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Commentstiones Mathematicae Universitatis Carolinae 

14,3 (1973) 

ON GENERAL CONCEPT OP BASIC SUBGROUPS.II 

Jindřich BEČVÁS, Pavel JAMBOR, Praha 

Abstract: The purpose of this paper is to continue 
the investigation of basic subgroups begun in til• As an 
application, there is given the complete description of 
cotorsion abelian groups and a description of homogeneous 
separable groups in terms of subdirect sums. Further, the­
re is given a description of all the countable torsion-free 
abelian groups in terms of interdirect sums of indecompo­
sable groups and a complete description of countable homo­
geneous torsion-free groups of the type * e Si(0f<3O) which 
have the nonzero indecomposable direct summands only the 
groups of rank 1. 

Key words: Basic subgroups, direct summands, idempo-
tents, cotorsion groups, separable groups, decompositions 
into indecomposable groups, superdecomposable groups, sub-
direct and interdirect sums, homogeneous groups, countable 
groups and accessible groups. 

AMS, Primary: 20K25 Ref. 2. 2.722.1 

0» Introduction. Essentially, this paper develops the 

theory of basic subgroups as it was introduced in [11. 

Throughout the paper a group <? always stands for an abe­

lian group. Concerning the terminology and notation, we re­

fer to [33, 282, and [1], 745-746. By <& and Ig we 

understand the set of all the direct summands of G and 

ths set of all the idempotents of IsnoL CG)*- Hom,«j9G)9res­

pectively. If H e <fi , then H m 4jp m lQ * +, CG) M H} . 
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In particular, there is an equivalence relation <v on 

Ig. , which is given by 4*, <v >fx.a<--.-«> ̂  C G)sr^C(?).By 

9.5, [33, 47, 41^^^a«--—> 3 Cf € b*icL(G))<4P2** fy+p^fd-ty)]. 

We shall frequently use the following notation: 

< S >* - the pure closure of a set S c G 9 

0 **i*u e IQ ;>̂ CGr) is a nonzero, indecomposable subgroup], 

dUynv (£) - the domain of a homomorphism £ , 

H£c*},J£6'f*), T^Cx) - the ^ -height, generalized 

height and the type of x e d in 6 (if it cannot lead 

to a confusion, we shall simply write Jf^C-x), H(x) and 

TC*)) , 

-&(o,x>) ~ the set of all types with components only 0 

or oo . 

If £ e Kxym, (S^) , where <? and TV are torsion-free, 

then £ is strongly regular if *f(<ur e <*vm,C£ ))3C^€ G)iK(g,)» 

m jj-UwCO^j a n d ^ r^) . ,^} . 

Jl is a quasi-superdecomposable subgroup of 0 if there 

is no nonzero indecomposable direct summand of Q in If . 

By an order relation we mean the total order relation* For 

convenience, we are going to introduce the following defi­

nition and proposition from Tl3, 746-747. 

Definition 0»1» We shall say that B is a basic sub­

group of a group 6 if 

(i) £ - » < { 0 > « } « e A 3 > , where 0 + 0«, is an inde­

composable subgroup of 6 , for YCoc « A ) > 
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(u) < ^ ) * c x j > *<*#•*0* and « - y - K * * i a * d i " 

rect 8ummand of G , for every finite X c A , 

(iii) the family < ̂  j et • A ? is maximal with respect 

to the conditions (i) and (ii). 

The family < G^* cc e A J is called the basic sys­

tem of <S corresponding to B . 

Proposition 0.2. Let B be a basic subgroup of G . 

Then 

(0.2) ( 5 i K © ¥ , B c TV implies that H is a superde-

composable group. 

By 1.13,747, every group contains a basic subgroup B 

and B * 1L £«. is a pure subgroup of 0 . However, 

the properties of basic subgroups are not so coherent as it 

might be thought. Por example, in the Specker group Z * , 

Z ° is not a basic subgroup and there exists a countab­

le subgroup G of 2 ° containing Z ° such that A * 

cannot be extended to a basic subgroup B * (? ? despite the 

fact that <Z is free. 

Similar constructions as we present here, are eonaide-

red in [51 with respect to separable groups. 

1. On quasi-basic systems. The proofs of the following 

two propositions are straightforward and hence omitted. 

Proposition 1.1. Let <$ be a group. Then the map 

c/ : 4J —— » • -G-/^, ia a bi/jection. 

