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Commentationes Mathematicae Universitatis Carolinae 

14,4 (1973) 

NOTE ON NONLINEAR SPECTRAL THEORY: APPLICATION TO BOUNDARY 

VALUE PROBLEMS FOR ORDINARY INTEGRODIFFERENTIAL EQUATIONS3* * 

Svatopluk FUCfK, TRAN DIEN HIEN, Praha 

Abstract: In this paper we prove that under some as-
sumptions it is possible to apply the whole nonlinear spec­
tral theory to the boundary value problem for ordinary in­
tegrodifferential equations* 

Key words: Spectral analysis of nonlinear operators, 
Fredholm alternative for nonlinear operators, Ljusternik-
Schnirelman theory, weak solution of the boundary value pro­
blem for nonlinear integrodifferential equation, regularity 
properties of the weak solutions* 

AMS, Primary: 45J05, 47H15 Ref. 2. 7.948.346 

Introduction* Three main parts of the nonlinear spect­

ral theory, i.e., Fredholm alternative for nonlinear opera­

tors ([2] and [7, Chapt* II ] ), Ljusternik-Schnirelffian theo­

ry ([41 and C7, Chapt. III].) and its converse (t5l and [7, 

Chapt* V ] ) were up to this time applied to the existence 

of the solution of nonlinear integral equations of the Lich-

tenstein type ([6] and C7, Appendix III ) and to the exis-

x) This paper is taken from a part of the thesis of the se­
cond named author which was written on Department of Mathe­
matical Analysis, Charles University, under the supervision 
of the first author* 
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tence and multiplicity of the solutions of the boundary 

value problems for nonlinear ordinary or partial diffe­

rential equations* Unfortunately, we do not know any ex­

ample of boundary value problem for nonlinear differen­

tial equation which would satisfy at the same time all the 

assumptions of the nonlinear spectral theory* On the other 

hand, such examples can be given for integral equations. 

In this paper we prove that under some assumptions 

it is possible to apply the whole nonlinear spectral theo­

ry to the boundary value problem for ordinary integrodif-

ferential equations* 

!• Definitions and Statement of the Main Results* 

Let 2 4s it <*> oo and let to be a positive integer* 

Denote by mr* « m £ « 0,4>) x) the Sobolev space of all ab­

solutely continuous real functions xt on the interval 

< 0 7 A > whose derivatives up to the order to - 4 are al­

so absolutely continuous and whose derivative of the order 

to is an L ^ function* Set 

^ « * * e W £ : ^ C 0 ) « . . . ~ 4 ^ ^ 0} . 

It is easy to see that W ^ *s a separable Banach spa­

ce with the norm 

x) If XC< 0, O ) is some function space of functions 
defined on the interval < 0 , 4 > , we shall write the 
symbol X only* 
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The Sobolev space W ^ has a usual structure (see 

[9] and [7, Appendix III]), moreover, it has a Schauder ba­

sis (see [3]). 

If <%, e w £ , let us define | (^) c LL^l*"*4 by 

fC*>-C*,V>"->V*\ ^ f 1 ^ * tL^J^ by <£<>>* 

« C^» •%•••» 1^ " >> 6><1^***4.1 by 

o>C^) * Cj\1(t)dLtr.09J(^h)Ci»1di) and 'cGjJ c X^ by 

We shall use the symbol I I to denote the absolute 

value and the norm in the M -space X ^ . Sometimes we shall 

write instead of f « ( §0,-.., f ̂  ) 6 R ^ + i only 

f-<*t>f%,> , * e r « "l * C?o> — > S * . 4 ) € R* • S0t 

PffiffltiPB* Let >p. s 2 , A # R ̂  and let 
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and *r c I, C-fiT̂  + £"* * 4 ) . 

The function -a, e W ^ is said to be a weak solution 

of the homogeneous Diriehlet boundary value problem for or­

dinary integrodifferential equation 

+ d-(«,•»£ (-tt)Cx), *r6u,») + 

o 

if for each -%, e W"* the following integral identity 

holds: 

(1.3). 
fe r^ , _ , . , . , . £»>. 

