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NOTE ON NONLINEAR SPECTRAL THEORY: APPLICATION TO BOUNDARY
VALUE PROBLEMS FOR ORDINARY INTEGRODIFFERENTIAL EQUATIONSX)

Svatopluk FULfK, TRAN DIEN HIEN, Praha

Abstract: In this paper we prove that under some as-
eumptions it is possible to apply the whole nonlinear spec-
tral theory to the boundary value problem for ordinary in-
tegrodifferential equations.

Ke rds: Spectral analyais of nonlinear operators,
Fredholm alternative for nonlinear operators, Ljusternik-
Schnirelman theory, weak solution of the boundary value pro-
blem for nonlinear integrodifferential equation, regularity
properties of the weak solutions.

AMS, Primary: 45J05, 4THL5 Ref. Z. 7.948.346

Introduction. Three main parts of the nonlinear spect-
ral theory, i.e., Fredholm alternative for nonlinear opera-
tors ([2] and [7, Chapt. II]), Ljusternik-Schnirelman theo-
ry ([4] and [7, Chapt. III]) and its converse ([5] and [7,
Chapt. V1) were up to this time applied to the existence
of the solution of nonlinear integral equations of the Lich-

tenstein type ([6] and [7, Appendix II1) and to the exis-

x) This paper is taken from a part of the thesis of the se-
cond named author which was written on Department of Mathe-
matical Analysis, Charles University, under the supervision
of the first author.
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tence and multiplicity of the solutions of the boundary
value problems for nonlinear ordinary or partial diffe-
rential equations. Unfortunately, we do not know any ex-
ample of boundary value problem for nonlinear differen-
tial equation which would satisfy at the same time all the
assumptions of the nonlinear spectral theory. On the other
hand, such examples can be given for integral equations.
In this paper we prove that under some assumptions

it is possible to apply the whole nonlinear spectral theo-
ry to the boundary value problem for ordinary integrodif=-

ferential equations.

1. Definitions and Statement of the Main Regultg.

Let 2 € < o0 and let S be a positive integer.
Denote by ‘VI: = W:(( 0,1>) x) the Sobolev space of all ab-
solutely continuous real functions # on the interval
<0,4> whose derivatives up to the order % -4 are al-
so absolutely continuous and whose derivative of the order
4 is an L, function. Set
o 7 ™)) Us-1)

W e W s (O mmts (Omst=oom e ()= 0F .
o
It is easy to see that W: is a separable Banach spa-

ce with the norm

x) If X({0,4>) is some function space of functions
defined on the interval < 0,4 > we shall write the
symbol X only.

’
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R4 1,
1.1) [ @epy »
( '“’"h,p"(fu fom Ct)™dt) .

[ ] .
The Sobolev space W: has a usual structure (see
[9] and [7, Appendix III]), moreover, it has a Schauder ba-

sis (see [3]).

If o € W: , let us define §(ry,) € I'.L,,,J"""‘ by
g(g,):(q,,ay’,...,q.‘h)), nly) s [LpJ"" by 7 (g)=
= (:y,,@‘,...,gf*'”), w(y)eRg, 4 by
w(y) = cf:,,}ct)dt,...,f:(@“"ct»’dt) and ©(g)e Ry by

1 1 -
wly) = (fyceras,..., [t en*at)

We shall use the symbol | | to denote the absolute
value and the norm in the S -space Rk .Sometimes we shall

write instead of § = (§,,..., §4,) € Ry 4 only
§=(n,§,) , where 7 = (§,,..., 6 4) € Ry . Set
Rjy = 4= (Xyyeee Xy ) €RGi %, 20,420,008 -1%
Ke(y) =4xeBRg : Ixlz2g ¥,
K;(ry,) = KXo (%) N R; .