Ki **H 
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Fr9P9gl14oi Xt2« Let <? be a group and A , B , C € 

€. Cf , Then the fol lowing are equivalent: 

( i ) A - . B 0 C , 

( i i ) V(#,GI) 3 ! C j € B ) a UH,B £Mf i> - -$ + A and ^ * o ? , 

( i i i ) 3(p, e J ) 3 C $ e 3 ) 3(*> eZ) if,** % + * ami * .£=-o} . 

Proposition 1.3. Let G be a group and j,/c e I .- . 

Then the following are equivalent: 

( i ) C<j,+ A , ) c I & , 

( i i ) /to^ + ojfc -=- o , 

( i i i ) /t,£ « q/t, and 2/tvt̂  — o , 

(iv) (H, + *><i) 9 (% + ^q) and H,O^ are pairwise orthogo­

nal idempotents. 

Moreover, x, + H, q,•» o iff ( ô  + A-) and A> are or­

thogonal idempotents. Furthermore, if S has no direct 

summands isomorphic to Z C 2 ) , then (<i + /c)e Ig. iff 

QJC/ ss A,^ » o . 

Proof. Obviously (i)<-*-*-=--*> ( i i ) and ( i i i ) =====.-> ( i v ) . 

( i i ) - > / t^ + ô /t, <̂  » £ * £ 4. ^ » o .=-====> ( i i i ) , 

( i v ) -"==-.-«> C/tV + *>$,) * - £ « 2 /t£ * O , *•£ (H, 4- *oO sr A ĝA- 4-^£s- O, 

C<k+ H,<^) H,% « $,A*fc + A £ * o and C<£+ * .£ ) C/c + / t^) -

ar fc/t + ijA.^ + A,$A, + /t> £, -= O « a > ( i i ) # 

In view of (i) - (iv), the equivalence x, 4- « £ .=- o iff 

(o^+ A,) and x.- are orthogonal idempo tents is trivial* 
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If Q haa no direct summand isomorphic to Z (1) we 

can easily show that the condition (iii) implied fc£ « o • 

q.e.d. 

Remark 1.4. The laat condition of the propoaition 1.3 

i8 necessary aa it can be seen from the following example. 

Suppoae (3 = ZC2) © B , where Jfit G —*> ZC2) ia the 

correaponding projection. Then ^ 4 - f s o 6 Ig. and $ • 

« & * o . 

Propoaition 1.5. Let G be a group, #, e h<ruLC&) and 

£', »j « 1^ , Then the following are equivalent: 

(i) fr<i » o , 

(ii) oj ~ <£ =-«.--> .fi,^ » o . 

Definition 1.6. We ahall aay that i 41^ c I& « cc 6 A } ia 

an orthogonal (quaai-orthogonal) ay a tern of a group 0 , if 

«&,/$ c A , to 4» /3 implied -fofr'f̂ a m ° (i* there i8 an 

order relation -£ on A , auch that oc, /3 e A , oc -< /3 

impliea ^a^^ « o ). In the following, we ahall denote 

it by OS and QOS, respectively. 

Propoaition 1.7. Every aubaet of I & of any group 6? 

poasesaes a maximal OS and a maximal QOS with reapect to 

the inclusion. 

Proof. The existence of a maximal OS follows immedia­

tely by Zorn'a Lemma. Aa to a maximal QOS, consider a aub­

aet J c Ig. . Let 91 be the family of all the QOS in J . 

Obvioualy 01 4- 0 . Suppoae that i S^ ; xc « A 3 c 3L ia 
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a chain with respect to the inclusion and denote by -£<*, 

an order on £„-, making £-*, a quaai-*orthogonal system 

of & . Define the reflexive and antisymmetric relation H 

on S *» JUA St*, by a,, Ar e S , a,Jlir <-=-> (a, » Xr) or 

(ira^ » o and air* 4. o ) , and consider its transitive clo-
— CO 

sure JL » \j. &m' , which i s a partial order on S , For. 

i t i s sufficient to show the antisymmetricity. If a,Xb-

and JbrJLa, , then 3(yft^t*^>^nl,^,...,<i^K€ S) such that 

tt^^i-flj*^; — * ih>*frf *>-R<l4,-<f i^R<^ • Now, there 

i s |3€.A such that 0 / , ^ ? ^ , - - - j ^ , ^ v--> &m e ^ and 

*- ~l> ^ ~/3 — *fi *-<» *fib *fi I* ~/3 "< ^0 <2<m> *» * ' 

Hence cu * Sbr , Therefore, we can extend K into an order 

^ on S by Zom's Lemma. If a, <r Jlr, then jlra, 4= o imp­

l i e s a,£r sr o , hence frXa, and consequently Jfr £ a, , a 

contradiction. Therefore $ € 2t , i s an upper bound of 

4 S^ 5 06 e A ? and the Zom's Lemma implies the existen­

ce of a maximal QOS in J < q.e.d. 

