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Commentationes Mathematicae Universitatis Carolinae 

14,4 (1973) 

ON CHANGES OF INPUT/OUTPOT CODING I x ) 

Michal P. CHYTIL, Praha 

Abstract; Two classes of partial recursive functions 
corresponding to the intuitive notion of changes of input-
output coding are introduced and two relations in the set 
of all enumerations of partial recursive functions are de­
rived from them. Then tools of the theory of recursive 
functions are used to investigate the given structures. 

Key words: Enumeration of partial recursive functions, 
acceptable enumeration. 

AMS:Primary 02P99 Ref. 2. 2.655, 2.652 
Secondary 68A20 

§ 1* Introduction. A large number of various computing 

devices has been designed for evaluating arithmetic func­

tions. The evaluation of an arithmetic function by such a 

device is not direct - the device performs a mapping from 

a set of constructive objects (inputs) to a set of const­

ructive objects (outputs) and it is necessary to interpret 

inputs and outputs as numbers. In other words, given a com­

puting device, there is a freedom left in coding of numbers 

x) A part of this paper was presented a) the Symposium on 
Math. Foundations of Computer Science 73, Czechoslovakia. 
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by inputs and outputs* The different codings are not only 

more or less convenient for mathematical or practical pur­

poses! but they can essentially change the power of the 

given device. A well-known (cf.Cll, exercise 2-5) examp­

le is coding of integers in Turing machines. If numbers 

are coded by all finite tape configurations, then there 

exist simple partial recursive functions which cannot be 

evaluated by Turing machines, but if only inputs in a "ca­

nonical" form are used for coding numbers, then every par­

tial recursive function can be evaluated by a Turing ma­

chine* 

This is a motivation for introducing and investiga­

ting the concepts of i-dependence and o-dependence of 

enumerations of arithmetic functions* 

An enumeration of arithmetic functions (***,}%mo *s 

said to i-depend on an enumeration ( P i ^ ^ iff 

(tx, 4,)3f»o can b* derived from C/S^)^.^ by a chan­

ge of input coding such that the following conditions hold: 

(i) only inputs (possibly not all) which were used in 

the "old" coding are used in the "new" coding, 

(ii) different numbers are coded by different inputs, 

(iii) the change of coding can be done effectively* 

Similarly *•&>•,)&n0 is o-dependent on (ft>4,)*imO 

iff t&40)j°mQ can be derived from (fti)Ho *>y a chan­

ge of output coding which satisfies the conditions: 

(i) only outputs (possibly not all) which were used for 

the "old" coding are used for the "new" coding, 
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(ii) the change of coding can be done effectively. 

In this paper we use tools of the theory of recursive 

functions to study these two relations on the system of all 

effective enumerations of partial recursive functions. 

§ 2 contains definitions of basic notions and a summa­

ry of their elementary algebraic properties, § 3 and § 4 

are devoted to the investigation of i-dependence and o-

dependence, respectively* 

§ 2. Basic notions* 

We shall use the following notation throughout the 

paper: ?^ , ( H ^ ) denotes the sets of all tti -argument 

partial recursive Call recursive) functions, 

J* « 40,4,2,.,.* , 

-toL is the identical function N—* H , 

£fy denotes composition of functions £ , ^ C €%> (x) «• 

D£ , \£ denote domain and range of £ respectively, 

Kf Cx> I stands for x e D<p , 

<y(*)f stands for x ^ T><p and 

f(oO ^ 9 ^ > stands for (£(x)± s (fr(<frH) & 

& CfOc)* =*>£Oc) * 9,6^,)) . 

Every effective enumeration )k0 , M^ ; Jl^,... of compatfy 

devices for evaluating (partial) arithmetic functions 

yields an enumeration m,$ , i*^* /rn,a, ... of (partial) 
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mappings 

tftif • 

where I a M 0 are some sets of inputs and outputs, res­

pectively. The arithmetic functions come on scene as late 

as a coding of numbers by elements of I and 0 is chosen* 

We turn our attention only to the case when tm,Q , mt^ , 

/ro^, *•• is an effective enumeration of effective map­

pings and there are effective isomorphisms (i.e. 1-1 onto 

mappings) 

A*r, H and **SL l ° 

Then the enumeration tfft0 , "n^, /m^, 

meration cc0 , cc^ 9 oc^,... 9 where 

passes to an enu-

As ^ ^ , ^ 2 . are isomorphisms! the enumeration ot0 9 cc^,.* 

conversely determines the enumeration m,0 , m% 4 , . -. (cf. 

