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Commentstiones Mathematical Universitatis Carolinae 

14,3 (1973) 

ON SKEW LATTICES II 

Václav SLAVÍK, Praha 

Abstract: In the present paper prelattices are stu­
died and a method is given which enables to transfer some 
results of lattice theory on theorems about prelattices. 
As an application of this method some results concerning 
distributive and modular prelattices are given. 
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!• Preliminaries. An algebra % =- <X, A , V > is cal­

led a nest iff for all cu, Jly e M a, A J2K ~ a and cu vJb-s 

- Jlr. A skew lattice 931 is said to be a prelattice iff 

for all a,, Jly, c e .M 

(cv cu v Jlr) A (Jlrv a,) =s a, v Jlr , 

(a/ A-fr) V ( ^ A « / A C ) = & A a, . 

Evidently any lattice is a prelattice and any nest is a 

prelattice. M.D. Gerhardts proved ([33) that for a skew 

lattice to be a prelattice it is necessary and sufficient 

to be isomorphic to the direct product of a lattice and a 

nest. It is also known (f33) that the relation rv defi­

ned by 

a/ r>j fr i f f a< A & -=• A? A a, 
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i s a congruence re la t ion on any p r e l a t t i c e . If a*9 J2r are 

elements of a p r e l a t t i c e then a, rv $r i s equivalent to 

a/ v fa ss Hr v cu . One can e a s i l y show that i f WL i s a 

p r e l a t t i c e then Q3t i s isomorphic to ffit /== x M> / ' v 

( ttt>/m i» a l a t t i c e and 3 ? t / / v i s a n e s t ) . 

All the notations not defined below can be found in 

the paper [4J. 

2 . PreJjatUcee. 

2 . 1 . Proposit ion. The following two cond i t ions are 

equivalent for a skew l a t t i c e 7TL % 

(1) Every equivalence re la t ion on M i s a congruence re ­

l a t i o n on 101 . 

(2) Wl i s a nest or the two-element l a t t i c e . 

Proof. I t can be e a s i l y ver i f i ed that (2) imp l ies ( 1 ) . 

Let OT be a skew l a t t i c e of card ina l i ty at l e a s t 3 and 

suppose that (1) ho lds . We shal l show that a, *& Ar for 

a l l o>,ir c i t . The r e l a t i o n ®*M = -usLM u C-x,/^) u (ty,x) 

i s an equivalence re la t ion on M. and thus ®,x,.y- i s a 

congruence re la t ion on ttl . Assume that there e x i s t a, , 

ir 6 M such that a, 4=- a, A Jlr . Since (a, A Jtr9 JtrAjtr)e 

e 0ft. ir a n d U v ^ . ^ v J ^ J e ©a-Jer w e n a v e a> A ,£r -

= J?r and a- v $r ** a, . We can e a s i l y see that Jtr A a *=• 

«r A'A Co.* A ir) w 9r and 4 r v a « c i v (#- v a ) » a*. Let C be 

an element of .At di f ferent from a, and ,£r . Since 

(J& A cutJbA c ) e 0 a > c , (a/ vir", a* v c ) e &srfC
 an^L 

Hr A a SB %r > a,v Xr & a* , we get kr A C =• Xr and 

<*• v c B a . I t fol lows from Co/, ^ ) e 0 a , ^ that 
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( a v c , i r v c ) e Sf l , ,^ , i . e . ( a , c ) £ &a,fr 5 

t h i s contrad ict ion completes the proof. 

2»2« Corollary. A nest i s subd irectly irreducible i f 

and only i f i t has at most two elements. 

- • •3 . Theorem. A skew l a t t i c e W, i s a p r e l a t t i c e 

i f and only i f the re la t ion A/ i s a cbngruence re la t ion 

on Offl . 

Proof. I t su f f i ces to prove that i f rv i s a congru­

ence re la t ion on Tit then 7fi> i s a p r e l a t t i c e . Evident­

l y , i f rv i s a congruence re la t ion on 7lt then fflt/ru 

i s a nest . Let us denote the natural homomorphism of W> 

onto $ l / s and that of 921 onto Wl/rj by o> and 

p, , r e spec t ive ly . Define <p :-M—> &/& x M/n/ by 

m,cp s= (nrwi> , nth (U,) . The mapping g> i s i n f e c t i v e . 

