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ON GENERAL CONCEPT OF BASIC SUBGROUPS.II

Jindfich BEEVAR, Pavel JAMBOR, Praha

Abstrgct: The purpose of this paper is to continue
the investigation of basic subgroups begun in [1]l. As an
application, there is given the complete description of
cotorsion abelian groups and a description of homogeneous
separable groups in terms of subdirect sums. Further, the-
re is given a description of all the countable torsion-free
abelian groups in terms of interdirect sums of indecompo-
sable groups and a complete description of countable homo-
geneous torsion-free groups of the type ~ € £ ,) which
have the nonzero indecomposable direct summands oniy the
groups of rank 1.

Key words: Basic subgroups, direct summands, idempo-
tents, cotorsion groups, separable groups, decompositions
into indecomposable groups, superdecomposable groups, sub-
direct and interdirect sums, homogeneous groups, countable
groups and accessible groups.

AMS, Primary: 20K25 Ref. %. 2.722.1

O. Introduction. Essentially, this paper develops the
theory of basic subgroups as it was introduced in [1].
Throughout the paper a group G always stands for an abe-
lian group. Concerning the terminology and notation, we re-
fer to [3], 282, and [1], 745-746. By & and I; we
understand the set of all the direct summands of G and
the set of all the idempotents of Emnd (G)= Hom (G,G),res~
pectively. If He G , then H = {p € Ig; p(G)=H} .
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In particular, there is an equivalence relation ~ on
1g 5 which is given by f, ~ fr,) Ceesd> 44 €G)=1,(G).By
9.5, [3], 47, fy~ p, 6= J(f e End (6)){fy = fry+ pf(1-1, 3.
We shall frequently use the following notation:

<S>¥ - the pure closure of a set S c G ,

mGs(,ﬂ, elg ;£ (G) is a nonzero, indecomposable subsgroup?,
odom (£) = the domain of a homomorphism £ ,

Hf, (x),H%(x), T®(x) - the fv -height, generalized
height and the type of x e & in @ (if it cannot lead
to a confusion, we shall simply write M, (x), H(x) and
T(x)) .

N¢5,0) = the set of all types with components only 0

or oo .

It £ e Hom (G,¥), where G and W eare torsion-free,
then f is strongly regular if ¥(w e im(£€))3I(ge G){H(g)=

= H¥ () and £(g) = w i .

H is a quasi-superdecomposable subgroup of G if there
is no nonzero indecomposable direct summand of 6 in M .

By an order relation we mean the total order relation. For

convenience, we are going to introduce the following defi-
nition and proposition from [1], 746-747.

Definition O,1. We shall say that B is a basic sub-
group of a group G if
(1) B=<4@g;xe€A3> , where 0+ G« is an inde-

]

composable subgroup of G , for ¥(x € A) ,
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(i1) <465 c € X3> = Il G, and LG is a adi-
rect summand of G , for every finite Kc A ,

(iii) the family 4G, ;< € A} ies maximal with respect
to the conditions (i) and (ii).

The femily 4G, 3 cc € A% 1is called the basic sys-
tem of G corresponding to B .

Proposition 0.2. Let B be a basic subgroup of G .
Then
(0.2) 6=H@W, BcW implies that H is a superde-
composable group.

By (11,747, every group contains a basic subgroup B
and B =“J£.A (9% is a pure subgroup of @ . However,
the properties of basic subgroups are not so coherent as it
might be thought. For example, in the Specker group z"e .
7

(TN} )
le subgroup G of AL containing Z ° such that i«b’,

is not a basic subgroup and there exists a countab-

cannot be extended to a basic subgroup B = G ,deapite the
fact that G is free.
Similar constructions as we present here, are conside-
[}

red in [5] with respect to separable groups.

1. On guasi-bagic systemp. The proofs of the following

two propositions are straightforward and hence omitted.

