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ON SKEW LATTICES II

Vdclav SLAVK, Praha

Abstract: In the present paper prelattices are stu-
died and a method is given which enables to transfer some
results of lattice theory on theorems about prelattices.
As an application of this method some results concerning
distributive and modular prelattices are given.,
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1. Prelimjnarjes. An algebra % =<N, A ,v) is cal-
led a nest iff for all a, &re N aAlr=ae and avd=
= Ar. A skew lattice 7. is said to be a prelattice iff
for all a, &, c e M

(ecvavdIA(val= av il |

(aA)vibAa AcCc)=c A a .

Evidently any lattice is a prelattice and any nest is a
prelattice. M.D. Gerhardts proved ([3]) that for a skew
lattice to be a prelattice it is necessary and sufficient
to be isomorphic to the direct pro&uct of a lattice and a
nest. It is also known ([3]) that the relation ~ defi-

ned by
o~ & iff a Al = A a
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is a congruence relation on any prelattice. If o, & are
elements of a prelattice then a A~ £ is equivalent to
avh =&v a . One can easily show that if W is a
prelattice then 991 is isomorphic to WL /= x W /v
(M = is a lattice and 9L~ is a nest).

All the notations not defined below can be found in

the paper [4].

2. Prelattices.
2.1. Proposition. The following two conditions are

equivalent for a skew lattice %L :
(1) Every equivalence relation on M is a congruence re-
lation on WL
(2) W is a nest or the two-element lattice.

Proof. It can be easily verified that (2) implies (1),
Let 71 be a skew lattice of cardinality at least 3 and
suppose that (1) holds. We shall show that a = & for
all a,& € M . The relation Ox,,,= by v (x,g) v (y,x)
is an equivalence relation on M and thus GN"V- is a
congruence relation on 9 . Agsume that there exist a ,
I € M such that @ % a A & . Since (a AW, I'Al)e
€ B, and (a vl Hv)e g0 wehave a A U=
=% and a v& = a . We can easily see that & A a =
=A@ AL)=% and Hva =av(ilva)=a.Llet ¢ be
an element of M  different from @ and £ . Since
(ha,Aac)ebqe, (avl,ave) e By and
ra=Lk,avl=a  ,weget Ac=24 and
@ vec = a,.Itfollows from (a, &) & Og 4 that
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(avec, rve)eBap », i.e. (a,c) €B8q,p ;

this contradiction completes the proof.

2.2. Corollary. A nest is subdirectly irreducible if

and only if it has at most two elements.

Z2.3. Theorem. A skew lattice WL is a prelattice
if and only if the relation A is a congruence relation
on N .

Progf. It suffices to prove that if A is a congru~
ence relation on N then 4990 is a prelattice. Evident-
ly, if A~» is a congruence relation on 9  then 9.~
is a nest. Let us denote the natural homomorphism of W
onto 9, /= and that of % onto M.~ by » and
@ , respectively. Define g: Mo M= < M~ by
mg@e=(m», mu) . The mapping @ is injective.
Indeed, if a, e M are such that ag = &g then
a=4 and a~ & ; this a=zaAab=lAra=2.
Since @ is clearly a homomorphism of %t into .= x
x MW~ , we get that 9%  can be embedded into the pre-
lattice M= x W~~~ . Thus 7! is a prelattice.
One cen eagily verify that ¢ is an isomorphism of ¥
onto M= < W/~ .

Given a class of lattices K , denote by J(X) the
class of all prelattices 9. such that %. = € X . It
is easy to show that J(X) is the intersection of the
clasa S(X) and of the clas of all prelatiices. A skew
lattice belongs to J(X ) if and only if it is isomorph-
ic to the direct product of a lattice from X and of a

nest. It is evident that if X contains the one-element
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lattice then all nests belong to J(K)
Since every subdirectly irreducible prelattice has to

be a lattice or a nest, we have

2.4 Theorem. Let X be a class of lattices contain-
ing the one-element lattice. Then the aubdirectly irredu-
cible skew lattices from J(X) are exactly the sub-
directly irreducible lattices from X and the two-element

nest.