Proposition 1.8. Let S «? -CJ^ e 1^ • cc e A ? be a QOS 

of a group (? , Then: 

( i) For every f inite X c A , there exists a QOS 3^ = 

= ifr^e Ig^eceAi with <^^ ^ c , for ¥6*: e A ) , such that 

-f-fij^cce X? i s OS and >pic ^Jj « o , for f Cot e A , /3 e X , 

cc * /3 ) . Further, < £ K * ^ % 9 K * ^ * ^J?A*^**O{?A™*«* 

( i i ) If £ e&t( j , then 3 * «fac«a);tx,eA?) sat is f ies 

O.l(i) and ( i i ) . Moreover, i f $ i s a maximal QOS in #lg . , 
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then B s a t i s f i e s (0*2) and C\ hsxfi/^ ia a quasi-super-

decompoeable subgroup of & #. 

( H i ) I f IS « A , £«, - C4 - ^ / 3 ) ^ 0 C , for VCotisA, o t - f /S) , 

and $ £ * 4*0 then $Q a. - C ^ <? 1^ j <s e A ? i s a QOS, 

where J l A ^ * ^ ) « J | 7 l 8 « c c € f > , fac(G)^ q,«CG),VCct eA) , and 

Proof, ( i ) Let K = 4 c c 0 , , . . , 0^3 c A , where oc0 <-i 

<r cc^ < . . . < cc^ are in an order which makee S the QOS. 

Define ^ * ^ C 4 - ^ ) . . . C 4 ~ f ^ ) for oc -c oc0 % ^ « </** C4 ~ 

~ fatX.M-fa^tt>v <x,i„4 £ oc <: 064 , -£ « 4, , , , , (n, and put 

^ « - "fccc otherwise. SK obviously possesses the desired 

properties* 

( i i ) Since 5 c 9ffiG , the condition ( i ) implies that 

B s a t i s f i e s O . l ( i ) and ( i i ) . I f S> i s a maximal QOS in 

# ig . and G = H®TV* , where 3 c "W and .M i s an inde­

composable direct summand of H , then H -* _M ® H.* and for 

¥(oc<s A ^ W - x ^ C G ) <B Wo., i . e . , <UI»0:K*e4ifc<0)eTlk . 

Suppose that 5,; S — > .M and cn̂  : G -—• jfaCG) are the 

corresponding project ions with respect to the decompositions. 

Obviously qvt<x. = o , for -V- (cc m A) . Since vt^ ~ -ft^ , 

g ^ = o , by the proposition 1 .3 . Therefore the maximal 

condition on S y i e l d s i i » 0 . On the other hand, i f 

J c H Jtotyi/oo i s a** indecompoaable d irect summand of G 

and <i s J) i s arbitrary, we have -ft* 9̂  = o , for 

*V- (oc e A ) . Hence, the maximal condition on S again 
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yields .5 * 0 . 

( i i i ) &a i s obviously a QOS, for -f (fi e A ) . For 

the rest , i t i s sufficient to show that ^#(6)® p-^(G) = 

**$fiC(G)®'P'/>«*) , for f-(oc c A , cc + (I) . By ( i ) , ^ C(J) n 

n^/j ((?).=: g^Cff) n pp(&) -* ^ > provided that cc + /3 * On 

the other hand, the equality -ftyC^) + -ffcdc^a)*^3^+4^9fc^+ 

+>C/f*.fî )̂̂ cC9<l) implies the desired result* q.e.d . 

The assertion 1.8 ( i i ) enables us to introduce the fo l ­

lowing definition. 

Definition 1.9. We shall say that 3 i s a quasi-basic 

subgroup of a group <J i f 3 * <-C€kc *9 oc eA3> , where 

4 6^ ; oc e A 5 c <£ , and there i s a maximal QOS 

4>fi«, c #t$$ cceA? in WQ. such that ^ € S^ , for 

¥* (oc e l ) * The family -f G^ ; o£ srA } of subgroups of £ 

will be called the quasi-basic system of G corresponding 

to B . 

Remark l t 10 . By 1.7 and 1.8, i t follows that every 

group possesses a quasi-basic system and any quasi-basic 

system can be extended to a basic one. 