>v A < . S C J" a , C.x,fC,«.K*>> Jfc Ox)d.x + 

f0 

+ J 4^<*,<»£C-aK*), t?Ca.» A ^ V * ) <i* + 

^0 
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(provided the functions &£ * &£, &*,* d*£ satisfy such as­

sumptions that all integrals in the relation (1.3)^ have 

sense for arbitrary xt , M, e Vfjr 

Remark 1. By the same way it is possible to define a 

weak solution of the equation (1.2)^ provided the right 

hand side 4ir is a bounded linear functional on the space 

The type of results obtained in this paper may be il­

lustrated best on the following theorem: 

Theorem* Let <fi* f to, be positive integers* Consider the 

homogeneous Dirichlet boundary value problem for the equa­

tion 

(1.4)̂  <-4)*X{^(UH\x))Z*'-'1) + 

+ 4JU (*)( ] (44, Ct)) O/fc) \ -

Sk-4 i A* 

§.«0 CLX* 
. {VW)^((A))1M)} + 

•A 

Then there exists a sequence A of positive numbers 

converging to zero such that 

(i) the equation (1.4)^ has a weak solution AL C 
© jju 4 4 

e TdfaV f o r a n y m € ^% K2-f*r + $ m 4 ) provided 

A + A u < 0 } ; 
( i i ) for each A c A the equation (1«4)« has a 
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nontrivial weak solution JU, e W^L « Moreover, u c C 

and u i s a c lass ica l solution, i . e . , i t s a t i s f i e s the 

equation (1 .4) 0 in each point X 6 < 0 , O . 

The assertions of the previous theorem follow from ge­

neral Theorems 1 - 3 , Remark 2 and Lemma 1. 

Theorem 1 (application of the Ljusternik-Schnirelman 

theory). Suppose 

*,(*,%) l <0>/l> * **,+ < * * i * 

c C x , ^ ) : < 0 , O ?< ^ — > &,, , 

cL Cx , ^ , « ) : < 0 , 4 > x Jt^ x ] t ^ > R^ . 

Let the following conditions be fulfilled: 

(a 1) the function a, (x , | ) satisfies the Carath£odory 

conditions on the interval < 0 7 4 > (for definition see 

e.g. [10]); 

(a 2) there exist a nonnegative function f ^ ( x t y ) defi­

ned on < 0» 4 > x Jl* , ̂ ^C #,^) € L^ for each n^ c H^ 

and the constants c^ , C^ > 0 such that 

for each 4% e X. f ̂,) , £- € X^ and almost all x € 

€ <0, O J 

(a 3) a,Cx,§)« 0 <«*==» § » 0 , cuCx,- f ) * a,(x, f) ; 

da, 
(a 4) the partial derivatives «a^x, f) * -3-5— ̂ x, f) 
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(^.s Of..., Jk, ) ex is t on < 0 , A > x K^+1 and sat i s fy 

the Caratheodory conditions on < 0,A > ; 

(a 5) there exis t nonnegative functions %-<t,i (* »If-) defined 

on < 0 , A > x R.* and a constant & •> Q such that 

for each ^ e X . C^) , f^ c B.. and almost a l l * € 

€ < 0 , O ; 

(a 6) there ex is ts a constant Jil > 0 such that 

for each f e X*. „ and almost a l l x c < 0 , O . 

(a 7) there ex i s t s a continuous nonnegative function qf ("b) 

defined on Rtj such that 

for | e 0 , . . . , k t«ach C i i . f ^ ) , (of» § * > * * * + 4 a n d • l B 0 « t 

a l l « e < 0 , O j 

(a 8) the inequality 
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holds for each ^ m Xj^ , all |^, ^ c X^ and almost 

all * e < 0, O ; 

(b 1) for each co e R^^4 let iK- ,o>)e I* 4 and let 

J&- Oc, <a) 2? 0 , X x , 0 ) - 0 

for each 6) e R ^ ^ and almost all x € < 0,O ; 

(b 2) the partial derivatives Jlr.Cx9cj) ss fx,o>) 
* deO£ 

exist on < 0, 4> x &jfa,+>| a n d ^ C •, o> ) « L ,̂ for 

(b 3) # £ A^Cx,6>)ct>. 2: Jd^Co<,ct> ) ; 4*«o ^ ^ 

(b 4) Jft^Cx,o>) £ 0 j 

(b 5) for each /y, € JL+ there exists J6JL e L^ , JfcL <*)2r 0 

such that I jfr̂  Cx,a>)l ^ J&̂  Cx) for £»<) , . . . , >fe, 

o> e Jt£+4 *tM a n d a l m o s t a 1 1 x € < 0, O •, 

(b 6) there exists a continuous nonnegative function 

<y Cx , ^ ) defined on JL "£ such that 

for £ * 0,#«.f A^o^o)' e £jfc+4 and almost alloc € <0,4>. 