Let & , &g, and &p.  denote the lattice of
all primitive classes of lattices, that of skew lattices
and that of prelattices, respectively.

Since primitive classes of algebras are uniquely deter-

mined by their subdirectly irreducible algebras, we get

2.5. Theorem. Let. X be a primitive class of latti-
ces. Then X is covered by J(X) in £g, -

2.6. Theorem. The lattice &£p is isomorphic to
the direct product of & and of the two-element latti-
ce 2.

Proof. Let 2 =<{£0,41% 5 0<1) and define
@ilx 40,43 —Lp by

(X,0p=X, (X, 1) = I(X) .

Clearly g is an isomorphism of &, =< 2 onto iPL .

3. Main regults. The theory of nests and that of pre-
lattices will ne denoted by Ty and Tp, , respecti-

‘vely. A formula @ is said to be a consequence of a
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theory T iff @ is satisfied in every model of T .

The set of all consequences of a theory T is denoted by

Cmn(T) . If W, N are skew lattices then the na-
tural homomorphism of 9L =< 21 onto 97 and that of
W o> N onta 71  will be denoted by 4 and , ,
reapectively.

The following theorem follows immediately from Theo-

rem 3.8 and Theorem 3.10 of 4 .

3.1, Theorem. Let X be an axiomatic (elementary)
class of lattices. Then the class J(K) is also axio-
matic (elementary). Moreover, if X = Mod (T _ v T) whe-
re T is a theory then J(K)= Mod (Tp  u T*) . 1f K
is a variety (quesi-variety) of lattices then J(X) is

a variety (quasi-variety) of prelattices.

3.2. Theorem. Let T4, T,  be theories. We have two

equivalent statements:

(1) Mod (T v T)) € Moo (T U T,) 3
(2) Mool (T, v T*) € Mod (T, v T*) .

Proof. By 3.9 of [4].

A formula @ is called a J-formula if the following
condition (J) holds:
Whenever & is a lattice and whenever 9! is a neat and
o¢ is a mapping of X into L = N , the formula @
is satisfied by o in & = 9 if and only if @ is
satisfied by o« 4 in & .

By the J-theory we meant a theory containing only J-
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formulas.

3.3. Lemma. A J-formula which is satisfied in the one-
element lattice is a consequence of T

Proof. A J-formula which is satisfied in the one-ele-
ment lattice is satisfied by every o« in the direct pro-
duct of one-element lattice and of a nest, i.e. it is sa-

tisfied in every nest.

3.4. Lempa. Let ¢ be a formula such that the follo-
wing condition (H) holds:

Whenever ¥, , %!, are skew latticea.and oc ia a mapp-
ing of X into M > M, then ¢ is satisfied by «
in W, =x %W, if and only if ¢ is satisfied by o
in 7, eand @ is satisfiedby o« , in W, .

Let ¢ be a consequence of Ty ., Then @ ias a J-formu-
la.

Proof. It is easy to show that @ satisfies the con-
dition (J).

Since equations and guasi-equations satisfy (H) and
since they are satisfied in the one-element lattice, we ha-
ve

3.5. Proposition. Let @ be an equation or a guasi-
equation. Then @ is a J-formula if and only if @ €
€ Cm (Ty) .

3.6. Proposition. Let @, ¢, be J-formulas. Then
N, ¢ &P, 9V Py, §—> P, are J-formulas.

Proof. One can verify without difficulty that the ne-
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gation of a J-formula is also a J-formula. We shall now show
that the conjunction of two J-formulas is a J-formula. Let
@Dy, Pa be J-formulas. Suppose that a lattice &£ , a
nest L "and o« : X— L =< N are given. The formula
o & @, is satisfied by o« in & = N if and on-
ly if both formulas ¢; and @, are satisfied by o
in & < 2 . Since @,, ¥, are J-formulas, they are
satisfied by o« in & = 2 if and only if they are sa-
tisfied by « , in & . So we have that @, & @, is
satisfied by oc in & > 9 -if and only if @, & @, is
satisfied by e« 4 in & . Thus the formula satisfies

the condition (J).

