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ON THE DENSITY OF SMOOTH FUNCTIONS IN CERTAIN SUBSPACES
OF SOBOLEV SPACE

P. DOKTOR, Praha

Abstr : In the present paper, some results concer-
ning density of smooth functions in certain classes of

functions € e W“)(.O.) are established. As a conse-
quence, some condfiiona are given under which the class

of spaces Wt C'qu) tends to some limit space W, .
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§ 1. Introduction, notations. In this paper, we use
the notation of the book [1] . Let N c Ey (N=2) be a
bounded domain in the Euclidean space 'E~ . We say that
£l  has a lipschitzian boundary J.0 (or N e N9
iff the boundary of fL is locally representable as a
graph of a lipschitzian function which divides a suffi-
ciently small neighbourhood of the point in question into
two parts belonging to the interior and exterior of .,
respectively. (For details, see [1, p.15].)

Let T cdN be a relatively open set (i.e. open
in the metric space 9f ). We say that ' has a lip-

schitzian relative boundary 8% Q (i.e. the boundary
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in the metric space JdJf) ) iff it has the following
property:
Let X, be an arbitrary point of J* and let
U (x,) be a neighbourhood of X, such that U (X,)n
n 80  is expressed as a graph: XN =@ (Xgyeeey Xp_y)e
Let further G be the image of I'A U (x,) in the pro-
Jection on the hyperplane X, , Xj ,:--» Xy_4q With the
boundary G . Then G has the same property as L ,
i.e. G is locally representable as a graph of the lip-
schitzian function of N -~ 2 variables (obviously this
definition is independent on the description of 8 ).
By W;ﬂ(ﬂ.) we denote the Sobolev space of all squa-
re integrable functions 4 such that their first deriva-

tives (in the sense of distributions)

d duw ow
ox, ' 9%, dx y

are also L, -func-

9 osee

tions. Introduce the norm in W;"(_Q_) by

. 2 N Ju 2 %
(1) "”«'4-"“"4,,1'”“'01“,}4"3—.,(::"0}
where
2 s
(2) hal,= € [luldx3? .
n
1
By Wf” () we denote the space of all square

integrable functions for which

I (x) - & ()1 *
lx-ty,l“"

(3) My, ={f dx d.ry,?%< )
z Dx
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with the norm
(4) N Ny = Haddy ={Ilu«ll1+llu,lﬂz3% .
1 3.0 0 1

Throughout the whole paper we suppose all functions
to be defined on Ey and equal zero outside their natu-
ral domain of definition.

Let wgy, be a mollifier:

_N - l.x12
eh e —j—p Ixl < &
(5) @ lx "~ 4
h, =
0 x| = A

J‘Eua,(au.x = j;Ncoh(x)dx =1.

Then the convolution
(6) (% 4)(x) = fE R e fs on, (P (x-g )y

is well-defined for w e I":. (fl) and its restriction onto
£l belongs to the space C%® (L) i.e. the space of all
infinitely differentiable functions continuous on o to-
gether with their derivatives of arbitrary order. (For this
and for other properties of <y, see [1, p.58, p. 60].)
Let x e Ey be an arbitrary point, X = (x4,
Mg,eee Xyqp Xy) . We write for brevity x = (x’, xy) , where
X' = (%4, Xy 4) € Ey_yq -
By Auppp w0 we denote the closure of the set
i{x €« Ey law(x) 4 03 . Using this notation, we denote

D) =fuw e CPMoupprac Ny .
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§ 2. An auxiliary lemma.

Lemma 1. Let =  be N -dimensional parallelepiped

(7) E={xekE Ixeld,x, e(-p,0% ,

where A= (--v;r,,uc)m-4 and o, (3 are positive numbers.
Let GeGc A be a domain with a lipschitzian boun-

dary; let G’,,,, be a sequence of sets with the following

property: for any open set U c A, G c U there ex-

ists m, such that for m > m, : G, < U .

Let us denote 3, = (-, co)"-lx (-3,83) . Further,
let us denote I'= G {0? and let K c &, be a compact
set.

Then there exists a compact set X, € &, (which de-
pends only on K ) with the following property:

Let & € Wf”( =) be an arbitrary function which
equals zero on I' (in the sense of traces) and ba.Mpu,cK .

Then there exists a sequence ., ,4, € C”(E) such
that auppr 4 <« X4 \T, , where T, =Gm=x403 and
Ay —> 4 in the space W,‘_’”C.ﬂ.) .