Defipitiopn. let 22, A € R,  and let
alé'(x,g):(()ﬂ)xxh‘.‘—)]i“, é-O,...,k ’
.Qré_(x,w):<0,4>xnl“-—-,}lq 9 j.-r 0,...,* 2
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Cé(“,"l’& <0,4>><Rh—-> 11, 5-0,...,12.-4 9

d.’.'(x,rq_,fu): <0,1> < R, x K;‘—b R,y =0y, 2k -1
and w e l, (e qf“: 1) .

-]
The function « € W‘:, is said to be a weak solution
of the homogeneous Dirichlet boundary value problem for or-

dinary integrodifferential equation

¢a—
pryves (mé(x, §w)(x))) +

o .
@
(1.2), ALZ 7] ‘
@23) 1 ot s d?
(\X)J;,b;(t,m(w))dt]} -.?4.‘.‘.0(—4) [d,—x; (e (x,n(a)(x)+
+d; (x, 7 (w)(x), v (w))) +

4
+ 2300 fd’+é_Ct,nz(u)(t), w(w)) dt] = ar(x)
0

‘©
if for each A € W:",_ the following integral identity
holds:

(1.3) k4 @
3), J\.{agot‘ga%(x,g(u)(.x)) hTCx)dx +
4 4 [Z%) @),
+ 20 & (t,0 (w)dt) ([ u?(x) h7 () dx)T3 =
o 0
Rt 4 3,
"-35,[];“'5(“"’1(“’)(“» 27 (x)dx +
1 3)
+ _)'dé(x,q(u)(a(),'e(u))b (x)dx +
R _
1 ) @) 1 _
+2 <J;u,*cx) W70 x) ([ dy L (t,7 (w)(4),m(aNdt)] =

4
- j ar (x) S (x)dx
/]
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(provided the functions »R5,¢5,d; satisfy such as-

sumptions that all integrals in the relation (1.3),., have
(-]

sense for arbitrary w, h e W::' .

Remark 1. By the same way it is possible to define a
weak solution of the equation (1.2),, provided the right

hand side w is a bounded linear functional on the space

o
w::,

The type of results obtained in this paper may be il-

lustrated best on the following theorem:

Theorem. Let s, #¢ be positive integers. Consider the
homogeneous Dirichlet boundary value problem for the ‘equa-

tion
Ao d,“ ) 2p-1
(1ed)y A { R T GOYT) +

+uf‘"’<x)<_y wWcentat)® '} -
-1 z 1% 17((“‘*’(«))"" )3+

+ (- 4)" W D00 WP at ™ w0
(4

Then there exists a sequence A of positive numbers

converging to zero such that

(i) the equation (1.4),, has a weak solution u €
[J
€ 'VI::,, for any ar € Lo, ((241.)'4+ q," =1) provided

Ad¢Audi0F
(ii) for each A € A- the equation (1.4), has a

- 587 -



o
nontrivial weak solution & € W:;’L B Moreover, « € c*

and 4 is a classical solution, i.e., it satisfies the

equation (1.4), in each point x &« < 0,15 .

The assertions of the previous theorem follow from ge-

neral Theorems 1 - 3 , Remark 2 and Lemma 1.

Theorem 1 (application of the Ljusternik-Schnirelman
theory). Suppose

alx,€) : <0,1> xR, — R, ,
. +
F(x,w) :<04>=xRy , —> R,
c(x,n) : (0,4)><Rk —_— R1 ,
adlx,m,z): <0,1> x thR.; —> R, -
Let the following conditions be fulfilled:
(a 1) the function a (x, §) satisfies the Carathéodory
conditions on the interval ( 0,4> (for definition see
e.g. [10]1);
(a 2) there exist a nonnegative function grq (x,qy) defi-

ned on <0,1> x K.'; > ¥a(*»4) € L, for each oy c'&*,',
and the constants ¢,, ¢, > 0  such that

o
1 fpl € alx,m, §,0¢ ¥a (x4 + ¢y 1 51"

for each 1) exh(@) > §n € Ry and almost all x &

€ <0,1>

(a3) al(x,§)=0¢=>§=0, al(x,~-F)=a(x,§) ;