(c 1) the function c Cx,i£) satisfies the Carath6odory 
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conditions on < 0, A > j 

(c 2) there exists a nonnegative function 9̂ , C x , ^ ) defi­

ned on < 0^ >1 > x IL̂ J", ^ c ( ' , ^ ) e l 1 such that 

I C C x , ̂ ) I ̂  <^c f x, /£*) for each ij c X ^ (<y«) and al­

most all x e < 0, A > ; 

Ba 
(c 4) the partial derivatives c- f x , ^ ) * — — - - C * * ^ ) 

exist on < 0, A > x X ^ , satisfy the Carath6odory conditions 

on < 0 , A > and they are bounded on < 0,4 > x K ^ ($,) for 

any fy e Z.* (£ m 0f ••• 9 A,-4 ) % 

h*A 
(c 5) . 2 c. Cx,<n)m. > ° » C-(xy0)m0 

for each ^ 6 X- 9 1£ ̂  0 and almost all # e < 0, 4 > • 

(d 1) the function cL C*, % y *Z ) satisfies the Carath6odo-

ry conditions on < 0, 4 > j 

(d 2) for each ts c Jt"^ there exists a nonnegative func­

tion <j^^ (*i1f>) defined on < 0 f A > x Jl* , 

9fd,v^**^ € ^ for each ^ e &4 such that 

for each T^ 6 X^C/u.) and for almost all X m, < 094> • 

(d 3) flU*,-^,**) * cL(x,<ri7<v)2. 0, dLCx,0,0) « 0 ; 

(d 4) the partial derivatives 
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(£.» 0,...,Jfc-4 ) exist on < 0,4) x X ^ x K.JJt > satisfy 

the CaratheVodory conditions on < 0 , A > and they are boun­

ded on < 0, A > x. Kj^Gy,)* X ^ C y * ) for each ^ € R+ j 

(d 5) ,^(ci.^^,tH'4 2 ^ + . ^ , t ^ ) ^ ) ^ 0 

for each <TĴ  e 3 1 ^ , « e R ^ and almost a l l x « 4 0 , 4 > -, 

(3 6) cU Cat ,0 ,0) > 0 , £ a 0 , . . . , * - 4 • 

Let H, > 0 , Then there exists a sequence i A ^ J such 

that for A » A ^ there exists a weak solution JUL^ C W^ 

of the Dirichlet boundary value problems for the equation 

(1.2)0 such that: 

( i ) AJL^ — * 0 (converges weakly in TAf̂  ); 

A 

* c U x , *»j, G a ^ K x ) , *(*,„,))) d.x Vi 0 •, 

( i i i ) J C a C x ^ f O t ^ X x ) ) * ir fx ,6>Cxt^)) )o lx * *, ., 

( i v ) r . ^ ( f ' f c . C x , 4 l C ^ ^ ) C x ) ) ^ > W < i x + 

+ 2 ( J 1 ' * ^ C t , % <u.J C t ) , <* C-u^»d.t x£<*£<* »*<ix »3: 

+ 2 ( / V ^ « , « ) U , » ) ) < l t ) ( / o C-a5*Vx))il
<ioc;)]-.A)t. 
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Theorem 2 (application of the Predholm alternative). 