Broof: According to the assumptions G ¢ A, K< 2,

we have
(8)  min (dist (G,E,_,\ A),dist (K,E\NE N =»=>0 .
Denote successively
U(6) = {x’e Aloist (x",6)=<A? ,

(9 V(@) = 4xeAldista, G <4 A3,
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¥ () = {x'e Aldist (x,6) < 23,
Z,(6) =4x'e Dldist(x,6)< 123 ,

and, correspondently,

1
Uy (T) = Uy (G) = (=R, 2 A)

3 1
10) V(M= V(@ =(-2a,4a),
1 1
W, (P =W, @ x-La,da),
A 1 1

where A is supposed to be sufficiently small:

1
(11) A < 29 .

Let us put h = % A and

Ay (0, )= (0, xy = ) Xx)eE, ,
Q12) 0 xeW, (T .
Ay (X) x € 2\W, (I ,

wy () = (W % ) (x)
We see immediately that wy & W:”( &) . It follows
from (8),(11) that supp w),c X, , where
X, -{ernldi»t(x,K)<§}c S,  depends only on X ,
and that aw, (x) = 0 for x € Z,(I") 80 that there ex-
ists m (A) such that for any m > m (A): (suppn "".a.) n
n T“,,., = f . In the following we show: Hu—%ﬂ’z—» 0

for A —» (0 which proves the lemma.
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Let us denote €= S\Va(T'), P=Va(T)n 5 and
Sg=Ax (-3, /) . The proof proceeds as followa: we wri-
te lwy-wly c €hu-uyly -+ ug-aw,ly o +

+ llw&“,,,, + N, ||4,,

and prove successively that all the right hand terms tend
to zero. The main difficulty is to prove that lwhlq p—> 0
?

o

—_ — .
particularly to prove | Erp “o,p 0

We obtain as an immediate consequence of the mean con-

tinuity of L, -functions (see [1, p.57] ) that

w-wglyz—0 and, because of the absolute con-
1

tinuity of integral, Iu.-u.al —> 0 . Further, obviously

1,=

TR -]
a}‘a’eW;ﬂ(Sz\Ya(P)) and 8o xco’-»x(w,,*v )-a**

It follows from this implication that lug-awylly g —> 0°

6«,‘,

and hence our task is now to estimate the function w, as

an element of Wg’(?) . To this end, let us denote

6= U,y (T)\VA(T’) . Because of the choice of /&’ we ob-
tain for x € P :

(18) wr,(x) = fE Wy (- X )y (y )y = La,,o,-.xma(@mg,
N 4
and, similarly,

3 : -] =
an 3, (x) = R w, (x) = f;;: Wy, (X-Y )y (y)dly =

-]
= (—— @y (-4, (g)d .
.}; 3y, O, Py
Using the standerd technique of mollifiers, see e.g.
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[1, p.58]) we obtain ""’u‘“’x"a,s"“" 0 and hence

ﬂw’a, “°1|, — 0 in virtue of the absolute continuity

of the integral. Let us now consider the L,_ -norm of v .

1) Let ©+ = N. Without loss of generality, we can
suppose that 0 has a lipschitzian boundary (in the case
of nécessity, we can replace the boundary of Z, (G) by
the infinite differentiable hypersurface which uniformly
approximates 9 G (see [2]) and construct the domains
lla(G) etc. with respect to this regularization). In
that case, we can use the Green formula (see [1, p.121] )

and we obtain
o )
Yy (X)= fsco,,,(x-ry,) 3en oy oy + L “(G)w,v{x- (4 - AN a4y Ly~ ANy~
) 1 : ’ 1 )
- g - A AN, Ca’ -2 ANdg -
J/;,Cc.) On Cx- (', =g AN ay Cpom 3 4
\] i ’ 4 ’
- La(G)\w“ce’w’y(x-(’v’ m 1))-‘4«&((@, z-a. ))dply— P
The first integral tends to zero in L, (P) the se-
cond and the fourth equal zero for x « P . Let us consi-
der the third integral

1 1
¥y, )= | (x- (4, ~ 3 Ay U~ 5 A)dlgy’ =
LA

- @y (x= (=L AN, -2 A0 ag’ .
‘!;ace)"' ¥o3 at¥"g ¥

We obtain

4 2 2 3 .
L, o GO Loy (x-(ags-= ANT2dg ) [ g2 2Ny
¥, *)"‘J"M B X-(Y- )Jd&w{“‘:h ¥ 32 Ndy)=
(15)