-]
(a 4) the partial derivatives a;(x,§)= —_— (x,§)
2 0 g?
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(4=0,..., & ) exist on <0,1> x Rq. 4 and satisfy
the Carathéodory conditions on < 0,4?> ;
(a 5) there exist nonnegative functions Q. (x,4 ) defined

on <0,1>x=R% and a constant ¢ > 0 such that
9'03'-("'“') el , 3= O0yeeey =1, 4 € R.: ,

Yan (¥ Ly, (wlegt=1),

la, (x,7, 6301 & Gay (x,4) + cl§ ™ (G=0,0, -1,

-1
lag, (x,1,8, ) € gup(x,g) + ¢ [§o !

for each "l‘xn"*’ R §h‘14 and almost all .xve
€ <0,4> ;
(a 6) there exists a constant M > (0 such that

fo
%goa,é_(x,g)gé =z Ma (x, §)

for each f € and almost all x € < 0,1)>

.
°

Rh.«wi

(a 7) there exists a continuous nonnegative function 4 (t)
defined on RY such that

lay (x,m, §g) - aj (x,7), §e)l €7 lnleln’l) -
Al g ™+ IER 1P 15y - £ !
for 3=10,...,% ,each (7,§y), (1, §3)€ Ry, 4 and almost

all x € <0,1>

(a 8) the inequality
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(a’b(x’ "l’g‘,) - “'a.,(x,”l,g‘n.,’) <Eb- g;la) >0
holds for each m e R, , a1l §, , §L €R, and almost
all x € <0,1> 3
(b 1) for each w € RS ,, 1let & (- ,wle L, and let

& (x, @)= 0, &(x,0) =0

for each @ € Ry , and almost all x € <0,1> ;

(b 2) the partial derivatives lra-_ (X,w) = (X,w)

dawgz
exist on <O,4>xKL+4 and &, (-, )& L, for

Q‘R.z’+4’ 5--0,-.-,& ’,

A
(b 3) *gob".’fx,w)mi_z}db(.x,w) ’

(b 4) Rr’.,c.x,ana 0 ;

(b 5) for each 4 e R}  there exists by el , H, (x)=0
such that |8y (x,w)l & By (x)  for 3=0,..., &,

@ Cx;,,, (y) and almost all x €<0,1) ;

(b 6) there exists a continuous nonnegative function

@ (x,n) defined on R} such that
|b'7-(.x,a>) - B (x,0)] £ pllol+lo’l,g)la,-awy |
for 4 = 0,..., b,_e),w’ 6 11_._,, and almost all x € <0,4>;

(¢ 1) the function ¢ (x,n ) satisfies the Carathéodory
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conditions on < 0,41

(c 2) there exists a nonnegative function @ (X, ) defi-
ned on <0, 1) R.:, e (sy)el, such that

le (x,7)14 gc(x,%) for each 7 € Kg, (4) and al-
most all x € <0,1)> ;

(¢ 3) elx,~p)=c(x,m)z0,clx,n)=0¢=>7n =0 ;

dc
aﬂ_,‘,

(c 4) the partial derivatives c (x,n)= (x,m)

exist on <0,4) > Ry, , satisfy the Carathéodory conditions
on <0,1> and they are bounded on <0,1) »x Kg (g) for
any /u,cx.: (3=0,00., -4,

R4
(c 5) éE‘)¢:‘.1’.’(.x,o;_)»;”i’>0, e, (x,0) =10

for each m € R, , 7 % 0  and almost all x € < 0,1

(@ 1) the function d (x,m,7% ) satisfies the Carathéodo-

ry conditions on <0,1) ;

(@ 2) for each « € Rfu, there exists a nonnegative func-
tion @, (x,%) defined on < 0,15 > Y,
Yur$*s¥) e L, for each g4 € RY  such that

ld (x,n,t)l = q,, (x,y)

for each 7 e](th_) and for almost all X & < 0,1>;