Proposition 1,1. Let G be a group. Then the map

g: 66— 1g/ is a bijection.
H—- K
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Propogition 1.2. Let & be a group and A,B,C €
€ G . Then the following are equivalent:

(i) A=Be®cC ,
(i1) ¥(pehB) 31 (qeB)AlveClip=qg+nr and rg=07,
(iii) 3(peX)3(QeB)I(neC)ip=q+4r and g=03.

Proposition l.3. Let G be a group and g,x € 1g .

Then the following are equivalent:
(1) (g+n)el, ,

(ii) nrgq+qr =0 ,
(iii) xg = qr  and 2x¢ =0 ,

(iv) (n + mQ), (q + xq) and #q, are pairwise orthogo-

nal idempotents.

Moreover, % + #£q = 0 iff (q +x) and » are or-
thogonal idempotents. Furthermore, if G has no direct

summands isomérphic to Z(2), then (q+x)ely iff

QW = g = O

Proof. Obviously (i)<===> (ii) and (iii)
(1) ===> rg + qr g = qxrg + gr = o => (iii) ,

d (iv).

(iv) ==y (L +1@drq= 219 = 0 ,xQ(L+ rQ)=rQr +19=0,
(g+kqlrg = qrg+hqg=0 and (g+xq) (rL+rg) =
=QRr +Qrq + LgKr + kg =0 ==)(ii).

In view of (i) - (iv), the equivalence x + kg = o iff

(g'+ ) and x are orthogonal idempotents is trivial.
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If @ has no direct summand isomorphic to Z (2) we
can easily show that the condition (iii) implies xg = o .

q.Q.do

Remark 1,4. The last condition of the proposition 1.3
is necessary as it can be seen from the following example.
Suppose G = Z(2)®@ B , where f£:G —> Z(2) is the
corresponding projection. Then L+ =o0elg and £’ =

= %o .

Proposjtion 1.5. Let G - be a group, f € End (G) and
2', g els; . Then the following are egquivalent:

(1) {LQ:O 9

(ii) Q:'Vq'===>41«2'=c.

Definition 1.6. We shall say that ip eI ;cecld} is
an orthogonal (quasi~orthogonal) system of a group @ , if
<,fel,cc £ 3 implies f, fr, = 0 (if there is an

order relation =< on A , such that x,B3e A, x<f

’
implies fip fic = © ). In the following, we shall denote

it by 0S and Q0S, respectively.

Proposition 1,7. Every subset of Iz of any group 6
possesses a maximal OS and a maximal QOS with respect to
the inclusion.

Proof. The existence of a maximal 0S follows immedia-
tely by Zorn’s Lemma. As to a maximal QOS, consider a sub-
set J c Ig . Let 9L be the family of all the QOS in J .
Obviously 9 # @ , Suppose that {S, ;6 A3c L is

- 475 -




a chain with respect to the inclusion and denote by <«
an order on S,  making S, a quasiworthogonal system
of G ., Define the reflexive and antisymmetric relation X
on S auL{AS,‘, By a,b eSS, alklee (a=~0)or
(o = 0o and af % o ), and consider its transitive clo-

sure X =n§4 R™ , which is a partial order on S . For,

it is sufficient to show the antisymmetricity. If aX &
and &Xa , then I(fys-ers 4,8,y qm € S)  such that
akty, nRey, ..y pm R&, LRq ..., gmRa . Now, there
is BeA such that a, &, fry, cosfim ,Qqse» Gm € S and
@ Epp,Spe00 £3 flm 8 =5 @ L5000 S5 Qm Sp T -
Hence a ~ {r , Therefore, we can extend R into an order

< on S by Zorn's Lemma. If a < £, then fa + 0 imp-

lies af = o , hence &#Ra and consequently & < a, a
contradiction. Therefore S € L , is an upper bound of

4S.; ¢ eA? and the Zorn's Lemma implies the existen-

ce of a maximal Q0S in J . ﬁ.o.d.

