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Abstract: In our previous paper it is proved,the con-
vergence of approximants (obtained by the KaZanov s method)
of the minimum of nonquadratic functional. In this note, we
extend this result on the Kalanov-Galerkin method.
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1. a of result
Let i be a Hilbert space with the inner product (.,.)
~
and let H be a closed subspace of H with the same inner
~ .
product. Suppose that £ : H—> R, is a functional (non-
quadratical, generally) defined on ﬁ and with the G&teaux
derivative £’C«) in each point u« e such that £: X —
~
—> H is a continuous mapping which takes the bounded sub-
sets of L onto the bounded subsets. Let (4 el and x*s
~ .
eH .
~ ~ ~
Let § be a functional defined on H x Hx H such that

x) The communication of authors on the conference "On Basic
Problems in Numerical Analysis" held in Prague,August 27-31,
1973, dealt with such problems. Because it wili be not pos-
sible to include the proof of the main result in the Procee-
dings of the said Conference, we present this here.
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é(“,.,v):ﬁxﬁ-—b R, is a bilinear and symmetric form on
ﬁ x 3‘{ for each fixed « e ﬁ .

Let ¢4,¢,,c3 be positive numbers. Suppose that for
each v ¢ H and u,wv, & eﬁ the following conditions
are fulfilled:

(1) (U, ' wsrh) - W) z e Lal®

(1) P, ) 2 ey iml?

(1i5) §la, iy h) = Ch,£°(u)) ,

(iv) 4/2 Q(M,ar,nr)-4/2@(44,14,44)-{(0’)4- flu) =20,
V) du,r,w) € cyhol. . lwl .

From the well-known theorem (see e.g. [4, Theorem 9.2])
and from the assumption (i) it follows that there exists a

uniquely determined x, e H satisfying

x \ . ** *
(1) £(x+x )-(xo+x‘;9)-"w{£0r+x Y-Crex*, @)% .

Let -(9,.,}:,4 c }7, {x’:.l;4 cX y Pm—> P (the convergence in
the norm of the‘ space i ),x:,-—-b x* . Let 41{,,}:,4 be a

sequence of the closed subspaces of the space H such that
(vi) HocH, , (m=4,2,...), UR, =H .

Let x, & H, . Then (again by [4, Theorem 9.2]) there exists

a uniquely determined sequence £x,im.sCH ,such that

Xm € Hy and

(2) 4/2 Cxp+ .x:,‘ y Xmaq + Fnsa s Xm g + ) -

- ‘
(Mg + Fpa s P =
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-m £4/2 Q(x.,,+x:+4,m-+x:,+,, Y X)) -

madq
v+ XMy s Pmaq)} (m=1,2,...) .
Converzence Theorem. Under the assumptions (i) - (vi)

and if the series

P . o0
* ¥ -
m§4 N %meq = *n ) m§4 IP'“"' 9“l

are convergent, then

m Ix, -x 1 =0 .
myo ™ 0O

2. f C nc
For esch weX and arbitrary positive integer m. put
T () = £0x 4 x5 ) - (o +x )+
n nt Xmpa meqr Pmneq
* * »
+1/2 P+ Xg gy W HXmpg o W +Xmey) =
* * *
=472 QX+ Xt s Xp + Xmyns X+ Xmss)

v“(tv')ﬂ £(nr+x:“)- (n”+x:+4 9’ 94\.4.4) )

I * *

-(r+ x,’:M > Prneq) o
Lema ). For any b elp,g a0d m=4,2,... it is
B (Xt Xhgs Xmag* Xmass )= (o, Ppy) -
Proof. The functional F,,, attains at the point x, .,

the minimum on the space H, . 4 ,i.e.

P

MMCN,,,H) -'0:4".» Fp (o) .
med
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Thus the Gateaux derivative at the point Xm 44 mnust vanish,

i.e. for any & € H,,, 4 we have

bl *
0= DE, , (Kpygs )= B+ Xy Xy g+ X0y, ) = (B @ )
and from this follows our assertionws

Lemmg 2. The sequence {.x,ui:fﬂ is bounded.

Proof. From the assumptions (ii) and (v) we have:
2 * .
ColXg oy W & PXp+ Xy s Xmygs Xmay) =
*x x
= QX+ Xy > Xmpq + Xmpsd s Xmaa) =

x *
=YX+ Xyt s Xmags Xman) = Xt Ineq) =

x x
O (xy + Xy s Xmaqs Xmasg) £ Vxnygle 0 @m gl +
+ C3'x:44l lxm+4 .
oo
Since the sequences {1g¢, 13, _, and {lu,’:l},,ﬁ,, are boun-

ded, the last inequalities imply our assertion.

Lemma 3. ‘&'mvl\xn.“,'—xm'lso.

 m a0

Proof. From the relation

Fnaa Xnaq) = %4};‘-&4 () & Emyyg (Xm)
we obtain
o> * *
A28 (R + Xy g s X mad ¥ Xmad s Xmad + Xmoq) =
*
- (Xm+4 * XA meq ?m.'.,') <

x x *
£4/2 Q(x”+xM4 s Xm + xm",,’ 1¥mt+ x’:,ﬂ )~ (X“"'xm4 y Pmsda )
and
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K

T Xy ) & £ (X Xy ) = (X + Xod s Prnyt) = U (X)) -
Since
M K pn) = Wiy K g) = £ (X + X g +

* ‘
+ 172 DX+ X gy Xmyqg + in s gt ¥ Xan) =

* *
- 1/2 (% + AmaasXm+ Xmeq ’xm“'o‘:‘uﬂi)‘ £(x,,,4.,+x’,“,,,,, )

we obtain (using the assumption (iv))

(3) ¥, (%, )My (Xg, )£ Yp(Xy) (mad,2,...) .