Indeed, i f a^^AreM are such that a,g * Srg> then 

a, s Ar and a, <v Ar $ thus a - a A i r * i r A a. » ^ -

Since g> i s c l ear ly a homomorphism of fflt into WI/&. x 

x Wx^v , we get that Ml can be embedded into the pre­

l a t t i c e ^ / s x 33 t / ru . Thus #£# i s a p r e l a t t i c e . 

One can eas i l y ver i fy that g> i s an isomorphism of #£ 

onto W / s x ^0tXrv/ 

Given a c l a s s of l a t t i c e s K , denote by J ( X ) the 

c la s s of a l l p r e l a t t i c e s Klfl such that ^ / s e X . I t 

i s easy to show that J ( X ) i s the in tersec t ion of the 

c l a s s ff C.K ) and of the c la s of a l l p r e l a t i i c e s . A skew 

l a t t i c e belongs to 3 (X ) if and only i f i t i s isomorph­

i c to the d irect product of a l a t t i c e from X and of a 

nes t . I t i s evident that i f K contains the one-element 
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lattice then all nests belong to J (X ) . 

Since every subdirectly irreducible prelattice has to 

be a lattice or a nest, we have 

2*4 Theorem. Let X be a class of lattices contain­

ing the one-element lattice. Then the subdirectly irredu­

cible skew lattices from J (X ) are exactly the sub­

directly irreducible lattices from X and the two-element 

nest. 

Let XL , £C$L and "£pL denote the lattice of 

all primitive classes of lattices, that of skew lattices 

and that of prelattices, respectively. 

Since primitive classes of algebras are uniquely deter­

mined by their subdirectly irreducible algebras, we get 

2*5* Theorem. Let X be a primitive class of latti­

ces. Then X is covered by O C X ) in o6 S L • 

2-6* Theorem. The lattice ££PL is isomorphic to 

the direct product of o6L and of the two-element latti­

ce 1 . 

Proof. Let 2'« < < 0 , A \ •, 0 £ 4 > and define 

9 : L L x i 0,4 i —>LPL by 

(X,0)<j> ~ X , CX,4)9> » DCX > . 

Clearly <y is an isomorphism of £CL x 2 onto «££pL . 

3* Main results. The theory of nests and that of pre­

lattices will ne denoted by T N and T P L , respecti­

vely. A formula <p is said to be a consequence of a 
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theory T i f f g> i s s a t i s f i e d in every model of T . 

The se t of a l l consequences of a theory T i s denoted by 

Drv C T ) . If WL , 0t are skew l a t t i c e s then the na­

tural homomorphism of VL x 71 onto 7?L and that of 

731 x 7L onto 7L w i l l be denoted by ^ and 2 > 

respec t ive ly . 

The fol lowing theorem fol lows immediately from Theo­

rem 3 .8 and Theorem 3.10 of 4 . 

3 . 1 . Theorem. Let JC be an axiomatic (elementary) 

c l a s s of l a t t i c e s . Then the c l a s s 3 CX ) i s a lso axio­

matic (elementary). Moreover, i f X * .Mod CTL u T ) whe­

re T i s a theory then DCK) » M<*£ CTPLu T*) . If X. 

i s a variety (quasi-variety) of l a t t i c e s then 3 C K ) i s 

a var iety (quasi-variety) of pre la t t i ces» 

3 . 2 . Theorem. Let T-, , T^ be t h e o r i e s . We have two 

equivalent statements: 

(1) ModLC7Lu T , ) £ Jft<xiCTLu T a ) •, 

(2) J l o o l C T ^ u X*) £ HoxiCT^u T * > . 

Proof. By 3 .9 of [41 . 

A formula <p is called a J-formula if the following 

condition (J) holds: 

Whenever St is a lattice and whenever QtL is a nest and 

06 is a mapping of X into L x .N - the formula g? 

is satisfied by oc in <§£ .x 3t if and only if <p is 

satisfied by oc ^ in «££ . 

By the J-theory we meant a theory containing only J-
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formulas. 

