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14,4 (1973)

ON CHANGES OF INPUT/OUTPUT CODING I x)

Michal P. CHYTIL, Praha

Abstr. : Two classes of partial recursive functions
corresponding to the intuitive notion of changes of input-
output coding are introduced and two relations in the set
of all enumerations of partial recursive functions are de-
rived from them. Then tools of the theory of recursive
functions are used to investigate the given structures.

Keg words: Enumeration of partial recursive functions
acceptable enumeration. ’

AMS:Primary 02F99 Ref. Z. 2,655, 2.652
Secondary 68A20

§ 1. Introduction. A large number of various computing
devices has been designed for evaluating arithmetic func-
tions. The evaluation of an arithmetic function by such a
device is not direct - the device performs a mapping from
a set of constructive objects (inpdte) to a set of const-
ructive objects (outputs) and it is necessary to interpret
inputs and outputs as numbers. In other words, given a com-

puting device, there is a freedom left in coding of numbers

x) A part of this paper was presented a{ the Symposium on
Math. Foundations of Computer Science 73, Czechoslovakia.
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by inputs and outputs. The different codings are not only
more or less convenient for mathematical or practical pur-
poses, but they can essentially change the power of the
given device. A well-known (cf.[1], exercise 2-5) examp-
le is coding of integers in Turing machines. If numbers
are coded by all finite tape configurations, then there
exist simple partial recursive functions which cannot be
evaluated by Turing machines, but if only inputs in a "“ca-
nonical" form are used for coding numbers, then every par-
tial recursive function can be evaluated by a Turing ma-

chine.

This is a motivation for introducing and investiga-
ting the concepts of i-dependence and o-dependence of

enumerations of arithmetic functions.

An enumeration of arithmetic functions (e p)¥_, is
said to i-depend on an enumeration ((3;)%° , iff
(¢ Y¥w0  can be derived from (4)%., by a chan-

ge of input coding such that the following conditions hold:

(1) only inputs (possibly not all) which were used in
the "0ld" coding are used in the "new" coding,

(ii) different numbers are coded by different inputs,

(iii) the change of coding can be done effectively.

Similarly (<;)%¥,, is o-dependent on (3, 2.0

iff («;)3°.0 can be derived from ((B3;)$2 o by a chan-

ge of output vcoding which satisfies the conditions:

(i) only outputs (possibly not all) which were used for

the "0ld" coding are used for the "new" coding,
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(ii) the change of coding can be done effectively.

In this paper we use tools of the theory of recursive
functions to study these two relations on the system of all

effective enumerations of partial recursive functions.

§ 2 contains definitions of basic notions and a summa-
ry of their elementary algebraic properties, § 3 and § 4
are devoted to the investigation of i-dependence and o=

dependence, respectively.

§ 2. Basic notions.

We shall use the following notation throughout the
paper: P, y (R, ) denotes the sets of all m -argument
partial recursive (all recursive) functions,
N=40,4,2,...3 ,
1d ie the identical function N— N |

£g.  denotes composition of functions £, ¢ (fg (x) =
= £(g x)) ,

Df N R¢ denote domain and range of f respectively,

e(x)d stands for x € Do ,

g(x)%  stands for x ¢ D  and
f(x) = g(g) stands for (£(x)¥ =g (y)d) &

& (£(x)d = £(x) = g (4)) .

Every effective enumeration M, ,M,, My, ... of computin
devices for evaluating (partial) arithmetic functions

yields an enumeration m,, m, , m,, ... of (partial)
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mappings

where I and 0 are some sets of inputs and outputs, res-
pectively. The arithmetic functions come on scene as late
as a coding of numbers by elements of I and 0 is chosen.
We turn our attention only to the case when m,, m,,
Mgy oo is an effective enumeration of effective map-
pings and there are effective isomorphisms (i.e. 1-1 onto

mappings)

ibq:N——»l and A'Jba_z()——».N'.