Pig* 2.1) 

T >, 0 

<*!* <** 

Fig. 2.1. 

We can therefore, without loss of generality, deal only with 

effective enumerations of partial recursive functions. 

The following definitions formally introduce the no-
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tions of i-dependence and o-dependence described in § 1. 

Definition 2.1. 1) We say that a function Jk> c P̂  is 

an i-convention iff h, is 1-1 and total* 

3 will denote the set of all i-conventions. 

2) We say that a function f e P^ is an o-convention 

iff f is onto if . 

(f will denote the set of all o- convent ions • 

Lemma 2.1. 1) V forms a monoid wrt the operation of 

composition of functions and with id as the identity ele­

ment. 

(I.e. (i) f e Cf & $> € 7 —i> ffr * 0 , 

(ii) f*-ujt«-uiof»f for all £ e J . ) 

2) (7" forms monoid wrt the same operation and iden­

tity element. 

Proof: Immediate. 

Definition 2f2. We say that (<x^ 1%m 0 is an rfffc-

jiy? enum?rfltjc-n, 9f Partial m q s m y g fTO9ti9B§ if* there 

is a € € P a such that IT(-£,*) » oc^Cat) for all 

Note. 1) % ••enumeration1* we shall mean "effective enu^ 

meration of partial recursive functions" throughout this pa­

per, 

2) "enumeration cc " and "enumeration (co^) " will be 

abbreviations for "enumeration (•a^XJf^O "* 
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Definition 2.3. Let cpf ip" be two enumerationa. We 

define: 

i) 9 i-dspjaafls-sa Y xLa * ( y *"*y via f ) 
iff £ € Z and tf/̂ f » <p^ for all *t> e N . 

<J> o-dependa on f via Jh, ( y ^ y via to,) 

iff Jb e (X and A,^, » g%, for all 4 c Jf • 

2) y i-dependa on y ( 9 4? Vf ) iff there i8 an 

£ 6 3 auch that g> a&^y via £ . 

<jp o-deoenda on y ( g> 4? y ) iff there i8 an 

H a (T auch that g? ̂  y via Jh, . 

3) <p ia i-ioj^vilfinJLifi ^ ( <p m* yr ) iff 

gp ia o-eouivalent to if ( y s^yr ) iff 

L̂i[B||̂  2tg. 1) Both relatione ^ and ̂ ^ are refle­

xive and transitive. 

2) The relatione «*" and s f are equivalence re­

latione* 

Proof. 1) follows immediately from Lemma 2.1. 

2) followa from 1). 

We give an illustration of the meaning of independen­

ce and o-dependence. 

Recall the enumeration of mappings <m,0, sm^/m^,,.. and 

the enumeration cc0, 0C4, ©ca, ... from the beginning of 

thia paragraph. Every effective input coding of numbers can 
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be identified with a mapping 

JM> J H *> I (number m* is coded by lm/(/rv) ). 

Analogously, output coding of numbers can be identified with 

an onto mapping 

# : (J > J( (x « 0 is interpreted as crGc) 

if 0"Co<)4/, iX is without interpretation otherwise). 

Isomorphisms i h ^ , Zfe^ give a correspondence between 

</n, and i-convention f » (4*4 ) • -GIV and a corresponden­

ce between <r and o-convention JH/ = <To -t6A . Let (I &* cc 

via £ and f ^r^/3 via ̂  . Then 

($\ ) = (cromi^ o ̂ »v ) 

is an enumeration of functions evaluated by JA0,M,f,..# with 

input and output codings -vru and <r respectively. 

Definition 2.4. 1) toe]*" denotes the i-class (i.e. 

equivalence class wrt the equivalence s^ ) containing the 

enumeration tx . [06 J denotes the o-class containing 

the enumeration 00 • 

2) roc^^r/n^ iff t* **£ , 
Lecl'^lpl" iff cO ̂ /3 . 

Evidently £* and *£ °̂  are partial orderings of i-

classes and o-classes, respectively. 