Let the notation introduced in Theorem 1 be observed. Sup­

pose (a 1) - (a 8), (b 1), (b 2), (b 4) - (b 6), (c 1) -

(c 4), (d 1) - (d 4). Moreover, let the following condi­

tions be fulfilled: 

( a 9 )^a f% C^^-V^^ , C^-^> * 0 

for each ^ f , € ^fe*^ a n d a l m 0 8 t a 1 1 * € < 0, 4 > -, 

(a 10) a . < * , t £ ) « t*""'a,. Cx,f ) 

for each § e B . ^ , , , t e Jt+ , ^ 0 , ^ , * •, 

A, t 
(b 7) . 2 CJer. Cx,a>)-Jer. fx,4>0) f o 4 - o>. ) ^ 0 

3 . * 0 y y W & 

for each &> , o ' e B.1L 4 and almost a l l x e < 0 , O ; 

(b 8) i r . ( « , t< i> ) » i * 5 ^ J ^ <*,*>> 

for each & e H t 4 9 t € Kt and almost a l l * « <0,4> • 

(c 6) c ^ Cx,ti2,) - * * " ci(*9%) 

for each ^ e H ^ , t c JL+ , £*0,.«., A - 4 and almost 

all x e < 0,4 > j 

(d 7) .^fXftilf tat?)« t*" d ^ ( « f ^ 9 « ) , 

for each ^ e It. , t? € X^ f t eH^j, £ » 0>'"i^ -4 and almost 
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all x € < 0, 4 > 

Let % 4> 0 . Then the equation (1.2)^ has a weak 

solution AJL e W% for any right hand side wrml,* Pro­

vided the equation (1«2)0 has only a trivial weak solution. 

Theorem 3. Suppose (a 1), (a 2), (a, 4) - (a 7), (b 1) -

(b 6), (c 1), (c 2)| (c 4), (d 1) - (d 4). Moreover, suppose: 

(a 11) o/C*,f) € C C<0,>f> x ft^^) ', 

a a, 
(a 12) ± Cx,f)£ 0 for each § s X ^ ^ 

>4* 
and all 

a e < 0, 4 > -

(a 13) the function 0/C«X; f ) is a restriction of a con­

tinuous complex valued function ei Cx, f ) defined on 

< 0, A > x. 0 ^ * f where 0 is an open set in the complex 

plane C ouch that (9 o JL^ ; 

(a 14) the function £ Cx , ? ) and its derivatives 

'-. w ( Ag (x7?j)) are analytic on ©**+* for each 

(b 9) *6r,<k>> c C 4(<0,1 > x *.*+,,> *, 

(b 10) Jfe 6c,4>) > 0 for each x e <Q,4> and G> e X ^ ^ , 

« * 0 , 

(b 11) the function Jtr ( x , o>) i s a restriction of a con-
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tinuous complex valued function % Cx, 2> ) defined on 

(b 12) the function Jb'Coc^ o> ) and its derivatives 

^^— (x, S> ) are analytic on (9 * for each x e 

e < 0,4 > , £ * 0,.-, *fc ; 

(c 7) eC*,i2,) c C * <<0, 4> x X ^ ) -, 

(c 8) e<*,0> r c ^ ^ , 0 ) » 0 ; 

(c 9) the function c ( x ^ ) is a restriction of a continu­

ous complex valued function c ( x , T£ ) defined on 

< 0 , 1 > x ©** ; 

(c 10) the function cCx,5£) and its derivatives 

d?, dc \ flL 

~A~*\d&' (*9%V are analytic on ® for 0ach * € 

€<0,'f> and ^ * 0,..., 4t-4 j 

(d 8) c K ^ ^ t i c C U O j O x ^ ^ l ^ ) ' , 

(d 9) cLj,Cx9^9t:) € C ( < 0 , / l > x X J f e ) for each 

fixed t e X + , ( £ - 0 , . . . , J t - 4 ) ; 

(d 10) d C x , 0 , 0 ) * <t^C«,0 ,0 )«0 C £ * 0 , . . , , J f e - 4 , * e < M » i 

(d 11) the function cL Cx ,tj,, t ) is a restriction of a eon-

. tinuous complex valued function a U , ^ , ? ) defined 
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on < 0 , O x Q1** % 

(d 12) the function dL (x7 % , ?f ) and its derivatives 

T^("pc- C*>?>^>)» " ' 3 « " ^ i ; ^ ' * ) are analytic on df 

for each fixed x e <0, 4> and ^ • 0, •••>-*"-^ • 

Let rt, > 0 • Denote by T the set of all 

*o 

where At is a solution of the boundary value problem for the 

equation (1»2)0 for some 7i e H. and satisfying 

4 
(1.5) J CaC*,f CitXx)) + Arfx, a Cu,))) aU * ** . 