Then the enumeration mgy,,m,,m,,... passes to an enu-
meration e, , ¢ , ©¢y,... , where
As »ib,‘ N »ie,_ are isomorphisms, the enumeration ocp, ocy,-..

conversely determines the enumeration m,,m,, ... (cf.

Figo 2.1)

I e > 0
in, i,
X b > N
Fig. 2.1.

We can therefore, without loss of generality, deal only with

effective enumerations of partial recursive functions.
The following definitions formally introduce the no-
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tions of i-dependence and o-dependence described in § 1.

Defipition 2.,1. 1) We say that a function % € P, is
an i-gconventjon iff s is 1-1 and total.

J will denote the set of all i-conventions.
2) We say that a function fe€P; is an o-conventign
iff £ is onto N .

(" will denote the set of all o-conventions.

Lemma 2.,1. 1) ¥ forms a monoid wrt the operation of
composition of functions and with 4d as the identity ele-
ment.

(Ie. (1) feJ & gel=>fg T,

(ii) fodd =4id of= £ for all £fe€ J.)

2) (* forms monoid wrt the same operation and iden-
tity element.
Proof: Immediate.

Definition 2,2. We say that (e« )3., is an effec-

live enumeration of partial recursive functions iff there
isa € e€P, such that 6(<{,x) = o (x) for all

“,xeN .

Note. 1) By "enumeration" we shall mean "effective enu-
meration of partial recursive functions" throughout this pa-
per,

2) "enumeration o " and "enumeration (o) " will be

abbreviations for "enumeration ()5, o ".
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Definjtion 2.3. Let @, ¥ Dbe two enumerations. We
define:

1) ¢ i-depends on ¥ mr(géiq; via £ )
iff feJ and y;f=¢g; for all 4 e N
@ o-dependson ¥y via h (@ £7y via &)
iff he0 and hy, =g, forall i eN .

2) @ i-dependson ¥ (9@ é".'qr ) iff there is an
£eJ oeuch that g «¥y via £ .
@ o-depends on ¥ (@ <%y ) iff there is an
b e such that @ £” ¢ via fh .

3) ¢ is i-gguivalent to ¥ (gps‘:qr ) iff

gty aysty .
@ is o-gquivalent to ¥ (@ ="y ) iff

ey Ayey .

Lemma 2,2. 1) Both relations <% and <% are refle-
xive and transitive.

2) The rolaiiona =* and =" are equivalence re-
lations.

Proof, 1) follows immediately from Lemma 2.1.

2) follows from 1).

We give an illustration of the meaning of i-dependen-
ce and o-dependence.

Recall the enumeration of mappings mgy, m,,m,,... and
the enumeration o¢,, ¢4, ¢y, --- from the beginning of

this paragraph. Every effective input coding of numbers can
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be identified with a mapping
m: N — 1 (number m is coded by im (m) ).

Analogously, output coding of numbers can be identified with

an onto mapping

o:0 — N (x « 0 is interpreted as o’(x)

if oo(x?¥, % is without interpretation otherwise).

Isomorphisms 4'134 ’ ih 2 give a correspondence betweén
<m and ji-convention f= (4b, )"1oim and a corresponden-
ce between o' and o-convention S = 0’0 b, .Let f £t ec
via £ and ¥ é«ﬁ via 4 . Then

(2;) = (roemy o im)

is an enumeration of functions evaluated by M,,M,,... with

input and output codings -m and o respectively.

Definition 2.4. 1) [ ]¥ denotes the i-class (i.e.
equivalence class wrt the equivalence =.——_"" ) containing the
enumeration oc . [«.1’ denotes the o-class containing

the enumeration o¢c .
2) [l &’rp1¥ irr o s,
L1 =Ip17 ifr « €73 .
Evidently é"" and =9 are partial orderings of i-

classes and o-classes, respectively.

The following theorem will often be used in this paper.