Theorem 1.11. Let & * < &# •, ©c « A 3 be a family of 

subgroups of a group G satisfying 0.1 ( i ) and ( i i ) , and 

suppose there i s at most countable number of such oc 'a 

that Got i s reduced, torsion-free. Then there exist &j == 

^i^e TSft^cceAl and &z * -fg^ e M^ $ oc e A } such that 

( i ) &i is QOS and ^ c ^ , f ( c C 6 A ) , 

( i i ) S^ is OS and ^ CGf) SS 0* , YCcc e A ) , 
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( i i i ) If 0^ i s either torsion or d ivisible then %# =* 

(iv) ILo-CG) « I L A ^ C G ) « Ji. <L , 

Moreover, i f (S3 i s a basic system, then -C^ C6)>ac 6 A ? 

i s again a basic system, corresponding to the basic sub­

group B * !L £<< , £j and £> a ape maximal QDS 'a in #1*3. 

and S2 ia a maximal OS in 1tfL§ -

Proof. Write & -*-( (?,«, j/rv elN3u -CG* ; <x e A4 3 u 

u i &u *, oc € Az 3 , where G ,̂ i s reduced, torsi on-fpee, fop 

¥• Cm. <s Jhf) 5 ffoc i s d ivis ible , fOP 1̂  (OC € -A..J) and <£# 

i s reduced, torsion, for -f (oc e A^) . By 1.5 and 2 .5 ,Hit 

748 and 756, there i s a disjunct decomposition A* = .M.Aa ^ 

such that 

and W,.̂  D J i 0j^ , fop ¥ Cm, € JJ{ ) . Hence we have an 

orthogonal system -3' «• -f ̂  e fl&^j <*; <£ Â  u A£J , where ^ e 

^ G^ , for -f (oc e A. u Aa ) and we can write 

fi-lL S^© JUL GL©...elL ^€) 1L G.®¥» for ¥Cm.eJN) . 
«ccA, * oceA2?0« * « \ * * # * * ^ 

Put &in & ^i , for the corresponding projections of this 

decomposition, for 4, =. 0,...>/n/ . If we define Jffa,* ^m.tm > 

for Y- (m e JN) , we get the desired system S^ » S* u 
u"*/rV?m' c «W 5 (use the proposition 1.5). Now, define 
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&a>*Sfv4fa<,m,et{l , where ^ « M - ^ ) . . . M- to* .* )^ ,for 

•V'C^ « JJV) . Similarly as in the propoaition 1 .8( i i i ) we 

can ahow JL^ . (SJ .̂JLL <?• C6), <U.<G)« <->t , forfCm-eJM) 
* * 0 *v*0A"v A 

and consequently S 2 i s an OS in Iftt Q. . If Jb i s a ba­

sic 8ystem then •(#«-< (Gr) j «: € .A J i s obviously a basic ays-

tem correaponding to the baaic aubgroup B-= JJL &# . Ac-

cording to 1 .8( i i ) , S^ and S2 are maximal QOS's in W& 

and consequently 5 2 i s a maximal OS in T^g. . The case, 

when the direct sum of a l l the G^ ' s which are reduced, 

tor8ion-free i s a direct aummand of G 1 can be treated by 

the same way. q.e.d. 

Corollary 1.12. Every countable basic syatem ia a qua-

ai-baaic one. 

Proposition 1.13. Let 3&9<6eCtcCmA5 be a basic 

ayateoi of a group & such that ei ther A'» { e c e A j (S^ 

i s not a lg . compact} i s countable or J i GL. i s a direct 

aummand of (J , Then 3b i s a quasi-basic system. 

Proof. In both cases we can obvioualy construct a qua­

si-orthogonal system S^ m itt^ e Wtg. *, oc e A* J ., such that 

** € $* , for VCet # A*) (if I AM ^-*i0 , uae $4 from 

the theorem 1.11). Suppose that S i s a maximal QOS in 

^JA (Tar containing S* (the exiatence follows from 1.7). 

Since £ can contain at most one element from each (T^ , 

<* e A , we have S » { ^ e Wt^, o c c T c A 5 , where -fî  e 

s ^«c j for f Coc c T ) . Suppoae that fi m. A\ T and wri­
te B*-* J l S^ . Since B ** J l €?« i s pure in G- , 

oce/\ * * * * 
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^ S B / I ' is pure in G/B' and since Gya is alg. 

compact ( A ' c D we have G/B^CB/B') €> (<?7J>) and 

consequently G * G^ © G" , where B* c G* . Let £ : 

• (j — > (j and ^ . G —»» ̂  be the corresponding 

projections with respect to the decompositions S -*- G^ © 

€> 0^ © (Si , for -p ( cc € r ) - Since ^ ^ -fî  and £0^. * 

« o , for f-Coc € T ) , we have £ ^ - o , for f* Coc e F ) 

by 1.5. Therefore it contradicts the maximality of S in 

L.1 G^ and consequently Y =* A . On the other hand, 

S is a maximal QOS in W Q , since any extension of S 

in 'Eg would contradict the maximality of <& by the pro­

position 1.8(ii). q.e.d. 