Then the set V is at most countable and the only pos­

sible accumulation point of this set is zero* 

Remark 2. If the assumptions (a 10), (b 8), (c 6) and 

(d 7) are fulfilled then the set A of all A c l ^ for which 

there exists a solution of (1.2)0 satisfying (1.5) is up to 

the multiplicative constant equal to the set r introduced 

in Theorem 3. 

In the next sections we shall prove Theorems 1 - 3. The 

proofs are based on £4, Theorem 2] , [2, Theorem 31 and C5, 

Theorem 3*21 • Ve do not write these theorems here and refer 

the readers to the cited papers. 
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£• Proof of !Pieorem 1. 

Denote CWf*)* » W~*' (the dual space) and l e t 

(44,*, 4c) be the value of the functional u>* e ¥<£ at the 

point ,u, c W^ • For AJU € IfjT ««t 

(2.1) £Cu,)» J(a,Ox,fCa,)Cx)) + Jbr(x,a> (*,)))dx y 

(2.2) %>(«,)» J C c C x ^ t a H x ) ) + <^*,<£6u,K*),<fcC*J>> d x . 

The functionals £ and fy are even on the space W ^ and 

they have the Frechet derivatives £' and ^ defined by 

(2.3) (f'OcXJh,) = £ C f a-Cx,£C*X*))Jh, *<-*)<£* + 
£.0 ^ * ,J 

2Cfjer.Ct,o;C>a))cit)(r^Vo()^Voc)d»)) , 

te-4 /i 
(2.4) Ca/Ou,),^). 2 < f <C.(X,<TI(M.)(X)) + 

for each xt, Jfc 6 W ^ * 

We obtain immediately: 

(2.5) £(4*.)= 0<3===>xt - 0 (from (a 2), (a 3), (b 1) ); 

(2.6) (£ %(^),AC) 2 Mf(At) 2 Mc^ l ^ l j ^ (from (a 2), 

(a 6), (b 1), (b 3) ); 
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(2.7) Jtim, i(juu) * co (from (a 2) ); 

(2.8) ^Cxt.) ̂  0 , %(JU,) a 0 < = s > xx. - 0 (from(c3), 

(d 3) )| 

(2.9) <^ is a strongly continuous mapping (i.e., it maps 

weakly convergent sequences in Hf£ onto strongly conver-

gent sequences in Hf^ ), (it follows from the complete 
• jfe continuity of the imbedding from the space W^ into 

AJfc-4 

bounded subset of W^r % 

) - thus a. is also uniformly continuous on each 

(2.10) £ is uniformly continuous on each bounded subset 

of V** (from (a 7), (b 6) ); 

(2.11) <£(At,)m 0<=«>44, m 0 (from (c 5), (d 5), (d 6) ); 

(2.12) AL^—*. M,^ £Vxt^) — > % *mm>Aimr-+M, (from (a 2), 

(a 6),(b 5), (a 8), (b 4) )• 

Thus all assumptions of [4, Theorem 22 are verified and 

from the assertion of this theorem (see also C7, Chapt. Illj) 

we obtain the assertion of Theorem 1. 

3. Proof of Theorem 2. 

Denote T ~ f', 5 a* $,' • Under assumptions of Theo­

rem 2 the mappings T and & are odd and ($, - A) -homoge-
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neous ( i t follows from (a 10), (b 8 ) , (c 6 ) , (d 7 ) , (d 3 ) , 

(c 3 ) , (a 3) ) . Moreover, 

(3.1) T i s s t r i c t l y monotone ( i . e . , C T C A O - T C V ) , it-*>-);> 0 

for each u,, <v s WjJ , JUL> + it ) and from (2.6) with using 

the main theorem about monotone operators (see e .g . [ 7 , Chapt. 

I I3 ) we obtain that T i s surject ive. Analogously as (2.12) 

we can prove that T is a homeomorphism from **V cufco Ŵ  • 

(3.2) there exist two constants X , L > 0 such that 

L l 4 t { ~ tflTUJl. ^ X l A t C ' l for each M, € W* . 