Theorem 2.3. If A ¢ N ~ is infinite then
(A is recursively enumerable (r.e.) set ){==> (there is an
£fe such that R€ = A )<==) (there is an sh e 0 such

that D’P-l )o - 629 -



For the proof of the theorem see e.g. [11, Chap. 5.

§ 3. i-dependence.

In this paragraph we shall formulate and prove some
properties of the structure given by i-dependence. Namely
that:

l. There exists a maximal i-class.

2. Every i-class is formed by enumerations which differ on-
ly by "recursive permutations of inputs".

3. Some important families of i-classes form relative upper
semilattices wrt i-dépendence. This does not hold for the

family of all i-classes.

Many results concerning - i-dependence can be trivially
obtained from the well-known theorems about program trans-
formations and that is why the following definition will be
useful:

Definition 3.1. Enumerations o , (3 will be called
dual iff (¥4, m e N) (o (m) = B, (4)) .

The existence of a maximal i-class immediately foll-
ows from the existence of an acceptable enumeration of par-
tial recursive functions. Therefore we recall the definitiom

of acccﬁtablo enumeration.

Definition 3.2. An enumeration ¢ of all functions

from P, 1is called acceptable epumeration (AE) if for every
& e P, there exists a g € R, such that

(¥i,x € N) (F(4,x) = @ gy (X)) .
- 630 -



Fact 3.1. An AE exists.
For example the enumerations of P, given by the
standard enumerations of Turing machines are AE, For more

informations about acceptable enumerations see e.g. [11 .

We shall often use the following result which is a

straightforward consequence of the basic properties of AE,
]

Theorem 3.2. Let ¢ be an AE. Then an enumerat:.on s
is AE iff there exist %4> 9, € K4 such that

Fi e N (@, = Wy 00y % ¥ = Pay00))

The theorem can be probably easily verified by the

reader. If not, see [1] .

Definition 3,3. We say that an irclass Cg’J'i‘ is
maximel i-clase iff [¢gl™ z"’[‘quv for the arbitrary
enumeration vy .

The fact 3.1 and the following theorem evidently imp-

ly the existence of a maximal i-class.

Theorem 3.3. Let @ be an enumeration. Then
(g 1* is maximal i-class)¢==) (the enumeration dual to
@ is AE).

Proof. <= : Let g; dual to @ Dbe an AE and let
Y be an arbitrary enumeration. Let " be the function
such that g (i ,x) = %,(<) for all i,xe N. Then y e
€ T; and there is a g € X, such that 6\1’“) (x) =
x y(i,x) = ¢, (i) for every i,x € N . By the techni-
- que of "padding" (cf.[11,§ 7.2) a 1-1 recursive function
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@’ can be found such that 69,(..-_) = é\vg.(_;_,) for all < &
€ N . Apparently

(i, x e NILg, ¢ (x) = 0y () = 3, (x)]

and the "if" part of the theorem is establishea.

= :Let @ 2+ ¥ for all 4 . We choose 73r such that
1? dual to 3 is AE. It follows from the preceding part
of the proof that v =% @  and therefore g4, 9, € X4
exist for which (V1 eN) [y, =9,9, & @, = ¥; ¢, ] - This
yields

" A A A A
eV Loy oy = ¥, & V000 = 93]
for 6 dual to @ . Consequently, 9'3 is AE by Theorem 3.2.

Corollary J.4. The maximal i-class exists.
Proof: Immediate.

We introduce several auxiliary concepts, which will be

useful in further investigation of i-dependence.

Definition 3.4. Let &« be an enumeration., We define
1) M= Ll itf xy =, (k,LaN) .
2) Let A,B be r.e. sets. Then

A ‘S,,_B iff there exists 1-1 partial recursive func-
tion J* such that (i) D" 2 A ,

(1) (¥4 € DS LI (i) =i 1 ,

(iii) J(AY B .