Proposition 1.8. lLet S =‘(R‘,‘_e;[6;cc e€A? be a QS
of a group G . Then:
(i) For every finite X c A , there exists a Qs S, =
={ipelg,cell with fix ~ fuc, for ¥(x € A), such that
if,cecK? is 0S and p o pp=0, for ¥(xeA,BecK,
w % 3) . Further, (O arp, = O\ forp, and () Setrfr, = (Dhorps, o

(i) If & e W g , then B = <{p(G);c € A3> satisfies

0.1(i) and (ii). Moreover, if S is a maximal Q0S in ®g ,
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then B satisfies (0.2) and aQAm“ is a quasi-super-

decomposable suhgroup of & ..

(443) If BeA, Qu=(1-pz) e , for ¥(xeA,xc+pB),
and Q= fr5 then $;=4qcecIg;ceA? is a Qos,

where AL . (@)=Ll g (G), o (€)= 2«(6), ¥(xeA), and
M ke, = ) A o -

xeA
Proof. (i) Let K=4w,, .., 6,3 ¢ A , where o, <

<& 4<..<w, arein an order which makes S the QOS.
Define pi; = fo (41— fux,)ere (1=, ) TOT 00 < 0t 3 foug = Ao <1~
~fg e (- frg VPOT ;4 £ ¢ < o¢;,4=14..,m and put
17,; = f, otherwise. SK obviously possesses the desired

properties.

(ii) since S < W , the condition (i) implies that
B satisfies 0.1(i) and (ii). If S is a maximal QOS in
Mg and G=H®W , where BcW and M is an inde-
composable direct summand of H , then H=M@® H' and for
¥ (e A), W=1_(6) @ Wy icee, 6=MalX’ @ s ()@ W, .

Suppose that ¢: 6 —> M and @ : G —> 1, (G) are the
corresponding projections with respect to the decompositions.
Obviously q#, = 0 , for ¥(x e A) . Since 7, ~ p, ,
Q% = 0 , by the proposition 1.5. Therefore the maximal
condition on § yields M = 0 . On the other hand, if

D cﬁ&\/\ﬁwm«w is an indecomposable direct summend of G

and q € D  is arbitrary, we have .9 = 0 , for

¥#(x e A) . Hence, the maximal condition on S again

- 477 -



yiclds D=0 .

(1ii) S, is obviously a Q0S, for ¥#(3 € A) . For
the rest, it is sufficient to show that p, (G)® £25(G) =
= (@)@ p(G) , for ¥(xe A, x4 ) . By (i), £2,(6G) n

Npp6)=Qu(G) N f1,(G) =0 , provided that < % (3 . On
the other hand, the equality f;(9,4) + £, (go)=115(gs+ 14 (g ))+
+(1-np)ha(gy) - implies the desired result. ge.e.d.

The assertion 1.8(ii) enables us to introduce the fol-

lowing definition.

Definition 1.9. We shall say that B is a quasi-basic
subgroup of a group G if B =<{G. ;< €A?> , where
{6,; xeA3c & , and there is a maximal Q0S
{pe€Wgs; <€A} in W such that p, € G , for
¥(ox s A) . The family {G,; < €A} of subgroups of G

will be called the quasi-basic system of G corresponding
to B .

Remark 1,10, By 1.7 and 1.8, it follows that every
group possesses a quasi-besic system and any quasi-basic

system can be extended to a basic one.

Theorem 1,11, Let B =G, ;< &« A3 be a family of
subgroups of a group G satisfying O.1(i) and (ii), and
suppose there is at most countable number of such o ‘s
that G, is reduced, torsion-free. Then there exist S, =
-{méme;asAi and S, =4{gc € Mg;x €A} such that
(i) S, is QS and 4, .G, ,¥(xeA) ,

(i1) S, is 0S and ¢ (@)X G, , ¥(x eA) ,
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(iii) If @ is either torsion or divisible then g, =
= e s
(iv) «%LA Qe (G) =“Je.LA,fz“(G) =¢JELA G, »

(v) M frp,, -deAﬂwui‘ .