Under our assumptions the functional £ satisfies the Lip-
schitz condition on any bounded subset of the space ﬁ ard
in virtue of Lemma 2 there exists a constant K >0 such
that

(4) Y (Xmya) Z Ynag (Xmyq) - X< l"‘:t.q-d = ":u-a“ +

+ V1 9net = Pneal)
for m =14,2,... . Put

*

e = KUy, = o I+ U Py = Ppa D

and

m-A4
'19“- qrn(xm) -5§4 63" o

From (3) and (4) it follows

(5) a&zﬁzz...zé@zdm+4=... .

So using the assumption (ii),(3),(4) and Lemma 1, we have

2 *
(6) eplXp, =X b & B4 X0y Xyt = Xms Xmpg = X)) =
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= d(xy+ "‘:14-4 1 Xmyq “:‘xM 1 Xmpq = %m) -

- dCxp + 'x:L+4 1 Xy + x:u-d y Xmaq = X)) =

= (‘*m.q-»' X s Tngg )= Q{“m"”‘:-m a"‘n"'":al-4:°‘m+4 -Xp) =
£ 204 (X)) = Wy (X y ) &

£ 2y, (x,) - Vg Kmon) ¥ €)= 2(B, - % ) .

The sequence {4}%3“;4 is bounded and with respect to (5%

we have

Lim (B, - B, ) =0

rn.-no
and from this and from (6) our assertion follows.
Lemma 4. Let m be a fixed positive integer. Under the

assumption (i) there exists a unique point x”;' e H such
that

£ - (e X, Pp) = mim {£ (v + Xp) =+ @) Y -

Then it is

ll.xo-x 1 =0 .
© m-¥oo

Proof. The sequence {.x""}” is bounded. Since in
0°mes1

the points in which the considered functionals attain their

pinimum, the GAteaux derivatives are gero, we have
G xE), X x,) = (g, X = %y)

and

£ (x4 X ),x,-x Y= (@,50-%) (m=1,2,..) .

.With respect to the assumption (i) we have
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c,'la?- .xallaé (f’(x:'+x:)- £ x4+ 00), X0 - %) =

= (Pp- @, Xp=Xo) + (£ (X, + x*)-f’(x°+ X4 ), Xg=x,) £

£ hgn- @l hxy-x, i+ 1£(x, + x*) =

- £ Xy + X2 XD - x 0 .

The last inequalities, continuity of the mapping £’ and
pur assumptions imply our assertion.

Now, we are ready to finish the proof of Convergence
Theorem. Let P, be the orthogonal projection from H on-
to Hy . Then

2 ) * ' *
Sl - X I7E (X - X, , £ (X g ¥ Xy ) = £' (X + X 4)) =
) ’ * * F) *
= (X = Xo s £ (X + X L g = Xy = X, £7( X+ X 1 4)) =
=FCx, +x* , x ¥ Xy = X,) -
mY Xmid s ¥m ¥ Xmens Xm— %o
- - ’ * ] *
K= Xy £ (Xo# X 1)) = DX+ X0 Xy g+ Xipg 2 X = Xp) +
* , *
YOt Xy g 9 X~ Ky g s %m= Xo) = (X=X, £'Cty + Xy 4 ) =
x*
= QX * Xy g9 Xy =Xy yg s Xm— %) +
+ ¢ * o X * -P, x,)
Byt Xipyny Xmaq * Xmaq s %m =T Xo) +
) * L
F O+ Xy Xy + Xy g s T Xo = Xo) =

K

= (X =Ty, £'Cx,+ Xy, ) + (X~ B X, £'(x 4 r

Xpyq)) &

Sy Iy = Xy g ho Uy~ Xo 0 4 (X0~ Br Xy, P yg) +
Lk

te My g+ X gV NE %, - X, 1 +

+1x,-Bo o 0 . UE(x, = oy N -

= K= Bpxg, £ kX, 0 +
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med K *
T (X =B Xy, £'(x5" 4 X gV = £ (X, 40 ) £

*
e lxy =X, Mol -x 04 ey, 4 Xy, N EEp X, - X 0 +

*
)
LALLM C I yp] I EED A5 B

*

X 44 a .

+ l.xm'- P, X, 0 .lf’(x':”-r )-f‘(x°+ xf”,,

From the last inequalities, Lemma 3 and 5, continuity of

}w

the mapping £’ and boundedneas of the sequancelil&nl e 2

we obtain the desired result.

3. Remarks.

a) The main ideas of the KaZanov method are explained in

the book of S.G. Michlin [3, pp.369-3701.

b) The proof of the convergence of the Ka&anov method is
given in the authors’ paper [1] where also the application
to the second and mixed problems for elastoplastic materi-
als with the using of the deformation theory of plasticity
is stated.

¢) The convergence of the KaZanov method in the special
case for the solving of the magnetostatic field in nonli-
near media has been proved in the paper of J. Kadur, J. Ne-
%as, J. Polék and J. Soulek [2].

d) Since the assumptions of our Convergence Theorem for the
Kalanov-Galerkin method are essentially the same as in the
Katanov method, we tan apply this method to the same pro-

blems.
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