So that ^ is a g-monomorphism. 

The consequence follows from the fact that, in a* cate­

gory with pushoats, strong monomorphism and extremal mono-
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morphism coincide . 

A similar proposition *or regular monomorphisms may be 

proved without any assumption of the category in the ques­

tion. 

Proposition 4. Every regular monomorphism is a g-mo­

nomorphism* 

Proof. Let yu : A—*• X be a regular monomorphism, 

<p be a morphism : 3 —•* X . Let G be a generator sa­

tisfying the condition in the definition of g-monomorphism. 

Let #(JL m tyfjL , we shall show that x <p =* <%><p . Sup­

pose that xcp 4s q>y • Since G is a generator, there is 

a ($ such that xcp|S + ty$> fi . Then we have an 06 such 

that (Ace = $?/3 . Thus, X/JLOO 4= n^^juco which is a cont­

radiction. 

Now, since the definition of regular monomorphism, the­

re is a i(r such that (tctjr = gp , which shows that yu is 

a g-monomorphism. 

§ 3. Subob.iects in concrete categories. 

A concrete category C A , II) is a category Jl to­

gether with a faithful functor U of A into the category 

of sets. The functor U is often referred to as its forget­

ful functor. On the other hand, considering 11 as a functor 

naturally equivalent with the functor A C S , - ) for a ge­

nerator ff it looks to be useful to find the relation of 

x) This is directly verified or dually follows from a simi­
lar statement formulated for strong and extremal epimorph-
isms that is found in C63. 
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XL -subobjects defined below with g-monomorphisms. In so­

me cases shown below (see the proposition 2, § 4), these 

two considerations of U are the same* 

Definition 1* A monomorphism (L t A — > B in a con­

crete category (A,l£) is called a 11 -subobject if 

VL((i>) is one-to-one and if for every fjUCC) *> UCA) 

such that there is a <p : C — • B with UCg>) » U ( ^ ) •£ , 

there ia a f : C — > A such that £ * Itdf) . 

This concept is given in C41 in a form more general and 

under another name. 

The monomorphism requirement of (b in the definition 

actually follows by the assumption that II is faithful and 

U ( ^ ) is one-to-one* Moreover, the faithfulness implies: 

y =s ̂ *qr . It is also easy to show that U -subcbjects are 
v) 

determined up to a naturally equivalence . 
In the relation to g-monomorphism we have 

Proposition 1* Let U : A — * Set be naturally equi­

valent to < G,-> for a generator ff of Jl . Then U -sub-

objects are exactly the G-injections. Consequently, if, mo­

reover, G is an absolute generator, then the U -subobjects 

coincide with the g-monomorphisms* 

The proposition follows immediately comparing the defi­

nitions together with these observations: 

- The correspondence of /£; 6 > C to oC: Gf • A 

in the definition of G-injections interchanges with a con-

x) That is: if U is naturally equivalent to 11* ,then the 
U -subobjects coincide with the U* -subobjects. 
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struction of the function f ;<G,C> *• <G,A> in the 

definition of XI -subobjects. 

- The equality (CCoc « cp ft is equivalent to the e-

quality U C (JL) . £ ** UCy) . 

Let C A, tl ) be a concrete category. A concrete ca­

tegory ($b} V ) is called a full concrete subcategory of 

(Jl,U) if *& is a full subcategory of A and Y« TJ1J3 . 

It is evident that every U -subobject in © is a V -subob­

ject. The converse is true only with some assumptions add­

ing to the categories A and & • 

Definition 2. A concrete category CA9U) is called 

a category with nice decompositions if every morphism of A 

may be written as <p =• ft . ̂  with ft a U -subobject 

and U C ̂  ) onto. 

Proposition 2* Let C A,U) be a category with nice 

decompositions. Let (A?V) be a full concrete subcatego­

ry of C A, U ) containing with each object all its U -

subobjects. Then (ft is a V -subobject if and only if ft 

is a U -subobject and (t m & . 