3) Let A,B,C be r.e. sets. We say that C is an -
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supremum of A ,B iff (i) A, C&B s,C ,
(ii) for every r.e. set D
(A€ D&BE,d)=>Cs,D .
4) Let A,B Dbe r.e. sets. Then
A~ B iff there is a 1-1 function & & P4 such
that

D6 2A% 6(A) =B& (¥1 eDEILE6(L) = <]

Note 3.5. 1) =, and =, are evidently equivalen-
ce relations on N and the class of r.e. sets respective-
1yo

2) The relation S, 18 reflexive and transitive,

Many important properties of the structure given by

i-dependence can be derived from the following basic lemma.

Lemma 3.6. Let ¢ be an enumeration and 9'3 its dual
enumeration, let o é""q; via h , {36“"9 via £ . Then
the following two conditions are equivalent.

1) e g¥p ,

(2) R4 =, k£ .
g

'

Before proving the lemma, we recall a result of recur-

sive function theory.

Theorem 3,7. For every f € P, there exists a par-
tial recursive function g such that D¢ = Rf & Xg €Df&
& £o (i{)=1i for every 1 € Rf .

For the proof of Theorem 3.7 see [1] . Given an f ¢

€ P, we shall use the symbol £-1 only for a partial re-
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cursive function utiafying the conditions of Theorem 3.7.
Proof of Lemma. (1) =)(2): Let ¢ € J exist such
that @; A = @, £g. for all + & N. This is equivalent to

the assertion

(x) £gr(1'.)1,h(13) for all « e N .

The partial recursive function o = 29,31,'4 is apparently
1-1, DdF'=R%h and FS(Rh)=RJ s Rf. From (%) it can
be easily deduced that J'(i)=g 1 for every i & Do .
Apparently Rh Ec’} Rf .

(2) ==)(1): Let R% E‘?R{-‘ .That is, a partial recursi-
ve 1-1 function oJ° exists for which Dd 2%, (X&) = Rf
and (¥4 e€Dd’) LI (L) = 3 4+ J . Define the function
g = £ . s JI(RBW) = RE, @ is recursive and evi-
dently 9 is 1-1. Thereby g € J and fg,(i)sz“d’h () =
= Jh(i)=g h () for every < € N . This implies g, h=g,fg

for all 4 € N and the lemma is proved.

The following theorem g:i.vea' an interesting characteri-

zation of i~-classes.

Theorem 3,8. For every two enumerations o« and (8 ,
« =% 3 iff there exists a recursive permutation
(i.e. recursive, 1-1, onto X -function) such that o =3
for all L+ e N .

The "if" part of the theorem is immediate; the "only
if" part can be obtained simply by dualization from the next

theorem.
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Theorem 3,9. Let ¢ and ¥ be enumerations such that
there exist recursive 1-1 functions g-,f satisfying the

following conditions
8 Fou =¥ >
b) Yo =P for all + e N .

Then there exists a recursive permutation 42+ such that

Fpciy = ¥a for all 4+ & N .

For proof of the theorem see [2] .

Corollary 3.10. For every r.e. sets A,B and for

every enumeration ¢

(A, BXBS A=>A~,B .

Proof: 1) The "only if" part is immediate from the de-
finition.

2. We prove the "if" part. Assume A S, B &k B Sg A .
If one of the sets A,B is finite, then the other is al-
so finite and, as the reader can easily verify, the condi-
tion A =, B  evidently holds. If A and B are infini-
te, then there exist £, g € J such that R€ = A and
Rg =B by the theorem 2.3. Let € denote the enumera-
tion dual to & . Then (&;9)&(£;£) and (&;£) &% (2 g)
(ér. Lemma 3.6). By the preceding theorem a recursive per-
mutation % exists such that €;£f%h = .9 forall i«
€ N . Consequently

(%) £in (4) -t."“') for all < e N .
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Define the partial function Jd"= f.‘hg,"’ . Apparently d
is partial recursive and 1-1, Dd"= Rg. and Rd" = Rf .
Furthermore, for every 4 € Dd”  there is d’(iz)=£hg¢'4(1))
and by (%) there is £fhg '(i)=g gg (i) = 4i . This
implies Rf «¥¢ Rqg and the corollary is proved.