=(f wp ((x’,x~+-;-:a.))d.x’)( [ dag-2anay’ ,
E"..' A l.x'.,,’kﬁ
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and, integrating (15) over P we obtain

2
hr" 370 9‘ (‘r O)gb(x)d.z)(j;/ V(&) j;x-q!kh ((@,-— ANday

We have

(16 L  Gh@dz = o "

The Fubini theorem yields

’ 2 ’ ’ 2 ’
fv,m dx fw.g'k»»“’ dy < fuacc) dy j;,,'.u'k»‘“’ dx’ =

N-1 3
=c b fuamwﬂcca,’,- Z My’

and thus we have

2 -1 2 3
LT uo,? < ch U, €@ w ((’9"7";_'-3-” dy’ .

Let us consider the last integral. We obtain for 4’ e
€ U,(G) (supposing at first 4 to be small enough and ex-
tending the result by continuity):

-.ia,
.u,((g,,-—ﬁ.))-w((g.,a))+f u,((fy.,f))ch »

wz((/g,', 2ane= 21:”}«.,,’,0»+ f & WPy’ §0d§ ]

(HG1ders inequality), and hence
-1 2 3 -1 2

» fuaw,» Ug-3ANdy s 208 j;hm)w (3, 000d g’ +

© 8yt $raglat)

The absolute continuity of integral implies

fu < WA, $Ndglds — 0  (A—0)

and further we have
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2 ) ) 2 , ,
'(l,'cﬁr)w (y', 0Nady’ = fl{g(d)\ o gy’ 0y’ .

It follows from the imbedding theorems (see [3] ) that
w((y’ e W;i) ) and again from these theorems

wel,(36) in the sense of traces. Then the conver-

gence

2 )
(g, ' 0
fu,m\s“' (g',00dy’ >

follows from the properties of traces. Of course, locally

we have
2 alz”)+22
/9 2 ”»
[R“ ((4',00dy’ éf';”( LM W l(z" %, ,, 0z, )dz"

where R is the intersection of Uy (GIN G with some

”» " L)
suitable neighbourhood R,=f(z% 2, )iz"eR’ 2y e (az")-jalx )+ 23
of any fixed point of 3G , and @ is the function which
represents oG with respect to the local system of axes

(2", x~.4) = (z4,... zN_z,z,M) . The function

d(q) = [ ut(x”, alz™+q,00dz”
R')

is the continuous function of 4 (see [3]) and so making
the change of variables 7 = z, ,- @ (2”) and applying

Fubini ‘s theorem we obtain

22
im o [ W20y "¢ 8 tim —— =85(0) = 0
%‘»I j;u. ((4',0))d ey’ & &%* T Lé(q)d@ ) R
q.e.d.
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2) Let 4 = N-4 . Similarly as above, by means of
the Green formula we reduce our problem to the considera-

tion of the surface integral

(619) I =" [ulae
[]

A 2
2%
axes (21,... z,‘_;_,z,‘_‘ » AN ) ((z",-u XNy znq) = (z", ZN-q )

where S = W, (G)x(- ) . Passing to local systems of

as above) we estimate the integral (17) by a sum of terms
{a
(18) E’{ dayy {»u"f(z'; ag (2", ) \ W+ 1Vay (eMtdz”
"z

where ag is the local representation of S . Easy calcu-
lation yields [Vag < C where C depends only on the
Lipschitz constant of the function @ which locally repre=
sents JG . Using this fact we obtain as above
- - -1
h"fwzd.(w — Oc=> 1 f 2 wraduw —+0 .
s 36x(-5,3)
However, the last integral tends to zero thanks to the

properties of traces (remember =0 on G ), q.e.d.

§ 3. Density theorems.

Theorem 1. Let Q. eEy be a bounded set, ) c N,
Let T'c 80 be a relatively open set with a lipschitzian
relative boundary; let T} c o be a sequence of sets
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with the following property: for any neighbourhood % of

T there exists m

o Such that for m>m, I, c U .

Let u € Wf”( 0N) be a function which equals zero
on ' (in the sense of traces). Then there exists a sequen-
ce i, e CAfL) such that

(i) a, = 0 on the neighbourhoed of T,
and

(1) w, —> & in the space W;”(.D.) .