(@3) dix,-m,2)=d(x,7,2)=0,d(x,0,0)=0;

(@ 4) the partial derivatives
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da od
d,’-(x,n,e)- ané(.x,n,'t), d'h{-é- =3—’¢’—; (X,"Z,’E‘)

(3 =0,...,% -1 ) exist on <0,1> = Ry = R}, , satisfy

the Carathéodory conditions on <0 ,4> and they are boun-
ded on <0,1> » Kg (4) K;(fy) for each 4 € R: 5

R-1
(a5) éEo(at?.(ac,oz,fc)'r)_a-_ + Q.d.h*_é(.x,q,z)ca-) =20

for each m € Ry, © € R}, and almost all x e <0,1) 3
(0 6) oy (x,0,00=0, G=0ye;font

Let 5 > 0, Then there exists a sequence {2, 3 such

o
that for A = A, there exists a weak solution My, € W:

of the Dirichlet boundary value problems for the equation
(1.2)y such that:

(i) w, —> 0 (converges weakly in ﬁ': );

1
(11) o, = fa Ce (x,7m (wy,)(x)) +

+ d(x,m (uy)(x), 2lupy)dx N0 ;

1
(1i4) f (@ (x, §up)x)) + £ (x, @ (w,0olx = 1 5
0

oyt 3)
(n)fégo(j‘océ(x,q,(u,,)(x)).w@ ()dx +
* J:d.i(x,q(u,“)(a),z(uﬂ))u“@(x)dx +
1 1, &) 2 .
+2(J; Oyt 7L (i) (1), (a DAY [ Gt (x)) dx V):
>N
: Eégo(j;av’-(x,§(u,‘)(x>)u:f’(x)dx +
+ 20" (4, @) (wadt) ([T xNPdx NI= A,
o ? ? o m m
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Theorem 2 (application of the Fredholm alternative).
Let the notation introduced in Theorem 1 be observed. Sup-
pose (a 1) - (a 8), (b1), (b 2), (b4) - (b6), (c1) -
(c 4), (@ 1) - (4 4), Moreover, let the following condi-
tions be fulfilled:

 seed
(a 9) ‘}?o(a,a.(.x,§)- a%.(x,g’)) (gé- E;_) =0

for each £, §’eBg,,, and almost all x € <0,1> ;

(010) a (x,t§) = t*"a  x, §)

for each gek“ﬂ,tek;", G = 0,000, % 3

g
(b 7) éEo(b; (x,) - &, (x,0")) (e - o;) =20

for each w , '€ K‘;“H' and almost all x € < 0,1 ;
Y-
(b 8) b (x,tw) =t 2 g (x,0)

for each o sl';u.‘ , t.€ R} and almost all x € <0,4>;
-1
(c 6) e, (x,t9) = ™ ¢, (x,7)

for each m € Ry , t €« RY, 3=0,..., % -1 and almost
all x e C0,1>

2 -1
@amn 4, (x,ty, te) =t

d.?‘(x,n,z) ,
: -2
d‘*ifx,tq,‘ﬁqt) = t" dr*ﬁ(“,"l,z)
for each 7 ‘Kh' (=4 elz,tek:,é.-o,u.,h-'i and almost
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all x € <0,1>
Let A # 0 . Then the equation (1.2),, has a weak

solution « e V?:: for any right hand side weLL pro-

vided the equation (1.2)o has only a trivial weak solution.