3*3 . isSiffi§» A J-formula which i s s a t i s f i e d in the one-

element l a t t i c e i s a consequence of TN 

Proof, A J-formula which i s s a t i s f i e d in the one-e le ­

ment l a t t i c e i s s a t i s f i e d by every <?o i n the d i rec t pro­

duct of one-element l a t t i c e and of a n e s t , i . e . i t i s sa­

t i s f i e d in every nes t . 

3*4. Leggma.. Let <p be a formula such that the f o l l o ­

wing condition (H) holds : 

Whenever 3%4 - 1fl>% are skew l a t t i c e s and. oc, ia a mapp­

ing of X into JL,f x -M-i then cp i s s a t i s f i e d by oc 

in fflLj x ^2 *£ a n d o n l y ** y i a s a t i a f i e d by oc ^ 

in WtL^ and <p i s s a t i s f i e d by ct, % i n ffll 2 • 

Let cp be a consequence of TN . Than. <p ia a J-formu­

l a . 

Proof. I t i s easy to show that <p s a t i s f i e s the con­

d i t i on ( J ) . 

Since equations and quasi-equations s a t i s f y (H) and 

since they are s a t i s f i e d in the one-element l a t t i c e , we ha­

ve 

3»5» Proposition. Let g? be an equation or a qua s i -

equation. Then 97 i s a J-formula i f and only i f 9 e 

c Cm, CTN ) . 

3*6. Proposit ion. Let <pA , $>2
 b e J-formulas. Than 

-»<P<t > 9»4 & 9i 9 9* v 9a > <Pr — * ¥1 ^ J- foraulas . 

Proof. One can ver i fy without d i f f i c u l t y that the ne-
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gation of a J-formula i s also a J-formula. We sha l l now show 

that the conjunction of two J-formulas i s a J-formula. Let 

9<t y *Pi D e J-formulas. Suppose that a l a t t i c e & , a 

nest ^l and cc t X — • L x K are g iven. The formula 

<P-f &. 92 i a s a t i s f i e d by oc in o£ x 9t i f and on­

l y i f both formulas 9^ and g>2 are s a t i s f i e d by oc 

in SC x 2t . Since <p^ , <p2 are J-formulas, they are 

s a t i s f i e d by oc in & x *#l i f and only i f they are sa­

t i s f i e d by cc 4 in Ĉ . So we have that gfy & <p± i s 

s a t i s f i e d by oc in X x % *if and only i f g^ & <p± i s 

s a t i s f i e d by oc ^ in £6 . Thus the formula s a t i s f i e s 

the cond i t ion ( J ) . 

3*7. Proposit ion. Let g> be a J-formula and l e t x 

be a variab le . Then CYx ) <J> and C3x ) <p are J - for ­

mulas. 

Proof. We s h a l l show that C 3 x ) cf i s a J-formula. 

Suppose that a l a t t i c e «£ , a nest 0t and cc s X—> L x 

x K are given. I f the formula C 3 x ) <p i s s a t i s f i e d 

by «c in £6 x 7L , then there e x i s t s /S t X —> L x K 

such that o C /x \ - fx5 * /Sc^-Cxi an<* 9* * s Sfi,,t:-S~ 
f ied by (h i n & x tit . Since 3? i s a J-formula and 

P 1 /x \ ix 3 * °^ * /6c \ <x J w e £ e < t t n a t t n e formula 

( 3 x ) ^ i s s a t i s f i e d by oc ^ in ^ . Conversely, 

suppose that (3 x ) <j i s s a t i s f i e d by vc 4 i n <•£ • 

Then there e x i s t s /3 ; X —*- L such that 

*/X\<xl » ' / X v - f x i * ^ d y i s s a t i s f i e d by 

(I in «£ « I t can be eas i ly shown that there e x i s t s 
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<y:X—* L x # such that yx\<xl * /X\<*i 

and #- ^ » /& . Since 97 is a J-formula, it is satisfied 

by y in <Sf x 91 - This completes the proof. 

3*8. Theorem. Let ̂  be a lattice and let % be 

a nest. If <p is a J-formula., then 9? is satisfied in 

% x $1 if and only if cp is satisfied in «££ . 