The next theorem will enable us to describe the struc-
ture given by i-dependence for some enumerations of spe~
cial interest (e.g. enumerations of primitive recursive func-

tions, acceptable enumerations etc.).

Theorem 3,11. Let Eq]"' be a maximal i-class and &
the enumeration dual to <, let €, ﬁ"gv via f ,
a2 <* @ via £ . Then the i-classes [¢g, Jﬁ[e,_]i' have
supremum wrt <% if and only if the sets Rf and RHh
have an c? =-8upremum.

Proof: The theorem can be proved by a straightforward
application of Lemma 3.6. |

I. First we prove the "only if" part. Let us assume
that supremum of [a,,]‘.‘ and Eezl& exists., Let €45 €
€ »up (L e.‘,l'.',tezl‘.') . Then there exists an g- e J such
that €= (@; g.) . By Lemma 3.6 there is Rg 24 Rf,Rh .
For every r.e. set D such that D 29 Rf, R4 , there ex-
ists a d € J for which Rd =D . Define €4 by €4 =
= (g;ad). a,,a"es , a8 €4 is in m(:e,]’;,cezl‘;).nen-
ce D 25 Rg by Lemma 3.6 and Rg is evidently <? -sup-
remum of R¢ and R .

II. We now prove the "if" part of the theorem. Assume

that A is a & -supremum of Rf ,B%. A is then an infi-
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nite r.e. set and a g € J  exists such that Rg = A
(by Theorem 2.3). Let us define ¥ = (@; @) . Then vz‘.'s‘, ,
(' z"‘a,_ by Lemma 3.6. For every enumeration j there
is an e e J such that ms""q via e and if gz z.":e., ’
. =* €, then Re 2R, Rk and therefore Re 23 A

by assumption. Hence % 2" y by the same lemma and the

theorem follows.

The reader may have noticed that the assumption con-
cerning the enumeration @ was not used in the part I of
the proof. The following corollary which is a stronger ver-
sion of the "only if" part of the theorem, therefore holds.

Corollary 3.12. Let ¢ be an arbitrary enumeration, .
& the Qual enumeration, let €, &‘.’9 via b, g, £V g
via £ . Then
(supremum of Es,,]{', Cszl'i' exists) == (c} -supremum of
Re, R exists).

Definition 3.5. 1) ¢ will denote the class of all
enumerations.

2) “54'4 will denote the class of all enumerations
(evy)  for which' i€ N  exists such that oc; = is re-

cursive 1-1 function.

3) %% will denote the class of all acceptable enu-
merations.

4) Let ¢ be an arbitrary enumeration. Then £ will
denote the class of i-classes defined as follows:

(el e :55"—““’ 2 <ve |
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Corollary 3.13. Let € € 477 , Then ¢ is an up-

per semilattice wrt £%

Proof: Let ¢ be an enumeration belonging to the ma-

ximal i-class and let £ be an i-convention such that

¢ £*@ via £. Let $ be the enumeration dual to g -
Let us assume that ¢, «%e via 9 >
e, e* e via h .
It follows by the preceding theorem that Ee,]",fe,_]" have
supremum iff Rfg , Rffr  have a <?9 -supremum, Obviously,
Rfg = £(Rg) and Rfh = £(RK).To establish the corolla-
ry it evidently suffices to prove that for every r.e. sets
A,B a & -supremum of £(A),£(B) exists.

By assumption there is a recursive “’""o in & such
that <i, (x) #+ «";'o("*) for every X # a4 . This implies
9¢°£ x) #+ @, £(y) for every x #$ 4 and consequently

X =g (=) X =4 for every x, g4 € Rf . Therefore
£(A) U £(B) is a & -supremum of f£(A), £(B) .