<6 A

Moreover, if J3 is a basic system, then g, (G);x e A}
is again a basic system, corresponding to the basic sub-
group B= Ul G, S; and S, are maximal QS’s in W

and S, is a maximal 0S in W -

Proof. Write P =48 smelN3L{G;x e N, 3 U
uiG ;e e.A23 , where G, is reduced, torsion-free, for
¥(meN); Gy is divisible, for ¥#(x e A;) and G,
is reduced, torsion, for ¥ (e« € A,) . By 1.5 and 2.5,[1],
748 and 756, there is a disjunct decomposition Az’-'g.;'o An,i

such that

6=1 G o L Ge..el GCoW, =L GoW,

1 wehyy <ehm ™ €Ay
and W,,, Dn"éLN G% , for ¥(m €N). Hence we have an
orthogonal system S’ =A{x e @ ;ocecAUuA,7 where x e
e G, , for ¥(« €A,uA,) and we can write

e
= . OW) (melN) .
G= 1 G @a"il'/\,,f“e .@“.sz’f‘@ AL, G;@W,, for ¥(me

o
«.GA,,

Put Pinm € G; , for the corresponding projections of this
decomposition, for < = 0,...,m . If we define f1,,= fip , 5
for ¥ (m e IN) , we get the desired system S, = s* v
vif,sm e N$ (use the proposition 1.5). Now, define
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Sy=S’0ig,;m e N3, where @, = (1-p,) e (1-f204)02, ,for
¥(m & N) . Similarly as in the proposition 1.8(iii) we
can show %ﬁi(é)za’_ﬁ;%(@, 9n (G) = G, , for ¥(melN)

and consequently S, is an0S in Wy . If B is a ba-
sic system then {9 (G);x e .A§ is obviously a basic sys-

tem corresponding to the basic subgroup B:u.lé.,‘ Go . Ac-

cording to 1.8(ii), S, and S, are maximal Q0S’s in g
and consequently S, is a maximal 0S in 7¢; . The case,
when the direct sum of all the G, ‘& which are reduced,

torsion-free is a direct summand of G , can be treated by

the same way. g.e.d.

Corollary 1,12, Every countable basic system is a qua
si-basic one.

Proposition 1,13, Let B =1G,; x « A} be a basic
system of a group ¢ such that either A'= fce A; G

is not alg. compact ¥ is countable or x‘léL/\' G, is a direct

summand of G ., Then Jf3 is a quasi-basic system,

Proof. In both cases we can obviously construct a qua-
si-orthogonal system S, = {x, € Wg; x e A’} , such that
Ag € Gy , for ¥(x 6 A’) (if IN') 4 8, , uae S, from
the theorem 1.11), Suppose that S is a maximal QOS in
&EA [} containing S, (the existence follows from 1.7).
Since § can contain at most one element from each G, ,

« eA , wehave S={fni,eW;, xel'c A3, where pn ¢

§ G ,for ¥( € I') . Suppose that 3 € ANT and wri-
\J Y : Py
te B:d_léLA G, . Since Bz.‘.l.‘l.AG,‘ is pure in G ,
<#p
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Ga= BB’ is pure in G/B’ and since G5 is alg.
compact (A'cTI') we have G/B'=(B/B’)® (G'/B’) and
consequently G =G, ® G’ , where B'c G’ . Let g¢:

: G —> Gp and @ : G —> G, be the corresponding
projections with respect to the decompositions G= G,, ®
@G, DGy , for ¥(c € ') . Since M ~ -, and QM =
=0 , for #(ec €I") ,we have gz, = 0 ;, for ¥(x eT)
by 1.5. Therefore it contradicts the maximality of S in
U, Gy and consequently T = A . On the other hand,

<€A

S is a maximal QOS in %, 8since any extension of S

in Mg would contradict the meximality of & by the pro-
position 1.8(ii). q.e.d.