The following theorem will often be used in this paper. 

Theorem 2 .3 . If A £ if i s in f in i te then 

(A i s recursively enumerable ( r . e . ) set ) < = > (there i s an 

£ e 3 such that &£ ** A )<==> (there i s an M, s & such 

that DJfc-Jt ) . , 9 Q 



For the proof of the theorem see e .g . [ 1 1 , Chap* 5. 

§ 3 . i-dftpjn£sn££. 

In this paragraph we shall formulate and prove some 

properties of the structure given by independence* Namely 

that: 

1* There exists a maximal i-class. 

2. Every i-class is formed by enumerations which differ on­

ly by "recursive permutations of inputs"• 

3* Some important families of i-classes form relative upper 

semilattices wrt i-dependence. This does not hold for the 

family of all i-classes. 

Many results concerning i-dependence can be trivially 

obtained from the well-known theorems about program trans­

formations and that is why the following definition will be 

useful: 

Definition 3.1. Enumerations «o , ft will be called 

dual iff (V<i,m, c H) Ccc^CmJ x /^C-t*)) . 

The existence of a maximal i-class immediately foil-

owe from the existence of an acceptable enumeration of par­

tial recursive functions. Therefore we recall the definitios 

of acceptable enumeration. 

Definition 3.2. An enumeration 3* of all functions 

from P^ is called acceptable enumeration (AE) if for every 

<^« ?2, there exists a ^ c X, such that 
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Fact 3.1. An AE exists. 

For example tha enumerations of ?^ given by the 

standard enumerations of Turing machines are AE, For more 

informations about acceptable enumerations see e.g. til . 

We shall often use the following result which is a 

straightforward consequence of the basic properties of AE, 

Theorem 3.2. Let <p be an AE. Then an enumeration njr 

is AE iff there exist o^ , ̂  e X^ such that 

(+4, « K) (§>i - r^uy *Vi~ SV*> ' 

The theorem can be probably easily verified by the 

reader* If not, see 111 • 

Definition 3.3. We say that an irclass C y J ^ is 

maximal i-clasB iff Icgl* vi" lyl* for the arbitrary 

enumeration y . 

The fact 3.1 and the following theorem evidently imp­

ly the existence of a maximal i-class. 

Theorem 3.3. Let gp be an enumeration. Then 
* 

( C <f 1* is maximal i-class)<=> (tha enumeration dual to 

<p is AE), 

Proof. <== : Let <p dual to $p be an AE and let 

;fr be an arbitrary enumeration. Let qf be the function 

such that y (-£•,*) a ^ (<*) for all i,x e Jf . Then <y e 

c ? 2 and there is a 9. eJl^ such that g^c-i) C*) £i 

^ y <-£,*) rs ijfc (-t<) for every i,at e N . By the techni­

que of "padding" (cf. Cl] 5§ 7.2) a 1-1 recursive function 
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a? can be found such that y^c-i> ** 9q><4,) for a11 * e 

€ Jf . Apparently 

C++, * e JO C 94 fr' C*) * ̂ , «> « n f* n 

and the "if** part of the theorem is established* 
0 

sssssefy i Let <p ̂  y for all y . We choose y such that 

Y dual to if is AE. It follows from the preceding part 

of the proof that if m? <p and therefore ̂ , ty*^ e j ^ 

exist for which (1N, e JO Cy^ «* 9 4 ^ & cp± « fi 9^ J * This 

yields 

for <p dual to g? . Consequently, <p is AS by Theorem 3.2. 

Corollary 3*4* The maximal i-class exists* 

Prpof: Immediate. 

We introduce several auxiliary concepts, which will be 

useful in further investigation of i-dependenee. 

Definition 3*4* Let to be an enumeration* We define 

1) * -^Z iff 00^ = cĉ  (&,9£mN) . 

2) Let A , £ be r . e . sets* Then 

A £ ^ 3 i f f there ex i s t s 1-1 partial recursive func­

tion <f such that ( i ) Dof 2 A * 

( i i ) C.1H cDcT) C c T a ) * ^ ] , 

( i i i ) cTCA) S B . 

3) Let A , B , C be r.e. sets* We say that C is an ac-

- 632 -



supremum of A,B iff (i) A B^ C & B C ^ C , 

(ii) for every r.e, set P 

( A s ^ J A B S e c D ^ C s ^ J ) . 