Theorem 3. Suppose (a 1), (a 2), (8 4) - (a 7), (b 1) -
(b 6), (¢ 1), (¢ 2), (c 4), (@ 1) - (4 4). Moreover, suppose:

S+
(a11) alx,§)elC (0,1 =K, )3

3
(a 12) —‘;g%’——cx,g)zo for each §e&R, , and all
£

xe<0,1>

(a 13) the function & (x, §) is a restriction of a con=-

tinuous complex valued function & (x, g) defined on
0,1y » @%+1 , where @ is an open set in the complex

plene (€ such that @ :911 3

(a 14) the function @ (x, e’) and its derivatives

0*+1 for each

d* .33 ~

(x, €) are analytic on
dx? (a?,- §)
x‘<°,4>’ 5‘=0’,“"k ;

(b9) Mlx,e)e C'C0,4% =Ry )5

(v 10) .th(.x,a))>0 for each x €<0,1) eand @e€RL _ ,

© %0

(b 11) the function & (x, @) is a restriction of a con-
- 594 - ‘



tinuous complex valued function & (x, & ) defined on

<0,1> x o**’

;
(b 12) the function & (x, & ) and its derivatives

oL @h+4

~———=— (x,@ ) are analytic on for each X €
4, ?
%

e<0,4>’ g',=0,...,b H

e
(c7) elx,m)eC ((K0,1>=xRg)
(c 8) c(x,0)=cé(.x,0)=0;

(¢ 9) the function ¢ (x,n) is a restriction of a continu-

ous complex valued function € (x, 7 ) defined on
0,1y x 0%

(c 10) the function €(x, %) and its derivatives

d'“7(a‘ia'- X,%,)) are analytic on or each X €

€<0,1> and F=0,.., %1 ;

’

(@8 dix,q,2) e C'(<0,1> xRy x Ry ) ;

1 .
(@9) dylx,m,®)e C‘“ (<0,1> = Rg) for each

fixed © e R ,

(5‘ o’ooa’k-4) ;
(a10) d(x,0,0)=d;(x,0,0)=0 (3=0,...,%-1,x€<0,1>);

(a 11) the function d(x,m,%) is a restriction of a con-

. tinuous complex valued function d (X, 1,%) defined
- 595 -



on <0,1> > @”‘;
(d 12) the function d (x,7% ,% ) and its derivatives

~ ,\_)

a(a% (x,n 1’3)), _3—"5; (x,m, % are analytic on @

for each fixed x € <0,1> and 3 = 0,-.., fe-1 .
Let x> 0. Denote by I' the set of all

1
P = fo(c(x,@(u)(x)) Fad(x,m)(x),2uMdx ,

where A& is a solution of the boundary value problem for the

equation (1.2), for some A € X 4 and satisfying

1
1.5 [(a@x, §u)x) + H(x,w(w)))dx = 1 .
0

Then the set I" is at most countable and the only pos-

sible accumulation point of this set is zero.

Remark 2. If the assumptions (a 10), (b 8), (¢ 6) and
(@ 7) are fulfilled then the set A of all A € R, for which
there exists a solution of (1.2), satisfying (1.5) is up to
the multiplicative constant equal to the set I' introduced
in Theorem 3.

In tﬁe next sections we shall prove Theorems 1 - 3, The
proofs are based on [4, Theorem 2], [2, Theorem 3] and [5,
Theorem 3.2) . We do not write these theorems here and refer

the readers to the cited papers.
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2. Proof of Theorem 1.
Dk * _“
Denote (W@ V* = 'W'% (the dual space) and let

(uw*, u) be the value of the functional w* e W;.*' at the

s ° R o S
point & e W,h' . For u € W@ set

1
(2.1) £(w) = j(a,(x,gmxx)n & (x,@(wMdx
0
1
(2.2) gla)= [ (e x,mu)(x)) + dlx,qw)(x), T dx .
0

J
The functionals £ and Q- are even on the space W:j and
they have the Fréchet derivatives £' and 9,' defined by

oo @
’ - .
(2.3) (£'), ) _§§°<L¢1cx,§cucx»m (x)dx +

1 1 . .
2 ([ 2 (t,0 W dt) ([ uPORP0dx))
o * ’ o

-1 4
b
(2.4) (Q,(u,),h)=é§°(j;(cé(.x,n(u.)(.x)) +

3
+ d.é(.x,n(w)(.x),z'(w)))lh«’(x) d.x
3¢ [y, b8 m@Pab) ([ "o nPdan
* o g TP " ? 0

)
for each w, % € W~ .