Corollary 1.14. Let G be a group having the indecom­

posable direct summands only the alg. compact groups. Then 

B c <? is a basic subgroup iff B is a quasi-basic sub­

group* 

Proof. With respect to 1.13 it is sufficient to prove 

that every quasi-basic subgroup is a basic one, but it im­

mediately follows by 1.6 Cll, 750 and the proposition 1.8 

(ii). q.e.d. 

Theorem 1.15. Let < Ŝ j co e A } be a quasi-basic sys­

tem of a group C* , Then there is a quasi-superdecomposable 

subgroup K of S such that for every finite K c A , <J/_K 

is isomorphic to a subdirect sum W of < (y ec « -A } and 

Proof. Suppose that £* •f-fHc* ̂ <j * -* * A I is a ma­
ximal QOS in W 0 such that ^ c <7^ , for vKoc e A ) , 
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Then H - C) M&Kfr^ is a quasi-superdecomposable subgroup 

of G by 1.8(ii). If K c A is finite, define £»< =* 

• - ( ^ 5 *c tsAI as in 1.8(i). For the rest it is sufficient 

to consider the homomorphism g>: G — > IT G^ given by 

g,,—^ ( ^ (cj,))ocmA , since &/}L G^ is the iden-
«ce K 

tity homomorphism and %uut/q « K , by 1.8(i)t q.e.d. 

Corollary 1.16. Let G be a group. Then there is a 

basic system <(•?<£ $ oe e A ? of 6 and a quasi-superdecom­

posable subgroup K of ^ such that G / K is isomorphic 

to a subdirect sum of i G^ ; oc c A ? . 

Corollary 1.17. Let ff be a homogeneous separable 

group. Then for every quasi-basic system -fd̂ ; oc e A ? of 

G and for every finite X c A , there exists a monomor-

phism 9:6—* > JT Goc such that opCtf) is a subdirect sum 

of -((3̂  •, 00 6 A J and V J X Goo i s the identity homomorph-

ism. In particular, G^ are pairwise isomorphic groups of 

rank 1 • Moreoverr if IAI = •*-.„ then <p can be chosen in 

such a way that <y (G ) is an inter direct sum and 

/Ji Goo i s t n e identity. 
«ceA 

Prpof. According to 1.15, it is sufficient to show that 

K « 0 . For, G/K being torsion-free implies that K is 

a pure subgroup of G and consequently x e K yields 

<x>*cK . Now, since K is a quasi-superdecomposable sub­

group of 6, x - o by 49.4 t21, 178, and similarly 

&<£ 's must be pairwise isomorphic groups of rank 1 • If 
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IAI « #0 , then the proofs of l.ll(ii),(iv) and (v) im­

ply the desired result, q.e.d. 

Corollayv 1.18. Every separable homogeneous group is 

isomorphic to a subdirect sum of a system iQ^^vc m Al ,whe­

re SQC are pairwise isomorphic torsion-free groups of rank 

1 . 

Corollary 1.19. Every reduced, cotorsion and torsion-

free group is isomorphic to a subdirect sum of (possibly 

nonisomorphic) groups of J(L -adic integers. 

Proof. With regard to 1.15 it is sufficient to show 

that H-=0- Since ff/K is torsion free, reduced, H is pure 

alg. compact and hence by 40.4 [ 3 3, 169, H = 0 - q.e.d. 

In view of CI3 we can improve the result and since eve­

ry reduced cotorsion group is direct sum of an adjusted and 

torsion-free, cotorsion group, the following two theorems 

give the complete description of cotorsion groups. 