Proof. It is evident that every mapping of X into L 

can be represented as the product of a mapping of X into 

L x -M and of the mapping ^ . Combining this fact 

with the condition (J) one can prove the theorem 3.8 with­

out further difficulties. 

Since every prelattice %fl is isomorphic to 

gjt/ss x ^?l/v , we have 

3«9» Theorem. A prelattice <#t is a model of a J-

theory T if and only if the lattice yfL/^s. is a mo­

del of T . 

3.10# Corollary. Let T be a J-theory. Then 

MedCT^u T*> - JdoctCT^u T> . 

If we combine Theorem 3.2 with Corollary 3.10, we get the 

following result. 

3.11. Theorem. Let T̂  , T2 be J-theories. Then the 

following conditions are equivalent. 

(1) Hod(?Lu TA ) £ NuocL CTL u T 2 ) ; 

(2) Jiod C TpL u T^) s Mod C TpL u Ta ) , 
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3*12. Theorem. Let X be a class of lattices and 

let i ££4, ; 'i/ e I ? be a family of lattices. We have two 

equivalent statements: 

(1) If at e X , then £C contains no sublattice isomor­

phic to some &^ ('lei) . 

(2) If 'Pi e d (X) f t h e n tyU contains no subprelat-

tice isomorphic to some of^ (i e I) 

Proof. Since every lattice is a prelattice it suffices 

to prove that (1) implies (2). Assume (1) and let 1PSL e 

€ O C X ) be such that some £4, (<v e 1) can be embedded 

into $t , It is easy to show that at4, can be also embed­

ded into 'OT/s . This contradiction completes the proof. 

3*13. Theorem. Let 3C be a class of lattices and let 

4 &<v ; i e l i be a family of lattices. The following sta­

tements are equivalent: 

(1) If a lattice ot has no sublattice isomorphic to some 

£+ (I € 1 ) 9 then X e X . 

(2) If a prelattice 'ffll has no subprelattice isomorphic 

to some %± (i e l ) , then "#& e J ( X ) . 

Proof. It is evident that (2) implies (1). Assume (1) 

and let W be a prelattice which has no subprelattice 

isomorphic to some ©£^ (•£ e l ) , Since 1$l is isomorph­

ic to fl^/s x Tfl/^y the lattice ^ / s is a sub­

prelattice of W- and so it cannot contain a sublattice 

isomorphic to some ££^ (-lei). Thus we have W / s e X 

and hence Wl e D (X ) . 
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*• D-rBtributive and modular orelattices. Using prece­

ding results we shall obtain in this section some generali­

zations of certain results concerning distributive and mo­

dular lattices. 

Trie class of all distributive lattices and that of all mo­

dular lattices will be denoted by JC-Q and X M , respec­

tively. 

^•1» Definition. A skew lattice 1f$l is called dis­

tributive iff for all cu , Jbr , c e & 

( J o ' v c ) A a / - = ( . # ' A a ) v ( c A a ) , 

a v ( i r A c ) = (a v J2r) A Ccu v c ) . 

One can easily show that the following theorem holds. 

4*2. Theorem . The following conditions are equivalent 

for a skew lattice TH : 

(1) K!H is distributive. 

(2) ftl is a weak distributive prelattice. 

(3) M belongs to O C X ) . 

••3» Theorem. For a prelattice to be distributive, 

each of the following conditions is necessary and suffi­

cient: 

(1) a A fix = a A c and custJbrs: a v c imply Ar « c . 

(2) Ĵ  A a « c A a and Sr v a « c v a imply ^ « c . 

(3) ir A a e. c A a and a v A ' - a v c imply Sbr ** c . 

•Proof. It follows from Proposition 3.5 that the fo l lo­

wing formulas <y. f zp <p„ are J-formulas: 
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%<* <(*,, A ^ = " ^ A ^ & ^ * * a » Xj VJC 3)—•*0^» 0<3 ) . 