Thus together with (2.9) we verified a l l assumptions of 

[2 , Theorem 33 (see also £7 , Chapt. I I ] ) . Prom this we obtain 

the assertion of Theorem 2. 

4. propf pfTfreprfifl j . 

To prove Theorem 3 we shall apply [ 5 , Theorem 3 . 2 ] (see 

also C7, Chapt. V 3 ) . Denote X^ * C 2 * n w £ , X^ « C , 

X 3 » HT^ . For >u, c X^y nr e X± we define 

the bilinear form on X. x XA with the following properties: 
i z 

(4.1) for each JA, € X^, <*&,•> is bounded linear functional 
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(4.2) l e t <tr c X^ and <ju,,nry » 0 for each At € X . 

Then nr * 0 • 

Lemma 1> Suppose (a l l ) , ( a 12), (c 7 ) , (d 9 ) , (b 10). 

Let X 4* 0 and l e t xt e W ^ be a weak solution of the 

equation (1 .2) 0 • Then JUL e X. • 

Proof* Suppose that M, i s not identical ly zero on 

< 0 , 4 > . P u t 

* * • 2 J 4- Ct,<i>0a»<it Ci »<>,..*,*> , 

The identity (1»3)0 can be written as follows.: 

(4.3) f PC*) Jfc C*)<i* * 0 

for each to, e TAf̂  , where 

The function P i s of the c lass L * * Let us show that the 

following assertion (* ) holds: there ex is t constants 

&Q * •• •» &JL-4 8 U C b ***** 

(4*4) PC*) + > 0̂ 4- ji^x + ... + ^Mlmi X * 0 
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almost everywhere on < 0, 4 > . 

For the proof of the assertion (* ) denote by jp,0,. 

•9&A 4 sucn constants that 

0 

A Jk A * 
f CPO<) 4- fa + -ft^X -*• . . . + ^ ^ * * ) o c * < i * m 0 

for each j « fl,d,*.., 4 t - -< 

The relation (4^3) implies 

f ( P ( * ) 4- JQ,Q + /fl̂ tf + . . . 4- <f*fc.4* ~ )** ( * W * 

for each jb e W^ . Suppose y € L^ and set 

where Jbr* (3, » 0, . . . ,Jit-4) are chosen so that A* c HL • 

Substituting the function to* into ( 4 . 3 ) , we obtain 

0 m fCPCx) + *>Q+ ... • * ^ « , ^ f 9 ( « ) + i j + .M 
0 

. . . + ^ . 4 ^ )<A* at 

Thus we proved (# ), since the function «y € L ^ was 

arbitrary^ Defining 

4»o j0 (Jlt.-^-4M * * * 
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for x e <Q,1> and £, c R f we have (for A > 0 ) 

"•" -fur'0"5*'-
in* 

Hence for all * c < 0 , 4 > the equation 

(4.6) §(*, f^) • 0 

has at most one solution §* * f^(ac) • 

Since 

£jfe> 

(4.7) $CX9AL C*» « 0 

(with respect to (4.4) ) almost everywhere on < 0 $ O we 

choose 0<o € C 0 9 4 ) such that (4.7) holds with a = <X0 • 

Thus on some neighborhood U of the point *0 there ex­

ists a function ^ Car) satisfying on U the equation 

(4.6), f^Ctf0)=4C £#<>) and in virtue of Implicit Func­

tion Theorem (and thus also u> ) is continuous on tt . 

So At e C . As a consequence of (a 11), (c 7) and xc c C 

we have f t C 4 « 0 ) O x H ^ ) and again from Implicit 

Function Theorem yields ffe(&) * C 1 , hence At « C * . 

In the same way step by step we obtain AL m C , ... 
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>. Suppose (a 11), (a 13), (a 14), (b 9), (b 11), 

(b 12). Then the functional £ defined by (2*1) is real ana­

lytic on the space X,j (in the sense of t8] )• Moreover, 

there exists a unique mapping T : X — * X- with the fol-

lowing properties: 

(4.8) (f'C.u,),J*v) m <*u, F O u ) > for each M9JH,€ X^ ; 

(4.9) F is real analytic from X. into X . 