We obtain immediately:
(2.5) £ (u)m Ocmmsy i = 0 (from (a 2), (a 3), (b 1) )
(2.6) (£'(w),u) 2 MECw) 2 Me, hal™  (from (a 2)
' ) 2 MEW) = Moy hucly, *

(a 6)y (b 1), (b3));
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(2.7) Um £(w) = oo (from (a 2) );
lul‘.;tc

(2.8) @)z 0, glu) = 0=y« =0 (from (c 3),

(a 3) );

(2.9) ' is a strongly continuous mapping (i.e., it maps
L 4

o
weakly convergent sequencesin W: onto strongly conver-
gent sequences in W;f' ), (it follows from the complete
0
continuity of the imbedding from the space Y: into

¢™* ) - thus ¢ is also uniformly continuous on each
' 4

¥ *
bounded subset of W_¥ ;

(2.10) £’ 1is uniformly continuous on each bounded subset

o N
of Wu° (from (a7), (b6));
(2.11) @' (u) = 0 ¢==> 4 = 0 (from (c 5), (da 5), (a6) )3

(2.12) wpy —> u, £uy) —> z — AL —> M (from (a 2),
(a 6),(b5), (a8), (b4)),

Thus all assumptions of [4, Theorem 2] are verified and
from the assertion of this theorem (see also [ 7, Chapt. IIIJ)

we obtain the assertion of Theorem 1.

3. Broof of Theorem 2.
Denote T = £', S = g . Under assumptions of Theo-
rem 2 the mappings T and S are odd and (q - 1) ~homoge-
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neous (it follows from (a 10), (b 8), (c 6), (a 7), (& 3),
(c 3),(a 3) ). Moreover,

(3.1) T is strictly monotone (i.e., (T(w)~T(¥)u-2)>0
o

for each w4, ¢ W:, i 4 7 ) and from (2.6) 'with using

the main theorem about monotone operators (see e.g. L7, Chapt.

II1] ) we obtain that T is surjective. Analogously as (2.12)

]
we can prove that T is a homeomorphism from ‘VI: onto Vf;“ H
(3.2) there exist two constants X ,L > 0 such that

n-1 -1 o
Lﬂul“ﬁélT(w)nhiéKlun:’% for each u.cw: .
? hataad }

Thus together with (2.9) we verified all assumptions of
[2, Theorem 3] (see also L7, Chapt. II] ). Prom this we obtain

the assertion of Theorem 2.

4. Proof of Theorem J.
To prove Theorem 3 we shall apply [5, Theorem 3.2 ] (see
also [ 7, Chapt. V1), Denote X, = SN ﬁ:‘ y Xg=0C,

(-]
x., = \v: . For m e x,,,.vnu Ii we define

1.
Ca,rd> = f wx) o (x)dx
0
the bilinear form on 14 > Xz with the following properties:

(4.1) for each u € X,,{«,-> is bounded linear functional
on xa 3
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(4.2) let v € X, eand <u,»>=0 for each u €X,

Then o =0

Lemma 1. Suppose (a 11),(a 12), (e¢ 7), (4 9), (b 10).
Let A % 0 and let w & 1:'4:" be a weak solution of the

equation (1.2), . Then & € X" .