Corollary 1,14, Let G be a group having the indecom-
posable direct summands only the alg. compact groups. Then
BcG is a basic aubgroup iff B is a quasi-basic sub-
groups

Proof. With respect to 1,13 it is sufficient to prove
that every quasi-basic subgroup is a basic one, but it im=
mediately follows by 1.6 [1], 750 and the proposition 1.8
(ii). q.e.d.

Theorem 1,15. Let {G; o« € A3 be a quasi-basic sys-
tem of a group G . Then there is a quasi-superdecomposable
subgroup H of G such that for every finite K ¢ A ,6/H
is isomorphic to a subdirect sum W of {§;xe€A} and

w
g G«

Proof. Suppose that S={ip e M;;ce L3 is a ma-
ximal Q0S in WM such that p, 6 T, , for ¥(xeN) .
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Then H=‘OAW,° is a quasi-superdecomposable subgroup
of G by 1.8(ii). If X ¢ A is finite, define Sy =

={if, ;cs A} as in 1.8(i). For the rest it is sufficient

to consider the homomorphism ¢ : G —_>¢7¢T/\ G, given by
g—= (., (g ))gep , 8ince 9’4_11“ Coc is the iden-
&

tity homomorphism and %evqg =H , by 1.8(i), g.e.d.

Corollary 1,16. Let G be a group. Then there is a
basic system {Go ;e e A3 of G and a quasi-superdecom-
posable subgroup X of G such that G/H is isomorphic

to a subdirect sum of {G ;<€ A3 .

Corollary 1,17. Let & be a homogeneous separable
group. Then for every quasi-basic system {G ;< € A3 of
G and for every finite K c A , there exists a monomor-

phism g: G———:‘II'AG‘,< such that @ (@) is a subdirect sum
of {G 3¢ €A} and SP/_j_LK Gx is the identity homomorph-
x e

ism. In particular, G, are pairwise isomorphic groups of
rank 1 . Moreover, if |A|l =4, then @ can be chosen in
such a way that @ (G) is an interdirect sum and

%1l Gw is the identity.
<eA

Proof. According to 1l.15, it is sufficient to show that
H=0. For, G/H |Dbeing torsion-free implies that H is
a pure subgroup of G and consequently x € X yields
{x>*c H . Now, since H is a quasi-superdecomposable sub-
group of G, X = o by 49.4 [2], 178, and similarly

G,c ‘s must be pairwise isomorphic groups of rank 1 . If
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IAl= &, , then the proofs of 1,11(ii),(iv) and (v) im-
ply the desired result, g.e.d.

Corollary 1,18. Every separable homogeneous group is
isomorphic to a subdirect sum of a system 1G, ;o € A3 ,whe-
re Gy are pairwise isomorphic torsion-free groups of rank

1 .

Corollary 1,19. Every reduced, cotorsion and torsion-
free group is isomorphic to a subdirect sum of (possibly
nonisomorphic) groups of 4 -adic integers.

Progf. With regard to 1.15 it is sufficient to show
that X=0.Since G/H is torsion free, reduced, H is pure
alg. compact and hence by 40.4 [ 3], 169, H= 0 . q.e.d.

In view of [1] we can improve the result and since eve-
ry reduced cotorsion group is direct sum of an adjusted and
torsion-free, cotorsion group, the following two theorems

give the complete description of cotorsion groups.

Theorem 1,20. The group G is reduced torsion-free and
cotorsion iff there exists a family { Gy ; x € A3 of groups
of f -adic integers such that G is isomorphic to a mini-
mal direct summand E of “'ll' A G containing °‘_.lél.,\ G

and E/«, _é.LA ds is divisible, torsion-free.