4) Let A , B be r . e . s e t s . Then 

A ^ c B i f f there i s a 1-1 function 0* « F^ such 

that 

J>€T 2 Age eCA) « B& (¥-£ € D6')Ce'C^) * -£J . 

Note 3.5. 1) 5=^ and ^ ^ are evidently equivalen­

ce relations on Jf and the class of r.e. sets respective­

ly-

2) The relation £ ̂  is reflexive and transitive. 

Many important properties of the structure given by 

i-dependence can be derived from the following basic lemma. 

Lemma 3.6. Let <p be an enumeration and <p its dual 

enumeration9 let oc ^cp via Jh, , /$ ***Q? via £ • Then 

the following two conditions are equivalent. 

(1) oc ** /J , 

(2) XJk S ^ 3t£ . 

Before proving the lemma, we recall a result of recur­

sive function theory. 

Theorem 3.7. For every £ e P>f there ex is ts a par­

t i a l recursive function 9 , such that 3)9- » %£ & X$~ fiDf fc 

8c £9, (•&)«£ for every •£ c H£ • 

For the proof of Theorem 3.7 see til • Given an £ c 

€ ?4 we shall use the symbol £~* only for a partial re-
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cursive function satisfying the conditions of Theorem 3.7• 

Proof of Lemma* (1)==>(2): Let q> m V exist such 

that <%iJh> s q^£q, for all ̂  © If . This is equivalent to 

the assertion 

(* ) £<fr(-l) mJh,0i>) for all ^ e JC . 

The partial recursive function cT= £q,Zt>~ i s apparently 

1-1, DcT=rlL$v and <f (Xh,) s &d" c H£ . Prom (*c) i t can 

be easi ly deduced that cf (<*)**£ i for every -i c 3cT . 

Apparently XJli> S ^ R£ . 

(2 )=*>(1) : Let £&- JS&&f .That i s , a partial recursi­

ve 1-1 function cT ex is ts for which J)cT2XJ>v, cFCRJfe,) c Xf 

and d t e e D c T ) CoTC</) m & J, 3 . Define the function 

(^ m £~ cTM, t As <f(%Jhs) & Rf , 9^ i s recursive and evi­

dently 9- i s 1-1 • Thereby ^ 6 J and f^C-cOwff^cfJh^i) * 

« cT4t>£t')«^lv&) for every -£ e Jf . This implies jp* <*fc-g^€9* 

for a l l 4* 6 if and the lemma i s proved* 

The following theorem gives an interesting characteri­

zation of i - c l a s s e s . 

Theorem 3f8> For every two enumerations & and fi , 

cc m* (i i f f there ex is ts a recursive permutation 

(i#e» recursive, 1-1, onto Jf function) such that cc^jfh m fi^ 

for a l l 4, c Jf . 

The "if" part of the theorem i s immediate} the "only 

if" part can be obtained simply by dualization from the next 

theorem. 
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Theorem 3«9» Let <p and i|f be enumerations such that 

there exist recursive 1-1 functions ^ , f satisfying the 

following conditions 

b) *«« m V-L f0r a11 * * N * 

Then there exists a recursive permutation jp, such that 

%C4> - r-i for •!! * • Jf . 

For proof of the theorem see C23 • 

Corollary 3#10. For every r.e. sets A , 5 and for 

every enumeration e, 

CA &^3 & B i50A)<««> A ^B . 

Propf: 1} The "only if" part is immediate from the de­

finition* 

2* We prove the "if" part. Assume A & & 3 fcB £ e A . 

If one of the sets A ,B is finite, then the other is al­

so finite and, as the reader can easily verify, the condi­

tion A *̂g B evidently holds. If A and 3 are infini­

te , then there exist f , f e 3 such that 3L£ m A and 

TLfy » B by the theorem 2«3« Let e denote the enumera­

tion dual to E • Then (t^)^t(ii€) and Ce^£) &.* C&^ $,) 

(cf. Lemma 3*6)• By the preceding theorem a recursive per­

mutation Mr exists such that to±£Hm £4,9* for all t m 

€ H . Consequently 

(*) £Jh,U)« e^«.) for all * « JC . 
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Define the partial function cT s £&,<^ . Apparently cT 

is partial recursive and 1-19 J><f *» &fy> and Xcf » Xf • 

Furthermore, for every 4, e Dcf there is cT(^) * fJhr̂ r'ft') 

and by (# ) there is fih,^4^) sr& %>$*(<<') * i # This 

implies %£ ^*e Rg/ and the corollary is proved. 