Theorem 1.20. The group S is reduced torsion-free and 

cotorsion iff there exists a family -f S^; oc e A S of groups 

of Jfi -adic integers such that 6 is isomorphic to a mini­

mal direct summand "E of IT. fi../ containing il Got 

and .E/JL GL; is divisible, torsion-free. 
06 *s A 

Proof. Obviously, it is sufficient to prove only the 

necessary condition. Let G be a reduced torsion-free and 

cotorsion group and 3 & 4 d^ * oc c A ? be & basic system 

of G . By § 41 [33, the pure-infective hull E of 1 fi^ 
oc m A * 

in TT CL. is a minimal direct summand of TT (?«. Contain­
ed A ^ «C<sA ^ 
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ing 1L Goc and E / J L GL i» torsion-free and d ivisib­l e A OCCA 

l e . On the other hand , £ S ( JL GL ) and 1 .12 1 1 3 , 753 
<xeA 

implies the desired result« q.e.d. 

Theorem 1.21. Let G be a reduced cotorsion group. 

Then G is adjusted iff there exists a family -iĜ j tteA? 

of cyclic groups of prime power orders such that G/G is 

isomorphic to the least direct summand E of TV, B,*, -
-ri» C IKg i »*'*' 
<ru e N * 

containing JUL S* , where B ^ » 1L Grf , A « i * S A -

S^ s. Z ( ^ ) 5 and iK0 = *f^eF; C Ji G ^ =# 01 , and 

E/JL Sac is divisible. 

Proof. It is easy to see that by 2.9 Ell, 760, the 

least direct summand of TTB^^ containing JL Gee ia the 

adjusted part of TT B ̂ ^ « If G has a torsion-free direct 

summand F , then since G4 is fully invariant, GA n F = 

s F^ -s 0 and it would contradict the hypothesis that G/6* 

has no nonzero torsion-free direct summand. Hence G is ad­

justed. Conversely, if Sh^iG^ « oc <s A 1 is a basic system 

of (? and 6 is adjusted then G/G* ia isomorphic to 

a direct summand E of TTB^n, containing Ji 0^ by 
' ' <-c c A 

2 . 7 E l ] , 760 . Moreover, by m , 751 and 756, G/fc*® l i G^) 3* 
«ceA 

^E/JL^fl.- i s d iv is ible . Hence E i s an adjusted subgroup 
oceA < 

of TT B ^ ^ . For, E i s obvious ly reduced and co tors ion 

and i f E s P © l f 9 where F i s t o r s i o n - f r e e and reduced , 

then JL <L c E. c If and C 11 G~ > n F » 0 . S ince 
« c « A * * ocmA 
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E / J L A ^ F e C W V l L G L ) is divisible, P - 0 . By 

55.5 C3], 238, T T B ^ ^ - A e C , where C is uniquely 

determined adjusted part of TTB.^,^ such that (TTB^^^c 

c C, C/( TT3^t|M/)t *s divisible and A is torsion-free, 

cotorsion. Therefore C is a fully invariant aubgroup of 

TTB/fv,m. and a minimal direct aummand of T T B ^ ^ con­

taining iL £<*, by tl], 760. In fact, the uniqueness of 

the adjusted part implies that C is the least such a di­

rect summand (it can also be seen from the following text). 

Now, if T T B ^ = E ® ¥ , then C = (CnE5e CC A ¥ ) 

and since iLGLc Cnl, and C is a minimal direct summand 
oc e- A ** 

containing JL G«r - C c E and B = C © ( A n B ) . On 
oC s A ^ 

the other hand, E being adjusted implies A o E « 0 and 

consequently E =» C . q.e.d. 

2* The accessibility of groups. 

Definition 2.1. We shall say that G is an accessible 

group if there exist3 a baaic 3y3tem 4 £<* •, oc e A i of 6 

and a homomorphism £ s Gr — > IT ($<*> (called the accessible 
oceA 

homomorphism) such that 

( i ) 9tWtA i s a quasi-superdecomposable subgroup of 6 , 

( i i ) £ ( B ) m JLGL , 
oc e A 

( i i i ) &**.* n ! = 0 , 

where B -» « <?̂  •, oc € A ? > -
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Theorem 2.2. Every group which possesses a basic ays* 

tem containing at most countable number of reduced torsion-

free groups is accessible. Moreover, there is an accessible 

homomorphism for every such a basic system. 

Proof. By 1.11 there is a basic system i $# - cc e A i and 

an orthogonal system &z={qpce %&$*, cc e A f such that 

9,<*
 c GQC a n d

 S is a maximal QOS in OT^ . Hence the map 

(<bc (&))oce Л 

i s the desired a c c e s s i b l e homomorphism by 1 . 8 ( i i ) . q .e .d . 