Proof. Obviously, it is sufficient to prove only the
necessary condition. Let G be a reduced torsion-free and
cotorsion group and B =< G“', < el? be s« basic system

of G . By § 41 [3], the pure-injective hull E °f¢J}AGx

: ﬂ- . s . . 2 -
in T, G, is a minimal direct summend of JT, 6« contain

- 483 -



ing ‘.l‘.LA G« and E/«Jé",\ G is torsion-free and divisib-
—

le. On the other hand, E = ‘,‘%A G.) and 1,12 [1], 753

implies the desired result. g.e.d.

Theorem 1,21, Let G be a reduced cotorsion group.
Then G is adjusted iff there exists a family 4G ;e A ¥
of cyclic groups of prime power orders such that G./ ¢1 is

isomorphic to the least direct summand E of n.TLKE '.B,,,L, m
m €N

containing .CJEJ.A G, , Wwhere B“"'ﬁd'}/\mf“ s A=t

Gy = Z(p™3 and JKB=“"€P5(‘£—AG4)1»* D3 , eand
E/‘eA G, is divisible.

Proof., It is easy to see that by 2.9 L[1], 760, the
least direct summand of TI B, , containing w_l}/‘ G 1is the
adjusted part of "(TB“,,,,_ . If G has a torsion-free direct

summand F , then since G? is fully invariant, €' n P =
=F1 =0 and it would contradict the hypothesis that G /G
has no nonzero torsion-free direct summand. Hence G is ad-
justed. Conversely, if B =1{G,; < s A3} 1is a basic system
of @ and @ is adjusted then G./G? is isomorphic to
a direct summand E of TMBy , containing “%A G, by
2.7 [1], 760. Moreover, by [1], 751 and 756,(:“/«;"0“.1ELAG¢)3’
=4 E{‘.LLAG‘, ig divisible. Hence E is an adjusted subgroup
e .
of TTIB‘,,,,,,‘ . For, E is obviously reduced and cotorsion
and if E = FPeo W , where F is torsion-free and reduced,

then .‘J&LAG‘C E,cW and 2‘1'1."6.,)/1 F =0 . Since
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E{CJQLAGxg Fo (WL, 6.) is divisible, F= 0 . By
55.5 (3], 238, MB, ,=A®C , where C is uniquely
determined adjusted part of M Bj,n such that (TTBM,L),‘C

cC,C/(MBp,m)¢ is divisible and A is torsion-free,
cotorsion. Therefore C is a fully invariant subgroup of

MTBp,n and a minimal direct summend of M Bp,n con-
taining “Jé_,‘ G by [1], 760. In fact, the uniqueness of

the adjusted part implies that C is the least such a di-
rect summand (it can also be seen from the following text).
Now, ifT\'Bp,n_=E©W, then C=(CAnE)® (CA W)

£

and sincngeJ_AG,c CAE and C is a minimal direct summand

containing ‘_éLA G, CcE and E=C®(AAE) . On

the other hand, E being adjusted implies AAE =0 and
consequently E = C . q.e.d.

2. The accessibility of groups.

Definition 2,1. We shall say that G is an accessible
group if there exists a basic system {Gy ;oce€A$ of G

and a homomorphism £:G ———->"IIA Gx (called the accessible
homomorphism) such that

(i) Ref  is a quasi-superdecomposable subgroup of G ,
(ii) £(B) =‘J&LAG“ )

(iii) Rwf "B =0 ,

where B =<{G ;xeA3) .
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Theorem 2.2. Every group which possesses a basic sys-
tem containing at most countable number of reduced torsion-
free groups is accessible. Moreover, there is an accessible
homomorphism for every such a basic system.

Proof. By 1.11 there is a basic system {G,;cc & Af and
an orthogonal system S={q.e€ @, < € A} such that

Qe € G« 8and S is a maximal QOS in @ g . Hence the map

£:6 —> “TL‘ G
g (gu (g ))xeA
is the desired accessible homomorphism by l1.8(ii). q.e.d.