In the next theorem we show that the membership ‘in

27-1 ana QA%  respectively is hereditary wrt <% .

Theorem 3.14. Let « , 3 be enumerations such that
« z* f3 . Then

1) « et =>pee™ |
2) oo€az‘£=)f3¢a"£ .

BProof: 1) Let f3 £% ¢ via M .Let oci, be recursi-

- 638 -



ve 1-1 function, then {3;,0 =« 2 is again recursive

1-1 function and B e ¢ 717

2) Let f3 €%« via & and let o be acceptable.
Then 3 such that (¥<,x)[g(<,x) = ocy R (x)] is
a partial recursive function of two variables and so (cf.

Definition 3.2) a g4e R, exists for which

(V»L,x)teo%“_) (x) 2 p(i,x) =~ B.(x)] .

Conversely, h’4 is a partial recursive function and
d° for which (¥i,x eN)[d(i,x)=~ vy 2~ T(x)] is al-
so a partial recursive function. Consequently, a recursive

function 9n exists such that

(Yi,x e N)[ e (x) = (i, x) = o, 70T .

CAL
Since & is 1-1, 2 m(x) = x for all xeN s hence the

condition

(Fi,x e MLy (0 = J(x) = ot B () 2 ooy (0]
2

g5 (i)

holds. We summarize:

f.!g,z“,=co4, for all + € N .

It follows that 3 is acceptable by Theorem 3.2.

Note. The more general relation of enumerations which
arises if arbitrary partial recursive functions instead of

i-conventions are used, could be studied.
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~ Evidently, if («;) = (B;£) and «,B € 277 | then
£ must be i-convention. Therefore i-conventions are just
ths functions which transform members of <77 in members
of €77  (and members of 4 in membera of A% ).

Theorem 3.14 gives immediately

qu‘.szaﬂ(s‘, e‘£1'2=> €,€ ) &(e, e Q%= ¢, € at)l

for every enumerations €,, €, (i.e. every i-class is
either disjoint with €77  or is contained in £7°7 ; ana-
logously for A< ).

Now Corollary 3.13 can be strengthened as follows.

Corollary 3.15. 1) €"%/=% forms a relative upper
semilattice wrt <% (i. every pair of i-classes from
‘5‘-4/ ;“'/ has a supremum in ‘54'4/5"’ whenever it has
an upper bound in 277/ =%+ ).

2) A4 /s‘.' form a relative upper semilattice wrt
.é"" '
Proof: Immediate from Comollary 3.13 and Theorem 3.14.

The eoréllary gives in a sense the ltrongéet possible
result - we show that "relative upper semilattice” cannot be

replaced by "upper semilattice” in the previous corollary.

Fagct 3,16. There are two acceptable enumerations ¢ ,
¥ which have no upper bound in €77

Proof: Choose an arbitrary oc € Q€ . There is au
1o& N such that «; (x)= 0 for all xe N . let us de-
fine
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o . iz 1 is even,

2 £
2
% - -
\ o iri is odq,
0
( oc'éi_1 if 1+ is od4,
Y, = S
{ m"‘o if+1 is even.

The reader can easily verify (cf. Theorem 3.2) that ¢ and
¥ are acceptable enumerations. Let 7 be an upper bound
of ¢ and ¢, i.e. £,9 € J exist such that

géi’y via £ ,
'4’61"7' via g .

Assume that o ? is a recursive function. We prove that
it cannot be 1-1,

(1) if %, is 0dd then f{*aifx): ‘?ha(“‘)"?h,('v')’
= T“of(") mq«',ﬁ'ho ia not 1-1, as £(x)3£(y) for
x*4 ;

(1i) if fe, is even then ™, g,(x)-y,f‘pq'(ty) for all

X, ¢ and hence 7’&0 is not 1-1.
. 4-1
As %, was chosen arbitrary, 7 € ;) .