3.7. Propositign. Let @ be a J-formula and let X
be a variable. Then (Yx) @ and (Ix)g@ are J-for-
mulas.

Proof. We shall show that (3x)¢@ is a J-formula.,
Suppose that a lattice &£ , a nest 9t and < : X— L x
> N are given. If the formula (3x)q@ is satisfied
by « in &£ =< 2 , then there exista pg:X — L = N
such that */y\ (3 = B/ i and ¢ is satis-
fied by B din & = oL . Since @ is a J-formula and
A "/x\{‘xg = % "/X\{.xi we get that the formula
(I3x)eg is satisfied by « 4, in & . Conversely,
suppose that (I x) g is satisfied by o< 4 in & .
Then there exists 3 :X-—>1L such that

«
N ix3 = Bixsgxg and @ is satisfied by
f in & . It can be easily shown that there exists
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7: X—L =N such that 7/.7(\'(«} = /X~ x4

and ¥ 4 = B . Since @ is a J-formula, it is satisfied

by ¥ in & = M . This completes the proof.

3.8. Theorem. Let &£ be a lattice and let % be
a nest. If @ is a J-formula, then g is satisfied in
gL = N if and only if ¢ is satisfied in &£ .
Proof. It is evident that every mapping of X into L
can be represented as the product of a mepning of X into
L xN and of the mapping 4 + Combining this fact
with the condition (J) one can prove the theorem 3.8 with-

out further difficulties.

Since every prelattice @i is isomorphic to
M= =< M~ , we have

3.9. Theorem. A prelattice is a model of a J-

theory T if and only if the lattice W= is a mo-
del of T .

3.10. Corollary. Let T be a J-theory. Then
MooL(Tnu T*) = Mod.(TPLu T) .

If we combine Theorem 3.2 with Corollary 3.10, we get the

following result.

3.11. Theorem. Let T4, T, be J-theories. Then the

following conditions are equivalent,

(1) Mod (T v T,) SMod (T v T,) ;

(20 Mod (T, v T,) € Mod (T, UT,) .

- 500 -



3.12. Theorem, Let X be a class of lattices and
let { £, ;14 € I} be a family of lattices. We have two
equivalent statements:

M1 £ ek

phic to some £; (4 e I)

y then & contains no sublattice isomor-

(2) 1f 9 e J(X) , then 9 contains no subprelat-

tice isomorphic to some &:; (1 e 1) .

v
Proof. Since every lattice is a prelattice it suffices

to prove that (1) implies (2). Assume (1) and let L e

€ J(X) be such that some &£; (i € I) can be embedded

into 20 , It is easy to show that :,-8.; can be also embed-

ded into %1 /= . This contradiction completes the proof.

3.13. Theorem. Let X be a class of lattices and let
{££;,41 €1% be a family of lattices. The following sta-
tements are equivalent:

(1) If a lattice & has no sublattice isomorphic to some
£; (iel),then L eX .

(2) If a prelattice 77T has no subprelattice isomorphic
to some £; (¢ el) ,then W e J(X) .

Proof. It is evident that (2) implies (1). Assume (1)
and let N be a prelattice which has no subprelattice
isomorphic to some &, (4 € I), Since 7/ is isomorph-
ic to WL /= = MW/~ the lattice W /= is a sub-
prelattice of and so it cannot contain a sublattice
isomorphic to some &; (i € 1). Thus we have M /=€ X

and hence M e J(X)
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4, Distributive and modular prelattices. Using prece-
ding results we shall obtain in this section some generali-
zations of certain results concerning distributive and mo-
dular lattices.

The class of all distributive lattices and that of all mo-
dular lattices will be denoted by XK; and Ky , respec-
tively.

4.1, Definition. A skew lattice 1 is called ais-
tributive iff for all a, &, c e M

(rvedra = (LAa)vicaa) ,
avirac) =(av¥IAalave) .
One can easily show that the following theorem holds.

4,2. Theorem . The following conditions are equivalent
for a skew lattice 7 :

(1) W is distributive.
(2) 7 is a weak distributive prelattice.
(3) %1 belongs to J(K) .