Proof* It suffices to prove that if (t: A—*• 3 is 

a V -subobject, it is a U -subobject. We have UC(t) » 

«r VC^t) one-to-one. 

Let £:UCC) *> UCA) be such that there is a 

9 * C ** B with lUg>)»U((t).f .Since <A,U) has 

nice decompositions, we have g? » C—— » Cf-—-*• B with 

U ( ^ ) onto and -p a U -subobject. Consequently, C' is 

in J3 . 

On the other hand, we can write £ m m . e with an, 
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one-to-one and e onto. Comparing the two decompositions 

of t£(g>) : 

UCi>) . ItC^) and (U((L) . on,). e , 

we see that there i s a one-to-one and onto mapping Jh, : 

: UCC*)—*> X such that 

UCft). m,. H » UCv) and Jh.UC%)»e . 

The first of these equations may be rewritten as 

YCjt).mt.Jh^srV(i>), so that there is a o< : C ^ A 

such that VOc) s U(* ) « rrrt . Jh, • Put -y » x 1£ , we ob­

tain U(y) * UCoc) • U(^) =r nn. it. If (%) » m . e » f . 

At last, let us notice that regular monomorphisms are 

stronger than U -subobjects with only an assumption for U 

more general than the one in the proposition 1. 

Proposition 3. Let CA,U ) be a concrete category. 

Then every regular monomorphism p, with UC^tt) one-to-

one is a U -subobject. 

Proof. Let ft : A — * B and£*U(C) * U ( A ) 

be such that there is a g? : C *• B with U((i)«£ •» 

• UC«0 . 

The equality oĉ u, =r /3/tt implies the one ocg?=?/3<p . 

Really, we have UCccgp) • U(cc)UC^) ~ UCot^)£-r U(fi^)£ ** 

m UCf},q>) f and the fact follows from the faithfulness of 

U . 

Since ^ i s a regular monomorphism, there i s a ijr 

with f t f 9 y * Then U ((<,), U(f)m U(q>) • U Cfi,). £ , 

so that, since U C ĉ) i s one-to-one, £ * U C y ) , 
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§ 4. Categories 5CCP^>^ ej) and concrete form of 

subobJecla. 

The notion of SCCFj )• T ) categories was introduced 

in t33. 

Definition 1. Let C P^ Xj, tf j be a system of set 

functors indexed by elements of a set I . The category 

S(CF^)4, e I) is defined as follows: 

the objects are couples (X, (^i^el ^ where X is 

a set and ^K^^m\ a system of sets K<^ c ?^CX) > 

the morphisms from CX, ̂ 4 , )^ € j ) into C Y, (toj,)j, e i ' 

are triples C< X , C ^ ) ^ € j ) ,£ f CY, C^)^ c I)) such thatf 

is a mapping X — > Y and for every 4, such that F4, co-

variant, f^<f) C/ĉ )c A^ ,and for every A, such that F4, con-

travariantt F^ Cf) C ^ ) c /t̂  . 

Unless otherwise stated, SCCF^)^ej[ ) will be un­

derstood as a concrete category endowed by the forgetful 

functor U • 

Definition 2. A morphism <(X, (^^ > ,£,CY, (Jb^,)^ )) 

in a SCCF^)^) category is said to be an in.iaction if: 

1) £ is one-to-one. 

2) For F^ covariant, JI,̂  m F^CfT f4>^) . 

For F. contra variant. Jt. « F. (€)(*.) . 

The condition 2) means that if F. is covariant ( Can­

x) This term is used to show covariant or contravariant func­

tors from the category of sets and mappings into itself* 
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travsriant resp.) for £ e I, Kj^ is the largest (smal­

lest resp.) subset of Tj^CX) such that (CX, (n,^)^),£ , 

(Y, (*j,)̂ )) is a morphism in SCCF^)^) • The definition 

looks like a generalization of the notions usually under­

stood as subobjects in current concrete categories. 