Proposition 2,3, Let G be a group. Then for every

basic system {63 <€ A? of 6 and for every automorphism
¥ of B=<{G ;cce A}) there exist disjoint subgroups
A and X of G and a homomorphism g::A@K-——-:‘TeTA G

such that

(1) BecA ,

i) Yp=v ,

(111) kex @ = X

(iv) 6/(A®@ X)) is torsion,

(v) if 6/A is not torsion, then T, G,./¢ (A) is tor-
< €eA

sion,

(vi) 1f 161 =1A) = &, and 6 is torsion-free, then
K = 0 .

Proof. Let 9 Dbe the set of all the monomorphisms £
into “'I;I'A G, such that Bcodom(£)ec G and £/B= v .
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Define A =dom(g),where g is a maximal element of 9L
by Zorn’s Lemma and by K denote an A -high subgroup
of 6. Now, put g:Ae®X— T G

(a, R)+—> g (a)
Obviously, it is sufficient to prove only (v) and (vi).

For, it both G/ A  and T\ 6 /9 (A) are not torsion,
then the homomorphism g  is not a maximal element of %
contrary to our hypothesis. The conditions of (vi) imply that
TAGx /@ (A)  is not torsion (otherwise it would yield
a contradiction with the cardinality of “TL\ Go ), there-
fore by (v), G A is torsion and consequently X = 0 .
qee.d.

Theorem 2.4, Let {G 3 x €« A3 be a basic system of a

countable torsion-free group G . Then there exist subgroups
H and A of G such that

(i) H is a quasi-superdecomposable subgroup of G ,
(ii) G/H is isomorphic to an interdirect sum of.

{63 xce A ,

(iii) B=<464; x € A3> c A and A 1is isomorphic to
an interdirect sum of {6, 3 x € A% ,

(iv) G/A is either superdecomposable or torsion.

Proof. If B is a direct summand of G, define A= 3B
and for H put any direct complement of A which is su-
perdecomposable by O.2. Hence we can assume that B is not
a direct summand of G . Put H = %kwof , where £ is the ac-

cessible homomorphism corresponding to {Gy ;xe€ A3 by
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2.2 and construct A as it was done in 2.3. g.e.d.

Corollary 2.5. Let G be a countable torsion-free
group. Then either G is a direct sum of a superdecompos-
able subgroup and indecomposable subgroups of G or G is
the pure closure (in & ) of an interdirect sum of a ba-
sic system of G and there is a quasi-superdecomposable
subgroup ¥ of G such that G/H is isomorphic to an

interdirect sum of the basic system.

Lemmg 2,6. Let G,X  be torsion-free groups, @ :
:G—> X an epimorphism and @ & X . Then the following

are equivalent:

(i) Ilx s g (@N{Hx) =H(a)} ,
(ii) ¥ (b e<ad3(ype o (LN iH(g)=H(B)} ,
(ii1) ¥ (b e<ad>®3(y e g (ANLT(y)= T2} ,

(iv) a=mb, meZ=>3(ygeg (LNT(y)=T®)3 .

Proof. (i) ==> (ii). Let & e (a>* i.e. there are m,
m & Z such that-m&=ma.By (i), there ia x € q“(a,)
such that H(x)=X(a).Hence there exists 4 € G such that
mx =my . For, m divides ma and since H(na)= H(mx),
m must divide mx as well. Now, m (%)= ma=mit and
consequently @(y)= & , and H(mgy) = H(nx)=H(na)=H(m&)
implies H(gy) = H (&) .
(ii) == (iii) == (iv) is obvious.
(iv) =5 (i). By (iv) we can assume that there is a ecid(a,)
such that T(y)=T(a) and since H(y4) £ H(a), there is
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ms 4»:1 p*: such that H(mgy)=H(a). Put m = 41,1;‘ ,fu:_"' R