Proof. Suppose that .4 is not identically zero on
<0,4> . Put

4
X, = Q.Llré(t,a)(u))ott (5 =0y00e, ),

1 .
Koy =2 _;‘a dy, s (t,m (), 2w dt (L=l k).
The identity (1.3), can be written as followsi

1 )
(4.3) [TPea A lx)dx = 0
0

]
for each A ew,:’ , where

P(x) = A ag (&, §Cado)) + A Xy ™) +

-1 R-3 O = p )R
+‘z (_4) a.. J.Lx—_‘."l._~_

220 Yo (k-ﬂr—")!

* AR, wPAn) = ey (h,n(a) o))

[.‘4105(/3, E(M—)(b)) +

- dy (a mCuXm), e -Ry 4 . )1 dn

The function P is of the classe Lg .Let us show that the

following assertion (% ) holds: there exist constants

fgyeee9 g _4 8uch that

25 -1
(4.4) PUX) + fp + % *oeo vy X = 0
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almost everywhere on <0,1> .

For the proof of the assertion (k) denote by fap,:.-
ses3f1q _4 8Such constants that

" -4 1
f CP(X) + 1) + fr X+ oo + m.h_,,.x'“ Jx?dx =0
0

for each 4 = 0,1,..., k-1

The relation (4.3) implies

)

1
f(P(.x)+ /fl-o+.11.4a(+...+41—~_4 ) xrdx = 0

for each M e W . Suppose @ € Lﬂ and set

X _ 4
,%Cx)=f (x-tY®

oA
—_—-(h yEY] (gv(-b)-l-ma-o-,b;‘tf...-rli_qt Ydt
[} - .

]
. h
where &. (4 = 0,...,% -1) are chosen so that h e L/

Substituting the function M into (4.3), we obtain
0 = f(?(at)+41.a+ R wab T T I 7o
Il "'k”-"x )d—a =

1 S -1
= f(P(a)+4»°+...+4t‘_4x dp(x)dx .
(]

Thus we proved (% ), since the function @ € LQ‘V was

arbitrary. Defining

ch §) = Aaglx, ) (x), §) + AXg §p +
®-3 0¥ (X~ W ol

+2(4 a"""' Y]

[ﬂa- (5, §Cu)(AN+ -M( AL (A)-

= ey (n, m(u)(A)) = dy (s, (w)(H), T(w)) -
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() So-1
-K‘*“éu (Mdn + o+ o X+ cee + 0y X

for xe <0,1> and §u‘ ]{4 , We have (for A >0 )

(4.5)

(x, §) =

3¢

3
2

- &-g—;i—-(x,q(.u.)(x), §0+ AKg = AK > 0 .

Hence for all X € < 0,1) the equation

(4.6) F(x,§,.)=0

has at most one solution §h = Eb(“) .
Since

o)
(4.7) dx, ux =0

(with respect to (4.4) ) almost everywhere on < 0,41> we
choose Xo € (0,41) such that (4.7) holds with X = X, -
Thus on some neighborhood U of the point x, there ex-

ists a function g._ (x) satisfying on U the equation

(4.6), € (Xp)= af”(xo) and in virtue of Implicit Func-

tion Theorem (and thus also u.“‘) ) is continuous on U ,

So Af»e C . As a consequence of (a 11), (c 7) and & & ch
we have & e ¢ 0,14 > R and again from Implicit
Function Theorem yields §g (x) € ¢’ , hence u e et .

In the same way step by step we obtain .« e C‘.“a, ces

ceey M € cih |
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Legma 2. Suppose (a 11), (a 13), (a 14), (b 9), (b 11),
(b 12). Then the functional £ defined by (2.1) is real ana-
lytic on the space X, (in the sense of {(8) ). Moreover,
there exists a.unique mapping F : X4 —> Xz with the fol=-

lowing properties:

(4.8) (£(u)y,h) = Ch,F(w)>  for each u,h e X, ;

?

(4.9) F  is real analytic from X, into Ia .

The mapping F ie defined by
?
Plud(x) =, 2 (- 4)*[—-34,4(«,&“)(«» +
23)
+ 2»‘ (%) fo &y (@) dt ]
for each u ¢x4 .