Proposition 1. ft » CC A, Co-)^ ) , wv , CB,C^)^ )) is 

an injection if and only if it is a IX -subobject. 

Proof. Let (i be an injection. Let £ s C —*- A be 

a mapping, (< C, (c±)j, > , ̂  , <B, (&Oi^ a morphism 

such that fy « em, . £ . In order to prove that ^ is a 

U -subobject, we have to show that CCC,Cc^>^),f>CA,Cai)<i)^ 

is a morphism* 

Let FJI, be covariant, we have 

T.imu)T. C£)(c.) m ?i(fr)(c-)c Sir. 
4, 4/ -t* *U * 'I* *V 

so that 

F.CfXc,) c P. i<m,Y*(ar.) « a,. . 

If P^ is contravariant, we have 

On the other hand, let ̂  be a U -suobject. Consider 

the identity id 1 A—*• A and the morphism «A, Ca^)^) , 

mv, CBjCJb^)^)) where 

5^ « Pi(«i)"'
f CA%) or P^OmJCA^) 

according to the variance of P^ • Since (A* is a VL -sub-

object, we have <( A, (a^)^ ),-ui , (A, (0,̂ )4, *' a mor­

phism. Hence, for covariant P^ , 2E. c «fc£ and since ̂a, 
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is a morphism, a^ c a^ so that a,^ « 5^ . Analogous­

ly, for contravariant F^ , <L± c 5^ and since ^ is a 

morphism, o.^ r> £* , so that a^ « 5^ . Thus, (U. is an 

injection. 

Proposition 2. Let ./I be a full concrete subcategory 

of SCCI^) > i e l) such that 

1) whenever (JL : A — — > B is an injection and 

B e I AI then ^ is in A . 

2) There is an object G » (^9^4)^ in IJII such 

that for all H , ^ ) ^ ) in A, CM, C a ^ ) ^ ) , ^ , C^Ot-,^)) 

is a morphism, i.e. o^ c <*,̂  for covariant, o^ 3 it^ for 

contravariant F^ . 

Then 

a) U I A is naturally equivalent to <(?,-> • 

b) g-monomorphisms in A are exactly the injections. 

Proof. Let X » CX , C * ^ ^ ) be in Jl,xfiX . There 

is exactly one morphism >>CX,ac) 1 ff — - ^ X sending 

0 to X .(Really, there is obviously at most one. On the 

other hand, denote by £. the mapping 4 * X sending 0 

to x . We have, by 1), C4,(^)^)€ A where /t^»J^C^rCb^) 

for F^ covariant and K^mT^C^Ch^) for F^ contravari­

ant. Hence, in the covariant case we have, by 2), a^ c 

cP^(^)" C%£> , hence P^ (£) (a,^) c ^ $ in the contra­

variant one directly 1^ (£>)(*£) c a,*, •) 

A A 

Since evidently, for y : X >• Y in Jl , 

x) 4 , as usual, designates a set of one point. 
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we see easi ly that the system 

S X ; UCX) > <<?,£ > 

given by 
A 

ex(x) - * c x , x ) 
forms a natural equivalence 0 i U — * • < 0 , - > . 

b) The object 6 in 2) i s obviously an absolute gene­

rator. Hence, by the proposition 1, § 3 adding to a) and 

by the propositions 2, § 3 and 1, § 4, i t suffices to show 

that SCCI^Xf^) i s a category with nice decompositions. 

Take a morphism y m CCX, <*£>£>, f , (Y, C&^t )) . 

Decompose £ into X e » Z *Y with *m, one-to-one 

and e onto. We see that 

with 

t ^ a F ^ W " C*4,) for covariant Pj, , 

t. m P. C/ITVXAJ ) for contravariant P. 

is the required decomposition. 