The next theorem will enable us to describe the struc­

ture given by i-dependence for some enumerations of spe­

cial interest (e.g. enumerations of primitive recursive func­

tions, acceptable enumerations etc.). 

Theorem 3.11. Let l<gV be a maximal i-class and 9 

the enumeration dual to <p, let e^ &* y via to, , 

£,a ^ op via £ . Then the i-classes I fi^^Ce^l"1' have 

supremum wrt £*** if and only if the sets Xf and TLJhs 

have an cp -supremum. 

Proof: The theorem can be proved by a straightforward 

application of Lemma 3.6. 

I. First we prove the "only if* part. Let us assume 

that supremum of Is,^!* and tt,^!^ exists. Let e 3 6 

e Jwufi (Ce^l* Ce^l*') * Then there exists an ^ e 7 such 

that e 3 a (y^fy) • By Lemma 3*6 there is R ^ S a &£ , JMv . 

For every r.e. set 3) such that J 2 ^ R£ , XJH/ , there ex­

ists a d « 7 for which Hot * J • Define £4, by e ^ c 

« df^cL). £^2t*€3 , as E 3 is in *uup,tllA?f t^T?) .Hen­

ce D 2 A R9. by Lemma 3*6 and %fy is evidently <f -sup­

remum of Rf and lilt « 

II. We now prove the "if1* part of the theorem. Assume 

that A is a Cf -supremum of Rf >1H. A is then an infi-
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ni te r . e . set and a 9, e 3 ex i s t s such that Hg, m A 

(by Theorem 2.3)• Let us define fr m (<fi%>) . Then y^e^ , 

iff £ 6 2. by Lemma 3 .6 . For every enumeration qr there 

i s an e € D such that 3; «£*y via e and i f ^ £ * e f , 

^ ^ e 2 then JLe 2^Jl£,lJfe and therefore Xe 3 3 A 

by assumption. Hence ^ 2 * ijr by the same lemma and the 

theorem follows. 

The reader may have noticed that the assumption con­

cerning the enumeration <p was not used in the part I of 

the proof. The following corollary union i s a stronger ver­

sion of the "only if" part of the theorem, therefore holds. 

Corollary 3.12. Let <p be an arbitrary enumeration, . 

<p the dual enumeration, l e t e,, 4** <p via fa, £.* &* cp 

via £ • Then 

(supremum of t t ^ y t^aX* ex i s t s ) =ss^ (§ -supremum of 

'K£9TLH e x i s t s ) . 

Definition 3 .5 . 1) % w i l l denote the c lass of a l l 

enumerations. 

2) % w i l l denote the c lass of a l l enumerations 

(oc^) for which <t,0 e if ex is ts such that oc.£ i s re­

cursive 1-1 function. 

3) &% wi l l denote the c lass of a l l acceptable enu­

merations. 

4) Let e be an arbitrary enumeration. Then «£g wi l l 

denote the c lass of i - c la s se s defined as follows: 
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Corollary 3«13« Let e e t*"'1 , Then <#e is an up­

per semilattice wrt ^ * 

Proof: Let 5? be an enumeration belonging to the ma­

ximal i-class and let £ be an i-convention such that 

6 &* op via £ . Let y be the enumeration dual to op . 

Let us assume that £4 ^ e, via ^ , 

e 2 ^ e via Jfe. . 

I t follows by the preceding theorem that Ce<f:f
c',reaJ'1' have 

supremum i f f &£$-, JLfM* have a <y -supremum. Obviously, 

Kfc^sr f (JLg,) and Ifjh, » £CKJfc).To establish the corolla­

ry i t evidently suff ices to prove that for every r . e . sets 

A 5 B a y -supremum of f ( A ) , £CB) e x i s t s . 

