
Commentationes Mathematicae Universitatis Carolinae

Josef Mlček
A representation of models of Peano arithmetic

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 3, 553--558

Persistent URL: http://dml.cz/dmlcz/105508

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105508
http://project.dml.cz


Commentationes Mathematicae Universitatis Carolinae 

14,3 (1973) 

A REPRESENTATION OP MODELS OP PEANO ARITHMETIC 

J. MLCEK, Praha 

Abstract: The following theorem is proved: algebrai­
cally cToseafield of char. 0 is saturated if and only 
if every countable model of Peano arithmetic can be embed­
ded into it. 
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Introduction. In this paper, we shall present some 

results on embeddability of countable models of Peano arith­

metic P into models of algebraically closed fields of 

characteristics 0 . 

This set-theoretical result should be compared with 

(and was inspired by) a recent result of vopSnka saying 

that (under reasonable assumptions on existence of semi-

sets) each countable model of P can be embedded into the 

field of real numbers by a semi-set embedding. 

§ 0.Notations. Let Ufc and *$£• be structures of the 

same language. Jh,: *0C — > & denotes that Sh, is an embed­

ding of <6fc into & . By <0O ** & and <0t m & we 

mean that *& is isomorphic to & and ^ is elements-
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rily equivalent to & respectively. By <(£ & & and 

«0t < & we mean that % is a substructure of & 

and *t/t is an elementary substructure of & respecti­

vely. I *0C I is the universe of tGL , T *0L is the 

complete theory of Ut # Given a structure t5t and theo­

ry T , VL h* T means that Ws is a model of T . 

TF (TF 0) is the theory of fields ( TF of char. 0 ), 

ACF (ACF 0 ) is the theory of alg. closed fields 

(ACF of char. 0 ). 

The nonlogical symbols of P are 0, 1 , +, • . The 

predicate < is defined by oc <: /#, =.= (3x -# 0) (x + cz & ttf). 

Let #t be the standard model of natural numbers. 

Let Cf and *£ be the structure of integers and complex 

numbers respectively. 

If H)L , ̂  are fields, & £ «L and 3 £ I <& I , 

then -35-C 5) is the least subfield of *& , containing 

I # I and 5 . If *Ct is a field then t£ is the alge­

braic closure of *fifc . 

§ 1. pig resume. 

1 . 1 . Theorem. Let Sfr-i-AC^. Then (1) i f f ( 2 ) . 

(1) If Wt*? and uvaLttxtfa , then there i s h: *&,->&. 

(2) •£ i s saturated. 

1»2« Corollary. If W is a countable model of p and 

if fr is an uncountable model of ACF0 then <OL is embedd-

able into otr . 

1«3» Corollary. If 0̂t is a countable model of F then 

<0t is embeddable into the field U of complex numbers. 
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§ 2* Basic lemmas. The following theorems are we l l -

known: 

A) If <et, ^ are f i e l d s , £> <= tft and i f & ia a 

transcendence basis of 1Bt over «^ then 1% i s a lgeb­

raic over # C S ) ([XA}). 

B) Let ^t N TP , ca*ct l <t I ft 4r0 . Then every a lge ­

braic extension of <C€ has the same cardinal i ty as *€l 

(CLAD. 

C) Let € t km TP . Then 3St i s algebraic over % 

(CLA3). 

D) Let HK, i» ACF , Then *Ct i s saturated i f f <& has 

i n f i n i t e transcendence degree over i t s prime suhfie ld 

USA]) . 

E) Let tt , & be saturated structures of the same car­

d i n a l i t y and <6t m & . Then <€t & & ( [SA]) . 

F) Let ZXXHXL «Ci sx 4*0 and l e t T*6t be <a> - s t a b l e . Then 

there e x i s t s a saturated Sft- V *6t of the same cardina­

l i t y as HK (CSA1). 

2 . 1 . Lemma. I f <flt N TPP and i f eafccl *& -> *rtf 

then <€t has i n f i n i t e transcendence degree over i t s prime 

subf ie ld . 

Proof. Let *Ct? be the prime subfie ld o f # . . Then 

eofeoL T>tp * -K0 . Let S be a transcendence basis of *€t 

over *&? . By A) *€t i s algebraic over *0tj>(S);by B) 

ecMc^ *0t -» cofcct <6tp CS) •» /ntoe (4S0 , OOJCOL S ) « 

I t fol lows from t h i s lemma and E) that any two un-
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countable models of .ACF0 of the same cardinality 

are isomorphic 

2.2. Lemma. Let # *» ACF0 and let GJOJUL & .> 

> -x0 . Then there i s a A-% £ & such that <&' i s a 

saturated model of ACF<> of cardinality «#0 * 

Proof. Let fry be the prime subfield of & , and 

l e t S be a transcendence basis of <& over &v . Let 

S f e S , ca*<£ S f a 4fd - By A) - D) fr' m Jfi-j, (S) has 

the required property. 

§ 3 . Proof of Theorem 1.1. 

( i ) (2 )—*(1) . By 2.2, we can assume that $r i s 

countable. Let <0tR be "rationale over *Ct ". T ^ « » 

a ACFo i s o> -stable. By P) there i s an <W > *2TR , 

such that *Ctf i s saturated and oxvuL *&(,'= ca*joL<%£R&j;0 . 

By E) tV ** & . Let Jfa be the isomorphism of ^t* onto 

«£ . Then Jt b <0tf i s the required embedding. 

( i i ) (1),—> (2). Let % be a countable model of p 

such that there i s a sequence 4 ^j\ee^ ot models of 

f such that 

and l e t for each -t , o^ € A^ - Aj,_.f and <££ N £ < 

^ Sf-l.M f o r e a c h * * A.i , 
For each 4 , let 3j, be "integers (positive, negative and 

zero) over ^ ^ w. Evidently 

(*) 0 * x e i; =-» «i. .^ c 1. - 1 ^ . 
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Let M,t *VL —* # - . We prove that JhPiajtff* i« a l ­

gebraical ly independent over fry . 

Let (rv be the f i r s t number such that there are 

0 "h &1 « 1 *̂j> f , J- *- 4, 2,.,,, in, , s a t i s f y i n g the equali­

ty 

m, *,& V*> 
S 2r\ ... 9ь(a,л) ... Яpta,^) « 0 

(where T>4,(&) e K )• We can suppose that 4 ^ £ I 3p I , 

where Jp are "integers of £&p ". Moreover, there is a 

-̂ such that ^C^-)*» 0 # Let M, be the extension of 

Jh, I <el0 onto ^ , Then 

z* m* KXУJ ?• a 
T2> *z ~4 , ~ % % y<tW ** - A 

Put %,"*(*£ )**Jb£ ( * 0 ) , then there is a & such that 

}> Ĉ -) -* 0 • Consequently 

^ > S 4 ,^^) *0 * < ** *»M*»>»0 * * ^ 

which contrad icts to ( # )• 
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