where £;= J{m_(cv)< 0, for “=4,..,0. (Hp. (@) < o,

4 =4,..., & , since otherwise this particular p; would be
missing in the prime decomposition of mm ,a contradiction).
Then there is & € X  such that m& = a and by (iv)
there ia z € ¢"%(#) and t € N* such that H(tz)=H(®).
Since }{,.aur)= 0, for +=4,..., 2 ,(t,m)=1 and there

are £,»e Z such that tw + m2» = 4. Put x=tumx +mvy .
Then @ (x) =(tw+mv)a = @ and H(a)=H(@mL)= H(mtz)&
< H(Mtuz) eand H(a)=H(may)< H(mewy). Hence H(a) <
«H (Mtuz)nH(mwy) £H(x) . The converse H(x) « }(a)

is trivial. q".d.

Corollary 2.7, Every accessible homomorphism of a tor-
sion-free, homogeneous group G is strongly regular.
Proof. Let {6 ;< € A¥ Dbe a basic system correspon-

ding to a basic subgroup B of 6 and g:G—> G =W

ecTIA
be an accessible homomorphism. Consider an arbitrary 0 # x =

=(Xg)ep € P(G) and an 4 € g%x) . Obviously T(y) <

< TQ‘G)(x)

and there is « € A , such that x .3 0 « De~
note by X = (cer) 0,000, Xgy -0y 0,.00) € AL 6 . Since
%, € @ (G), there is W, € "X )nB and H(L)=H"Z ) >
=1 x) 2]{"’(6’(3() . Since G is homogeneous, T(eg-)zT(atg)z

ZTQ(G)(,X) . Qe€.d.
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Theorem 2.8. Let G be a separable, homogeneous
group and H be a countable homogeneous subgroup of G
of the same type v &8 G, Then i is completely decompo-
sable.

Proof. Let S be a pure subgroup of H of the finite
rank m . According to (2], 174, it is sufficient to prove
fhat H/S is homogeneous of the type * . Denote by S*
the pure closure of S in G , which is again of the rank
m ,Obviously S c H n S* . Conversely, if S» e Hn S*  then
there is m € Z and »e€ S such that mf = 5 and
since $ 1is pure in H, & €S ,i.ec S=Hnn S* , Since
(H+S$*)/S*Z /S , all we have to show is that H + S* is
homogeneous of the type = . For, by [2], 178, G= S*@ W
and consequently X+ S*= S*@ (Wn (H+ S*)) . Hence ({+ S*)/S*=
X WA (H+8%) and if ¥ + S* ias homogeneous of the
type ¥, H/S is also homogeneous of the same type = .
Now, if o x € (H+S5*) Xx=f+ 4 , then = = TG(-‘x) =

2 T 2 ™) A T = =, g.e.d.

Theorem 2.9. Let G be a countable homogeneous, tor-
sion-free group of the type ¥ € .0.‘0,4,) and suppose that
{6,;me N1t is a basic system of G such that x(Gnp)=1.
Then G is isomorphic to a direct sum of a completely de-
composable homogeneous group and a superdecomposable group.

Proof. By 2.2, G is accessible and there is an ac-

cessible homomorphism f£: G — Ty Cm which is strong-

’
ly regular by 2.7. Since MT‘TN G,  is homogeneous, sepa-

rable group ([41, 338), and X = £(G) satisfies the con-

- 490 -



ditions of 2.8, H is completely decomposable, i.e. we

can write M =“IL4 Hn , where r(Hp)=1 and X, are

pairwise isomorphic groups of the same type as G . Since

oo
e f is a pure subgroup and G/koof %”L_LI?H,,, y Seerf
is a direct summand of @ by [2], 164. g.e.d.

Corollary 2,10. Every countable, torsion-free and ho-
mogeneous group of the type 2 € 11(0¢v) having the non-
zero indecomposable direct summands only the groups of rank
1 is a direct sum of a completely decomposable and a super-

decomposable group.
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