4.3. Theorem. For a prelattice to be distributive,
each of the following conditions is necessary and suffi-
cient:

(1) aAfr=aAc and av&=avc imply & =c .
(2) LAa=cAa and F¥va=cva imply & = c .
(3) YAa=cAa and avd&=ave imply & = c .

Proof. It follows from Proposition 3.5 that the follo-
wing formulas Py Py Py aTE J-formulas:
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@ = (A sy =% A%, Bx v, =, v)—>x, = x;) .

@y = (XA Xy = X A Xy & Xpvdty= XV X)) —> X, = Xg)

Gy = (X, A X = X A Xy X VX=XV Xg) —> Xy = Xy) .

Since each of these formulas is equivalent to the distribu=-
tivity in the theory of lattices, each of the formulas

Dy Pas Py is equivalent to the distributivity in the theo-
ry of prelattices as it follows easily by 3.11.

4.4, Theorem. A skew lattice . is a distributive
lattice if and only if for all a,&,c e M the condi-
tion (%) holds:

(%) aAfFr=aAc and 'va=cva imply &L =c .

Proof. It suffices to prove that every skew lattice
satisfying the condition (x ) is commutative. Let 9L be

a skew lattice satisfying (% ) and let a,®,c e M . Since

aA(rAa) antr = anlaant) ,

(rAaldva= a =(aab)va ,

aAnlav ) a =aallvaea) ,

(1l

(av)va = ¥va=(valva ,

we have o A =M Aa and avd =Lva .

4,5. Theorem. A skew lattice 291 is distributive if
and only if for all a,®,ce M

laaIvianc)vrac)=(avlB)IA(ave) A(Rve) .
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Proof. It is known that the equation

(1) (M AX) Vv (XA XV (X5 A XG) = (X vXy) A
A X,V X3 A (.xzvxa)

is equivalent to the distributivity in the theory of latti-
ces. Since the equation (i) is a J-formula, it is equiva-
lent to the distributivity in the theory of prelattices.
So it is sufficient to prove that every skew lattice satis-
fying (i) is a prelattice. Suppose that % is a skew
lattice satisfying (i). It is easy to show that for all

a, el avian®k)=a and (&valaa =a .

If a,®,c are elements of M , then
(evavdIa(val=cviavd)alevlrvala (avb)v(bva))=
=(ealav D vicallrval)v (av&)a(bva)d)) =av & .

We can show similarly that
(arad)viraarne)= rAa .

The proof is thus complete.
The following theorem gives a characterization of pre-

lattices by their subprelattices.

4,6, Theorem. A prelattice is distributive if and on-
ly if it has no subprelattice isomorphic to the lattice
on Fig. 1 or to the lattice on Fig. 2.

Broof. The theorem follows immediately from Theorem
3.12 and Theorem 3.13.
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Fig. 1 Fig. 2

4.7. Definition. A skew lattice %% is called modu-
lar iff for all a,%,c e M

(rvicaaNra =(aadvicaa) ,

av{ave)Al)=(ave)al(av &)

.

The proofs of the following theorems are similar to
the ones of the corresponding theorems about distributive

prelattices and so they are omitted.

4.8. Theorem. For a skew lattice 43 , the following
conditions are equivalent:

(1) 9% is modular.
(2) 9 is weak modular prelattice.

(3) % belongs to J(K) .

4.9. Theorem. For a prelattice to be modular each of
the following conditions is necessary and sufficient:
(1) aAab=aAc andaoav&=avec and H<Lc
imply & = ¢ .
(2) HYAa=cAa andFva=cva and L<£c
imply & =c¢ .
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(3) Aa=chAa and av& =ave and & £ c
imply & =c .

4.10. Theorem. A skew lattice W{ is a modular latti-
ce if and only if for all a,®,c e M  the following con-
dition holads:

aAl =aAc and XYva = cva and & £

imply & = ¢ .

4.,11. Theorem. A prelattice is modular if and only if it
contains mao subprelattice isomorphic to the lattice on Fig.2.
ol
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