By assumption there i s a recursive cc& in g, such 

that o c ^ (oc) #• oc^ 6uv) for every oc + /U* • This implies 

<p<i £0x) #5 cjfc £(*fr) for every oc + / ^ and consequently 

# ~& 4^<=> x » /y. for every oc, /jp e Rf . Therefore 

f t A ) u f C B ) i s a 9 -supremum of f CA) , £CB) . 

In the next theorem we show that the membership in 

% ~ and 0i% respectively i s hereditary wrt ^ ^ . 

Theorem 3*14. Let xc, /S be enumerations such that 

aO z* fi , Then 

1) oc e I4"* ~**> fie %*-* , 

2) * c i l « « > / 3 € ( l ? • 

Proof: 1) Let fi &* 00 via &* .Let o&,£ be recursi-
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ve 1-1 function, then fa ** oc^ Jh, is again recursive 

1-1 function and fi e *ti'/f . 

2) Let fh &* oo via tiv and let oc be acceptable* 

Then ft such that (-¥i,*)Cy(*,oc) ^ ©c^J^Cx)J is 

a partial recursive function of two variables and so (cf• 

Definition 3.2) a ^ e l ^ exists for which 

Conversely, JhT is a partial recursive function and 

<T for which f¥*,x eM)t<rU,x)x oc^Jh^Cx)! is al­

so a partial recursive function* Consequently, a recursive 

function <fa exists such that 

Since M> is 1-1, 9rC M,(x) * x for allyceH % hence the 

condition 

(¥*,*e JOT/3-U}<*)* c6^ a)h(x) x &^K1 Jh(*) at ^(x)! 

holds* We summarize: 

°V^> ' &* > 

t+xM
 m * - v f o r a 1 1 * •-" • 

It follows that (I is acceptable by Theorem 3*2* 

Note* The more general relation of enumerations which 

arises if arbitrary partial recursive functions instead of 

^conventions are used, could be studied* 
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Evidently, i f (ec^) m (fc £ ) and cc , fi e %+* , then 

£ must be i-convention. Therefore i-conventione are just 

the functions which transform members of %*'* in members 

of %*~* (and members of CU1 in members of &<& )• 

Theorem 3.14 gives immediately 

for every enumerations e^ , e 2 (i.e. every i-class is 

either disjoint with %*-* or is contained in %*-* • ana­

logously for &*£ )• 

Now Corollary 3*13 can be strengthened as follows. 

Corollary 3.15. 1) <£*'*/*+ forms a relative upper 

eeailattice wrt &* (i. every pair of i-classes from 

% ~ / m* has a supremum in *£ /m** whenever it has 

an upper bound in t ^ V s ' * ' ). 

2) CL*t> /m* form a relative upper semilattice wrt 

.*+ . 

£CftfiI: Immediate from Cwwollary 3.13 and Theorem 3.14. 

The corollary gives in a sense the strongest possible 

result - we show that "relative upper semilattice" cannot be 

replaced by "upper semilattice" in the previous corollary. 

Fqct jf!6« There are two acceptable enumerations cp , 

Y which have no upper bound in %i"41 

Proof: Choose an arbitrary cc • &% . There is an 

w f J T such that ccj 6x) » 0 for all x e K . Let us de-
0 

fine 
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OC-j 

2 

CCj 

Vi • i 
"¥ 

OC-

if -i is even, 

if i. is odd, 

if •£ is odd, 

if <i is even* 

The reader can easily verify (cf« Theorem 3.2) that <y and 

y are acceptable enumerations* Let ̂  be an upper bound 

of eg and y , i.e. £, 9- e J exist such that 

<f £? f via £ , 

Assume that #$. i a a recursive function* We prove that 

i t cannot be 1*1* 

( i ) i f to0 i s odd then T * , * £* > * <£%, (*> * <J>*/lP~ 

s -jfk £Gjp an^ $jfc i s not 1-1* as £Cx)#£f<y,) tor 

* * %. ; 

( i t ) i f jfĉ  i s even then 9 ^ Q*fx)»ggt 9>ff*) *©r a l l 

4-4 

K , ̂  and hence g ^ is not 1-1. 

As Jfc0 was chosen arbitrary, y ^ ^ 

la recall that d t c t'"*c ^ . We exhibited 

t , £, 6 &*& such that there exists no upper bound of 

*. 641 -



e^,e a in t 4" 4 .Therefore M / s * and * V s * 

are not upper sesdlattices. Since there is an upper bound 

in % for every pair of enumerations, the question ari-

see whether / ^ is the upper semilattice wrt as* . 