Yo recall that A€ ¢ £*'c ¢ . Ve exnibitea
£,,€ € A4 such that there exists no upper bound of
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4-1
€,,€, in 471 . Therefore a’%/z__% ana % ="

are not upper semilattices. Since there is an upper bound
in € for every pair of enumerations, the question ari-
ses whether 2/;"3 is the upper semilattice wrt <* .

The answer is negative.

Theorem 3,17. For every acceptable enumeration oc
there is an acceptable enumeration (3  such that the sup-
remum of [oc]* and [(sJ“" does not exist.

Proof: Let o« be an arbitrary enumeration. There is

an x € R, such that o, . = 1d for every i eN .

Moreover, by the technique of "padding" we can construct
an increasing recursive function of the desired property.
Therefore Kx can be assumed to be recursive,

The function £ for which (¥x)[f(x) = ccy(x)]
is a partial recursive function. Let P be an algorithm
evaluating the function £ . We define

X if P does not complete evaluating of

£(x) in 1 ateps,
m(i,x)
if P completes evaluating of £ (x)

1§

in 4 ateps.

m, 1is partial recursive function and there is a 9 e R,,
such that «g gy (X) = m (4,x) for all i+, x &N .
It follows from the definition of nmm that 40041)“'9‘4" =

=Df . Since the range of the function » is recursive

"'5.‘2'



and x is 1-1, the effective enumeration (3 can be de-

fined as follows.

oC. if < ¢ Br ,
B;=
L POID) it 4 =2(3) .
The reader can easily verify that recursive functions 4, ,
5, exist such that .= /3,,4‘1-_, and f3; = “’”z“""_ for
all + « N . Therefore 3 is acceptable by Theorem 3.2.
Let us note that the following equivalence holds.

(%) [(#i € N)(eoc, (x) e B, (xD]é=> x € DDy -

Recall that for the enumerations & , @ dual to o and
 , respectively, there is (i =g 3 )¢=> (1):;3 ) (1 =3) .

It is now easy to verify the following crucial equivalence.

(k%) [(¥i eN) (o, (x) = B, (y)] =

<= [xsty&xeﬁ.’be&eu)l .

We define 7o :

o, (%) if X is even,

{3. (“:4) if x 1is odd.

Obviously 7 z*¥ o via A,
and ¥ =¥ via b, ,where
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My (x)=2x& hy(x)=2x+1 for all xeN. Let 3§ be
the enumeration dual to 7o . If tecJ“', [/3]“" have supre-
mum then R%,, R, have a ¥ -supremum by Corollary
3,12, We shall exhibit that no 4% -supremum of R%, ,Xh,

exists. This will complete the proof of the theorem.
Let M ={2x;x€ MDocg gy § -  Then the defini-

tion of 9 and (% x ) imply

kxx) A <g=[(i=ggh=>(Gumisti&ieM)] .

Let now A be an arbitrary r.e. set such that A 25 Rh,
and A 2 3 ha . We prove that A is not ? -supremum of
R4, ,Rh, . By Definition 3.4 there are 1-1 partial recur-

sive functions ©, & such that
A 2? R, via © ,
A2 P X, via @ .

Let us define C ={x; x even and (34 ) (¢ odd and

T(x)x2 6(y))3 C isr.e. set and C s M by (k*xx),
Recall the definition of £ . Evidently the set Rf =

= f\‘Dopg‘( 4 is creative and therefore M is creative.

This implies that an i, e M\ C exists.
We define: B = AN {x(i,)} .

Apparently has? B via & and Rh, Sz B via ¥,

where
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T (x) if x4 4, ,

6, +1) it x=4, ,

33911 as B g A, But As;B cannot hold as

(1) = (i,), €(i+ N eA& () # 61, +1) &

& ‘b‘(«lo)=a’e'(&a+4) s
(ii) 6‘(4',04-4) €B and for every j,€ B

6 i+ ) #3,=> B, +1) *2 3, .

Consequently A is not 74 -supremum of Rh,,Rb,'. As A

was arbitrary, the theorem is proved.
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