The mapping F is defined by 

F(^)^)=J DC^n^^(r«,f^Koc)) + 

+ 2M,C***C*) f1jfr. Ct,a>Ca,))flLi] 

for each JUL e X^ . 

Proof* Denote by X^7 X a the complectifications of 

the spaces X^ and X% . Fbr JUL e X^ define 

f Cx-t) m f CaC*, f C*Kx)) + S>CX92(M,»)CLX , 

w 

The functional * and the operator F are analytic on the 

space X^ • From t h i s , from [ 1 , Theorem 5.73 an using the integ­

ration by parts we obtain our assertion* 

Analogously we can prove 

LejfflfiQ_J. Suppose (c 7 ) , (c 9 ) , (e 10) , (d 8 ) , (d 9 ) , 

(d 11). Then the functional fy defined by (2.2) i s real ana-
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lytic on the space X^ and the mapping 6 : X^ — • JC^ ^e~ 

fined for AJU C JC^ by 

.4 

is a unique mapping with the following properties: 

(4.10) C<£(*L),*V) m <Jh*, GCxt) > for each AJL,M, B X^ ., 

(4.11) 6 is real analytic on X 1 • 

Moreover, the mapping 6 is completely continuous on X . 

Lema_i. Let the assumptions of Lemma 1 be satisfied* 

Set 

M0 d 

for each xt0 , Jk> e X^ . 

Then the mapping J is an isomorphism from X^ onto 

Jtg, and the operator X is completely continuous. 

(The proof is obvious.) 

Let K> 0, 0< <f <L A 0 Set 

A iSf A)»<(i4> eHL~ i£(juu)m K and there exists A , d0* 

& \X\ * A ouch that 4i is a weak solution of (1.2)0 ? » 

Under the assumptions of Lemma 1 we have not only 
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0, (cf, A ) c X ̂  but, moreover, ft CcT, A ) c 

c C a* + " r, Y* 

Lemma 5« Under the assumptions of Theorem 3 the set 

ft Ccf, A ) is a compact subset of the space X m 

Proof* The set ft (ct\ A ) is bounded in X^ . So the 

coefficients >ft0, ..,, *{**,.4
 from tne relation (4.4) afe 

bounded independently of AA, e 0, CcT, A ) , Analogously 

as in the proof of Lemma 1 consider the equation 

*--4 **>-*(>* to-*?*'*-(4.w) ^.w-^-^T^ifeiJcfV^f^^^ + 

j fe -1 
9 

where VCx,^^) = a^Cat,ijC/«.)f*), f ^ ) + X ^ § f c • 

In virtue of the compact imbedding from Vjjj into C 

the right hand side in (4*12) i s compact (we consider JUL e 

e Q» (d% A} and d,^.\X\^ A ) . From Implicit Function 

Theorem there ex is ts a unique solution £* (*) on the 

interval < 0 , 4 > for each xc c ft (of, A ) . There ex i s t s 

i l 0 > 0 such that for each \X\ e <cf, A > , u e ft CcT, A ) 

and * s < 0 , 4 > i t i s I § * < , / * ) I * i l 0 . From the 

unicity of the implicit function we have R^IL* ^ J t 0 
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for each M, e Q, (<f, A ) • 

Differentiating the equation (4.4) we obtain the equa­

tion 

(4.13) U, Cx) m --£ 

4.^+ 2 41̂  + .... + C*,- D&jit^x*'*'1] • 

The right hand side in (4.13) contains only the derivatives 

of the order 4t h, . Thus there ex is ts a constant M^ > 0 

such that l4ttllcA,+4 £ Jl^ for each JUL, e & Cc/% A ) t Repea­

ting this consideration A, -times we obtain ft^u* ILafe+4 4s 

6 HL% CH1 > 0) for each juu m A Cof, A ) . ©me from 

the last estimation and the Arzela theorem we obtain that the 

set (X (d% A\ i s a compact subset of C2**' • 

In this section we verified a l l assumptions of the gene­

ral result [ 5 , Theorem 3 . 2 ] • From this follows the assertion 

of our Theorem 3. 
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