The answer is negative* 

Theorem 3.17. For every acceptable enumeration oc 

there is an acceptable enumeration (I such that the sup-

remum of totl* and Zft>3^ does not exist. 

Proof: Let OG be an arbitrary enumeration. There is 

an JO € X^ such that oo^c » 4<L for every 4, m It • 

Moreover, by the technique of "padding" we can construct 

an increasing recursive function of the desired property. 

Therefore R/c can be assumed to be recursive. 

The function £ for which Ctx) Z£ (x) 22 tc# (x) 1 

is a partial recursive function. Let ? be an algorithm-

evaluating the function f . We define 

X if F does not complete evaluating of 

f (x) in i> stepsf 

/m,(-u,x)cc 

t 
i f F completes evaluating of £ (x) 

in <i> steps. 

/m i s partial recursive function and there is a <fr e X^ 

such that oĈ ,(L|,> (<i*,x) for a l l 4*, x srJf . 

It follows ftpom the definition of mv that O DocAr.% as 

=? D£ . Since the range of the function K> i s recursive 
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and K, is 1-1, the effective enumeration (I can be de­

fined as follows. 

& 

CO. 

oc <*<& 

if i ^ k 7 

if i * ̂ (^) -

The reader can eas i ly verify that recursive functions k>^ , 

h% exist such that oc=r / 3 ^ a > and J3̂  a» «**4a> f o r 

a l l i c X . Therefore /3 i s acceptable by Theorem 3«2. 

Let us note that the following equivalence holds. 

Recall that for the enumerations 06 , /3 dual to 00 and 

|S , respectively, there i s i-v » £ j - ) ^ C-v«g )̂<«»> C-£ * £ ) . 

I t i s now easy to verify the following crucial equivalence. 

( * * ) CCf-leJOCoc^Cx) 2* p - i f ^ > 3 « - H > 

<=> [ * = ^ & * € ^ 3 ) C C Q . ^ ) ^ 

We define tf : 

n c ^>^ 
i f x i s even, 

A* ("^J if * i8 odd* 
Obviously *y si^ 00 via .#1^ 

and 7 *? ft via ^ ,where 
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Jh,j(x)ss2x& !H/1(x>*lx + 4 for all x e X . Let y be 

the enumeration dual to T . If rocj*, f/3J* have supre-

mum then RJh^ , Xh,^ have a ^ -supremum by Corollary 

3.12. Ve shall exhibit that no y* -supremum of BJlî , JUh,2 

exists. This will complete the proof of the theorem. 

Let Jl » { 2x; x c H Doo~ ̂  $ • Then the defini­

tion of 7f and (* # ) imply 

( # * * ) -I << £ «s> [ (i «-*•£><«:> (£--t>+4 & -I, € J4 )1 . 

Let now A be an arbitrary r . e . set such that A ^^JUk^ 

and A 2 i Kit^ • * e prove that A i s not ^ -supremum of 

BAfy ,BJba . By Definition 3.4 there are 1-1 partial recur­

sive functions T , e* such that 

A p^ Rjh^ via t: , 

A 2 A TUh,^ via €r . 

Let us define C «<*• x even and (.3<y,) (<& odd and 

t ( x ) ~ $(q,)) J C is r.e* set and C s M by (***). 

Recall the definition of £ . Evidently the set ££ * 

«• ADoc^.,.. is creative and therefore M is creative. 

This implies that an A,Q €.M\ C exists. 

We define.- B » A N 4 <* C^Q) } . 

Apparently X ^ c * B via flf and HJK ©* B via v , 

where 
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K Cx) ~ J 

r t f ) ( ) i f x + i f l , 

I 

L *« , . - • 4) i f x « i f l , 

3 S A A as i s A , But A S A B cannot hold as 

( i ) « « , ) , ^ f ' D c A & *U0) * e r e ^ + 4) * 

( i i ) ff C-i + 1 ) c B and for every ^ c B 

* ( * 0 + 4 > * £ , = > * « , • + *> * ^ • 

Consequently A i s not ^ -supremum of BJkp JtJJt '. As A 

was arbitrary, the theorem i s proved. 
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