Proposition 3> In S C C P ^ ) ^ ^ ) every It -subobject 

is an equalizer* 

Proof. Let (t, , CCA^Ca^^ntt^CB, (Jfc^)^ )) be a 

U -subobject, hence, by the proposition 1, an injection, 

so that 
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{ T^(rrrv)~ (&£) for P̂ , covariant* 

F^CfltO (Jtr^) for F« contravariant* 

Put C » B x 2 Ax/ where 2 = 4 0,4 } and 

C*-,£>~ C ^ , ^ ) i f f . ^ ^ i r ' A (&*y or 3a,eAI*r,*,r»Gx,)). 

Define f 0 , £ ^ : B • C by f^Cir) » C&% £ ) where 

the bar designates the equivalence c lass . For covariant F^ 

put C4,« F^(f 0 ) ( je^) u Fj^C£^)(Jlr0i) , and for contra-

variant F« put c . = F. (€)-*(&*) n P. C £ . r 4 C ^ ) . 

We obtain morphisms y^ m C O , C J D ^ ) ^ ) , £^ , CC, (c^)j^ ) ) . 

Obviously <90$h ** fyQL . 

Now, l e t for o> : C C X , C / ^ ) , < ,̂ CB,CXr^)^)) be 

90l> * ĉ | >> . Hence f 0 9, * £j g, , so that for x e X , 

((^ <oc), 0) <v Cga'oc), 4 ) , i . e . there i s a Jh,(x)eA with 

<^Cx)»flM,(*i'(*))#We obtain a mapping Jh,; X — * A with 

/m,. to, =t fy . Now i t suffices to show that CCX,(K^}^ ) , Jh*, 

(A (CUJ,)J,)) * s a morphism. Let F^ be covariant, we have 

F ^ ( < m . ) C F t C ^ ) ( ^ » * F^C^Ka^) c A- , 

hence 

Let P* be contravariant, we have 

The proposition is proved, 

It is easy to see that S m?jfi%%l* i s a l w ay s co~ 
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complete. Thus, by this proposition adding to the relations 

of the different types of monomorphisms which have been gi­

ven in this paper, we have 

Conseqaence. The notions of equalizer, regular mono-

morphism, strong and extremal monomorphism, g-monomorphism, 

U -subobject and injection coincide in SC(F^)^ ^ ) • 

§ 5# Applications. 

Many current categories may be considered as a full 

concrete subcategory of a SC(F^)^ *) category. Such as: 

the category of topological spaces is a full concrete sub­

category of £(P~) with P~ the preimage power set func­

tor, the category of uniform spaces is of S(P~. fll^) where 

Qg, is the functor sending X into X x X and £ into 

f x £... . So that these following propositions are only 

the direct consequence of the proposition 2, § 4. 

Proposition 1. Let A be a category of topological spa­

ces which is closed with respect to subspaces. Then the g-

monomorphisms are exactly the homeomorphisms onto subspaces. 

Thus, the definition of g-monomorphism is suitable 

not only for the category of Hausdorff spaces, but also for 

the category of regular T\j -spaces and so on. 

A similar proposition is stated for the category of 

uniform spaces. 

For further examples let us recall a category which is 

constructed in C3l. Let JA be a set. M -ary relation on a 
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set X is understood as a set Jt c <Jl,X> , If K is an 

M -ary relation on X and similarly k on Y , then H,& -

homomorphism of (X,*,) into C Y7 * ) is defined as a map­

ping f : X —* > Y such that for every oc c K, f.. oo * A> • 

We see easily that the category of se+s with M -ary re­

lations and their homomorphisms coincides with S C S ^ ) 

where Q^ » <il,-> . Similarly as above we have 

Proposition 2. Let it be a set, JL a category of 

sets with M -ary relations and their homomorphisms. Let 

A be closed with respect to subsets with full subrela-

tions. Then g-monomorphisms in A are exactly the isomor­

phisms onto subsets with full subrelations. In particular, 

in any category of graphs (sets with binary relations) clo­

sed with respect to full subgraphs, the g-monomorphisms are 

exactly the isomorphisms onto full subgraphs. 

The consequence follows immediately by the observation 

that in an object C 4 , *> ) here can be lit I only 0 or A . 
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