Proposition 2 f 3 . Let G be a group. Then for every 

basic system { f i K ; c t 6 i ? of G and for every automorphism 

y 0f3~<iGocsoeeA}y there e x i s t d is jo int subgroups 

A and K of G and a homomorphism g>: A © X — ^ ^ ^« 

such that 

( i ) B c= A , 

( i i ) 9/B - y > 

( i i i ) ,%£*, 9 =r X , 

( iv ) 6 / ( A e J C ) i s tors ion , 

(v) i f G/A i s not tors ion , then TT.G^/o) (A) i s tor -

s i o n , 

(v i ) i f 1 ffl sr IAI « -K0 and 6 i s tors ion- free , then 

X - 0 . 

Proof. Let 3t be the se t of a l l the monomorphisms £ 

into TT GL such that B coUym(£) a G and f / $ -s i|r . 
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Define A -» dbmity),where 9.- is a maximal element of Qt 

by Zorn's Lemma and by JC denote an A -high subgroup 

of 0 . Now, put 9 > : A © - K — ^ U A ^ O C 

(a, ̂ ) .—> <^(a<) 

Obviously, it is sufficient to prove only (v) and (vi). 

For, it both GXA and TT, G^/wCA) are not torsion, 

then the homomorphism <%, is not a maximal element of 7L 

contrary to our hypothesis. Ihe conditions of (vi) imply that 

TT ( ^ / ^ ( A ) is not torsion (otherwise it would yield 

a contradiction with the cardinality of IT. G^ ) , there-

fore by (v), ff/A is torsion and consequently X =• 0 • 

q.e.d. 

Theorem 2.4. Let <G,x#> cc s A ! be a basic system of a 

countable torsion-free group G « Then there exist subgroups 

H and A of (J such that 

(i) H is a quasi-superdecomposable subgroup of G , 

(ii) G/H is isomorphic to an interdirect sum of. 

^ G.̂  *, cc € A S , 

( i i i ) B = < 4 G f o C ; o c e A 3 > c A and A i s isomorphic to 

an in terd i rec t sum of<(ScC*>oceA} , 

( iv ) Gf/A i s e i ther superdecomposable or tors ion . 

Proof. I f B i s a d i rect summand of Q , define A » B 

and for H put any d i rect complement of A which i s su-

perdecomposable by 0 . 2 . Hence we can assume that B i s not 

a d i rect summand of G . Put H -» jfot^f 9 where f i s the ac­

c e s s i b l e homomorphism corresponding to •( fi^ •, cc € A } by 
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2.2 and construct A as it was done in 2.3. q.e.d. 

Corollary 2.5. Let 6 be a countable torsion-free 

group. Then either G is a direct sum of a superdecompos-

able subgroup and indecomposable subgroups of & or G is 

the pure closure (in Q ) of an interdirect sum of a ba­

sic system of G and there is a quasi-superdecomposable 

subgroup K of G such that G/H is isomorphic to an 

interdirect sum of the basic system. 

Lemma 2^6. Let Gf X be torsion-free groups, <p : 

i 6 —--• X an epimorphism and a> e X , Then the following 

are equivalent: 

(i) 3Cx c gT'Co,)HXC*) «HCa,)l , 

(ii) -V-Cire <a,>*)3C^«s <f\tr)) {J{(0.)« HGfr) J , 

(iii) ¥(&€ <a,>*)3(tye9~
/l(£r))JlT<y*)~f?(trn , 

(iv) a-/**-, we Z *=*> 3 0* e^-'r^MTC^)-TC*>* . 

Proof, ( i ) «SBS> ( i i ) . Let Are <ct->*,, i .e. there are <m 9 

fti 6 Z such that mxSrs m-a. By ( i ) t there i s x e 9 Co,) 

such that H Cx) »XCa.).Hence there e x i s t s /^ «- G such that 

/rtx a mt̂ f . For, rtn, d i v ides m*a, and s ince H(<rva,) = H(<rtx)f 

mv must d iv ide trvx as we l l . Now> /nvcfty)- nvcu^mxJb- and 

consequently qpf^)» J2r 5 and H (m%y,) =s H Cm,*) = HC/7ta)=- H 6m .fr) 

imp l ies H Otp *}{(&) . 

( i i ) s===s> ( i i i ) -===*> ( iv ) i s obvious. 