Since each of these formulas is equivalent to the distribu-

tivity in the theory of lattices, each of the formulas 

<p <p% 9 qp is equivalent to the distributivity in the theo­

ry of prelattices as it follows easily by 3.lit 

4»4» Theorem* A skew lattice tyl is a distributive 

lattice if and only if for all a, JGT, C e J\l the condi­

tion (* ) holds: 

(*:) a A J ^ S O ^ A C and Ar v a *» c v a imply J2r -* c * 

Proof* It suffices to prove that every skew lattice 

satisfying the condition (# ) is commutative* Let t#t be 

a skew lattice satisfying (* ) and let a,#% c a J4 . Since 

a/A(J2rAa/J-= a> A ir -= ^ A - ( O - A ^ ) , 

( j ^ A a ) v a - » a =s(aA,£r)va/ , 

a A ( a v ir) -s O/ =» a A O v o>) , 

f a vJ8r)va/ =r J2rv a =r ( ^ v < ^ ) v a / , 

we have a A 8r = tor A a and a v ^ * i > v o ^ -

4»5« Theorem, A skew latt ice 03t i s distributive i f 

and only i f for a l l a , Ar, c c At 

(a A j { r ) v ( a A c ) v (Jtr A c)=r (a, VJ&-) A (CL v c ) A f # v c ) . 
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Proof. It is known that the equation 

( i ) (#4 A X^) V (0<4 A :X3> V (X2 A ^ 3 ) = (.X4 V X2) A 

A ( ^ V X 3 ) A (.X^ V*X3 ) 

i s equivalent to the distributivity in the theory of l a t t i ­

ces. Since the equation ( i ) i s a J-formula, i t i s equiva­

lent to the distributivity in the theory of prelattices. 

So i t i s sufficient to prove that every skew latt ice satis­

fying (i) i s a prelattice. Suppose that fflt, i s a skew 

latt ice satisfying ( i ) . It i s easy to show that for a l l 

a, J2r e il a v ( a A >&) =. a and ( £r v a ) A a -= a, . 

If a , Sbr^ e are elements of X , then 

(cv a VJ2K)A (J(rva)=cv (avW)A(cv£rva)A ( ( a v ^ v O i / a ) ) * 

= ( c A ( a v M v (cA(.£rva))v ( ( a v i r ) A ( J 2 r v a ) ) = ? a v i r . 

We can show similarly that 

(a/ A J&O v (Jlr A a A c ) = Sir A a . 

The proof is thus complete. 

The following theorem gives a characterization of pre­

lattices by their subprelattices. 

4-»6. Theorem* A prelattice is distributive if and on­

ly if it has no subprelattice isomorphic to the lattice 

on Pig. 1 or to the lattice on .Pig. 2. 

Proof. The theorem follows immediately from Theorem 

3*12 and Theorem 3.13. 
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Fig. 1 Fig . 2 

$ t i s ca l l ed modu~ 4»7 . Def in i t ion. A skew l a t t i c e V 

lar i f f for a l l a , JZr, c e M 

( i r v ( c A a ) ) A a = (XTA a ) v Cc A a ) , 

a v ( C a v c ) A i r ) - = ( a v c ) A ( a v ^ ' ) . 

The proofs of the following theorems are similar to 

the ones of the corresponding theorems about distributive 

prelattices and so they are omitted. 

4»8. Theorem. For a skew lattice W , the following 

conditions are equivalent: 

(1) ffll is modular. 

(2) WV is weak modular prelattice. 

(3) M belongs to JCK) * 

4*9. Theorem. For a p r e l a t t i c e to be modular each of 

the following conditions i s necessary and s u f f i c i e n t : 

(1) a A > r a - A C and a v fr « a v c and Sy & c 

imply Sbr =- c . 

(2) J2r A a -=- c A a and £r v a » c v a and $y & c 

imply &> -= c . 
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(3 ) J-TA a- m c A a> and o> v .ír = <xv c and Ar .é c 

imply Jo* » c . 

4 .10. I&ieorem. A skew l a t t i c e /30t i s a modular l a t t i ­

ce i f and only i f for a l l a>7^, c e M the following con­

d i t i on holds: 

a A Sly ST a> A C and & v a* -* c v a> and £r á& c 

imply j2r » c . 

4.11. Theorem. A preláttice is modular if and only if it 

contains ao subprelattice isomorphic to the lattice on Fig.2. 

•J 
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