Proof: The domain £l has a lipschitzian boundary and
hence for any x & d 2 there exists a cartesian system
(%4500 Xy )= (x’, %y) and & lipschitzian function @ with
the domain of definition A = (- oc,ec)u-4c Ex such taat:

(1) U= £(xx,)x’e b, @ (x)-B<x,<a(x}c N
and ' .

(i1) V=4, X)) IX¥e A, a (X')<xy < alxV+BIc ENTL

(ec>0, 3>0 are suitable constants). _

Let us denote Z=TU v Vui(x\xy)lx’e A,xy=a(x’} . Because
of the compactness of OJ) we can cover ISl by a finite
number of such domains Zy, % =41,2,... m .Ve can find a
domain Z,:2Z, c fL  and ﬁcgo Z ) . Because of the
compactness of {3 we can construct a partition of unit

to this covering, i.e. a system of functions @, & D(Z,)
(n=0,4,...m ).069,064,“%%‘0()84 for xe 1.

We can now transform U, (x =1,2,...m) to the pa-
rallelepiped 2 = (-«, ot)'“ = (-3,B) by means of
the lipschitzian mapping
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Ty : §,;,=x1-_ (1=4,2,...N-4), En = Xy - a, (Xx?) .

This mapping transforms continuously Wf"(u’,,,) to
W;”(S) , ®seel[l, p.66), and Hupp 9,  to a compact
set X, c B, = Ty (Z,) . Let Xy 4 © 34 be the
compact set from Lemma 1, and let Gy c 4,6y c 8  be
the images of T, (I'), T, (I,), respectively, in the pro-
Jjection along Xy ¢ Obviously we can find domains @),

GL,J-GZCA"G'—,Z,“c A,y nX =G K, G,’,_'mn](,, =Gy nnX,

and Gy, Gp,m satisfy the assumptions of Lemma 1. Hence

we can approach Ty (g, 4« ) by the sequence 2, , €

o
ceW, (), supp vy o cXyy . The functions

47,,,',,'- T;j (Wp,x) belong to W;"(C) (Cc Ey is an

N -dimensional cube which contains fI ), 12',,,,,,,= 0 ina
neighbourhood of T,, and &L, ,=wg, in WSP(0Q)
Applying the mollifier wg we can replace A'Z,,,,,v by
Mm,p © c“n) with the same properties. Finally, we

approach w @, by the sequence i, ,€ D(LN) and write
- "
Mp= 3 Um,. , which proves the theorem.

Remark. Higher smoothness of 3.0 guarantees higher
smoothness of the mappings T, and hence gives analogous
results for the space W;""’(.Q_), & >4 . For example, the
following ‘theorm holds:

Theorem 2. Let £ c Ey be a bounded domain with an
infinitely differentiable boundary; let 'c d L be a re-
latively open set with an infinitely differentiable relati-
ve boundary and let 1",,» c ML be a sequence of sets such that
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the conditions of Theorem 1 are fulfilled.

Let wm e Wz(b)(.ﬂ.) (% = 2) be a function which e-

quals zero on I (in the sense of traces) and
o u
d vt

Then there exists a sequence w, € C“’(..(-)'.), Mp=0 on

0 (the normal derivative) for 4 =4,2,...%-4.

a neighbourhood of T, and «, tends to 4 in the

space ‘WQ(“)(.Q.) .

Proof is completely analogous to that of Theorem 1.

§ 4. Relations to the convergence of spaces.

Certain assumptions are introduced in [1] (see p. 169
and following) under which the weak solution of the linear
boundary value problem Au =f, 4 -u, € V,,,c?lf,,”(.ﬂ-) de-
pends continuously on V), . One of these conditions is that

Vm« —> Y in the following sense:

(1) vueVau, eV, : u, —> &

and

0 (2
(ii) Y= NLU

ms=4 v=m

A

(by [M1 we denote the minimal linear space which contains

| NN
2
Let ,ﬁ,-4,Vﬁ={,wc‘V: (D=0 on T 3%,

Veduwe W0 Iw=0on T}

(T,, ' c 82  are relatively open sets). Theorem 1 gi-
ves conditions on I,, ,I' under which (i) holds. Condi-

- 621 -



tion (ii) is satisfied if in addition I's= &m T

m o 1e€e

The proof is the same as in [1, p.173) (see example
6.4).
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