( iv ) -—> ( i ) . By ( i v ) we can assume that there i s a%> € <g (a) 

such that TC^)=rTC^) and since H C/y, ) -£ HCa) ? there is 
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mt-s/fy ... fa auch that H(«**"#>)~H(a,) . Put /m.-ar ^ . . . .fi^ , 

where £4*- .H(/l^(a/)< oo , for -t « 4 , . . . ,* , . CX^. ( a ) <: co y 

^ ss 4 , , . , , / c , eince otherwise t h i s part icular -fz,̂  would be 

missing in the prime decomposition of mu , a contradiction)* 

Then there i s Xy e X auch that mSy =- a, and by ( i v ) 

there ia co e <f*(Jb>) and i c K**" such that H(tz)**H(Xr) . 

Since H^# ̂ 4r) m 0 , for - i s 4, ...,tc9 Ci ,m) » 4 and there 

arexc.tr-e 2 auch that t<o> + ^nir * /f . Put xmUufiux 4-m*«r^ . 

Then <p (x) « Ct-o/ + /mtr ) <*/ «* a/ and HCa,)*- H(M£r) =• H(m.tx)m 

& H (m,tAX,») and H (<*>) as H(m-n^) £ H C/nvirvĵ ) . Hence H (cu) £ 

&H(m,tuz)nH(mnrfy)£H(x) . The converae H(x) - X(4>) 

i a t r i v i a l * q*e.d . 

Corollary 2*7* Every accesaible homomorphiam of a tor ­

s ion - f ree , homogeneous group G i a strongly regular* 

Proof* Let 4 Q^ j <x> € A ? be a baaic system correspon­

ding to a baaic aubgroup 3 of G and <y; G—> IT. G^ * TIT 
-* «ccA 

be an accessible homomorphiam* Consider an arbitrary 0 + x a 

88 ̂ *ecW«A € 9C**) a n d a n If* 6 9m*(*) ' Obviously TO$j,) *£ 

4T*9 (x) and there if oc c A , auch that x^ 4. 0 • De­

note by a^ » C... , o,..., *<*,..., o,.,.) * ̂ ^ic -Since 

x*c e 9 C(5) - ther« is Ac « 9 " ^ ) n B andH(^)-»HMfeoC)^ 

^H^C*) ̂ H ^ V * ) . Since (J ia homogeneous. T c ^ ) * TOrp.* 

гT*
w
Cx) . q.#.«. 
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Theorem 2.8. Let <Z be a separable, homogeneous 

group and H be a countable homogeneoua subgroup of <•» 

of the same type x as G . Then H is completely decompo­

sable. 

Proof. Let S be a pure subgroup of H of the finite 

rank m, .According to [2], 174, it is sufficient to prove 

that yi/S is homogeneous of tha type x. , Denote by £* 

the pure closure of *S in (} , which is again of the rank 

(ft .Obviously & c X n S* , Conversely, if h, ettn £* ,then 

there is an e Z. and & e S such that tmfhs -* ̂ > and 

since S is pure in >{? 4v € S ,i.e. .5 -=• K n £* . Since 

(H + S*)/S*».H/5 , all we have to ahow is that K + £* is 

homogeneous of the type t . For, by [23, 178, <5 =. S*@ TV 

and consequently K+ S*=* ̂ © ( ¥ n ( H + £*» . Hence CK+£*)/£*sr 

•S W n (K +• £*) «n<* if # + £* is homogeneous of the 

type "£ ̂  H / S is also homogeneous of the same type v . 

Now, if o*x c (K + S*),x*: %%,+ /* , then % « T^*) 2 

> TH+S*(\x)'a? TH(iH,) n TS*C*) « « , q.e.d. 

Theorem 2.9. Let 0 be a countable homogeneous, tor­

sion-free group of the type X € Slco w) and suppose that 

i $„, \m, c %\ is a basic system of G such that ^(i^ss 4 . 

Then G is isomorphic to a direct sum of a completely de­

composable homogeneous group and a superdecomposable group. 

Proof. By 2.2, (y is accessible and there is an ac­

cessible hoaomorphism £; G — > IT G~ , which is strong-

ly regular by 2.7. Since IT G^ is homogeneous, sepa­

rable group ([43, 338), and JC « £((3) satisfies the con-
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ditions of 2.8, K is completely decomposable, i.e. we 
CO 

can write M =• Ji H^ , where foCR^) ~ 1 and K ^ are 

pairwise isomorphic groups of the same type as £ . Since 

to*/tsf is a pure subgroup and G/Jk*x>f == 1L Km, , tow? 

is a direct summand of G by [23, 164. q.e.d* 

Corollary 2.10. Every countable, torsion-free and ho­

mogeneous group of the type x e -Q̂ o <*?) having the non­

zero indecomposable direct summands only the groups of rank 

1 is a direct sum of a completely decomposable and a super-

decomposable group. 
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