Proof. Denote by 5(’1, f,_ the complectifications of
the spaces X, and Xy .For n e fq define

fw) = fca,cx §(w)(x))+ Fx,SwMmdx ,

Fuwr) = 2( 4)’[d i (—?-cx,g(ucx»)+
Pl f’-a-;z—ct Scundt]

The functional ¥ and the operator T are analytic on the

U d
space x,' . From this, from [1, Theorem 5.7] an using the integ
ration by parts we obtain our assertion.

Analogously we can prove

Lempa 3. Suppose (c 7), (¢ 9), (¢ 10), (a 8), (a 9),
(d 11). Then the functional g defined by (2.2) is real ana-
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lytic on the space X, and the mapping 6: X, =X, de-
fined for w € X, by

G luXx) = z (- 4)’[ Cc. (o, nCa)(x)) +
+d, (.x,n(u,)(.x) e (w))) +

+ 2,523 x)f Ay, (3 WIB), e u)dt]

is a unique mapping with the following properties:

(4.10) (g (w), M) = <h,G(u) ) for eachu,h e X,

(4.11) G is real analytic on X, -

Moreover, the maphing G is completely continuous on x4

Lemmg 4. Let the assumptions of Lemma 1 be satisfied.
Set

3
(M) = (~15° [ag Cay, (X, § () (x2) +
+ I 2, (tywu,) dt] M(x), Kih) = dF(u,,5)-ICh)
for each 4, ,9»514 .

Then the mapping J is an isomorphism from x1 onto
I,_ and the operator X is completely continuous.

(The proof is obvious.)
Let x>0, 0c < A . Set

G(F, A m{u e".f,:: :£(w) = 5 and there exists A ,d =

&|Al€ A such that & is a weak solution of (1.2)4‘} .

Under the assumptions of Lemma 1 we have not cnly
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&(d,A0) c X4 but, moreover, & (d, A) c

-]

Lemma 5. Under the assumptions of Theorem 3 the set
6(d5, A) is a compact subset of the space X, .

Proof. The set @ (d’, A) is bounded in X, .So the
coefficients sr4, .., frg_4 from the relation (4.4) afe
bounded independently of w4 € G (J°, A) . Analogously
as in the proof of Lemma 1 consider the equation
SPI f" (x-47""

(4.12) Y(x,§k)=é (CX D) A m

3 [ay(m, §lad(m)) +

» X uP - Lega,mnwrcan -

1

4 s % -1
- 3 Ky g TR A = g X i X

where ¥(x,§. ) = @ (x,m (W)(X), §g ) + Ko §g

-]
In virtue of the compact imbedding from W: into C~'1

the right hand side in (4.12) is compact (we consider w €
e 8 (g, A) and I<|Al< A ). From Implicit Function

Theorem there exists a unique solution §‘“‘ (x) on the

interval {0,4> for each & € 6 (d% A) . There exists
M, > 0 such that for each AMedd AV ue 6 (d,A)

and x € <0,1% it is I§.w'(.x)lé.M,° . From the

unicity of the implicit function we have Huw Ic.. €M,
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for each w e 6, (d,4)

Differentiating the equation (4.4) we obtain the equa-

tion
9 1
(4.13) ") = =
gé—(x,ﬁ(u)(mhxh
PP TR TN o
'{d.u <§§a(-4) J;m[a,i_(/a,g(u)(h7)+

+X, 490 - L o) tm,murim -

1
- 3 (e, wun - £ x “HFerryidn+

R+3+1

A+ 20, o+ Ch-'i),fa.k_,,u""‘}.

The right hand side in (4.13) contains only the derivatives
of the order £ % . Thus there exists a constant A(,, >0
such that luwllomes < M, for each 4 € & (J7 A) , Repea-

ting this consideration A¢ -times we obtain ﬂwllcgu,q <

£€ Mg (My >0) for each w & B¢ 4) . Thus from

the last estimation and the Arzela theorem we obtain that the
set Q (", A) is a compact subset of CI%®

In this section we verified all assumptions of the gene-
ral result [5, Theorem 3.2] . From this follows the assertion

of our Theorem 3.
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