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Commentation s Mathematicae Univeгэitati Carolinae 

14,3 (1973) 

ON HADAMAІШ DIFFERENTIABILITY 

Jiří ШRDIL, Pгaha 

Abstract: In this paper, a necessary and sufficient 
condition for a GSteaux differentiable mapping to be Hada-
mard differentiable is given. It is proved as a consequen
ce that a mapping £ with a Gateaux variation V£ Cx, *i ) 
which is jointly continuous at a point (xQ, 0 ) posses
ses an Hadamard derivative at the point x0 . 

Key words: Nonlinear mappings in normed linear spa
ces, Gateaux differentiability, Hadamard differentiability. 

AMS, Primary: 58C20 Ref. 2. 7.978.44 

1. In 1923 Hadamard published a note in which a new 

method hew a differential of a function can be defined, was 

shown. Later on, his idea was precised and generalissed by 

Fr^chet and now we can state the following definition of 

differentiability in the generalized sense of Hadamard (see 

12],C3],U1,[63): 

Definition. Let X , Y be normed linear spaces. An 

operator £ : X —* / is said to have an Hadamard diffe

rential at a point x0 e X if there exists a continuous 

linear mapping L J X —> Y such that for any continuous 

mapping % . £ 0, A1 — * X for which o/ < 0 -¥ ) exists 

and %(0)a:x o , the mapping F(t) =-£ (<j,Ct)> is diffe

rentiable at t « 0 + and P*( 0+-) =- Lo/ ( 0 + ) . The map-
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ping L is called the Hadamard derivative of f at x0 

and 1 ̂  ( 0 + ) is called the Hadamard differential of 

£ at x0 . For abbreviation, we shall often write
 H H-de-

rivative" and "H-differential" only. 

The idea of Hadamard differentiability was later 

transferred to topological spaces (for example, by A.D. 

Michal, Ky Fan, M. Balanzat, Long de Foglio). Simultane

ously, in connection with the development of a differential 

calculus in topological spaces (by Gil de Lamadrid, Sebas-

tiao e Silva, H.H. Keller, M. Sova, the above mentioned 

authors and others - see 161 for references), a notion of 

a compact differentiability appeared (see C2],C31,C6J,[7], 

T8]). M. Sova proved in [8] that both the notions of Hada-

masd differentiability and compact differentiability are 

equivalent in the case of metrizable linear spaces. We sta

te here this fact as 

Theorem (Sova T8]). An operator £: X — > Y is H-

differentiable at ,x0 6 X with an H-derivative £'(x0) : 

X — * y if and only if ^Jtium, — co (x0> tAv) -» 0 uni-
v i~*<*> t 

formly with respect to 4 e C for every closed convex 

symmetric sequentially compact set C c I , where 

co (xQiJk) m £(*0 + Jh)~ £(x0) - £•<*,) h (HeX) . 

Various properties of H-differentials are listed, for 

example, in [4] and [61. We recall here only the facts that 

FrSchet differentiability (see [6] or [91 for a definition) 

implies H-differentiability, H-differentiability implies 

Gateaux differentiability (see [63 or [91; we shall further 

write G-differentiability only), the notions of Fr6chet and 
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Hadamard differentiability are equivalent in the case of 

finite dimensional spaces and a G-differentiable Lipschitz-

ian mapping is H-differentiable (see C4.3, C6])• 

The last fact and the theorem of Sova quoted above 

are the only known types of the criteria for Hadamard dif

ferentiability* The purpose of this paper is to give some 

other conditions under which a G-differentiable mapping is 

H-differentiable* 

2* Throughout the paper, let X and Y be normed li

near real spaces* However, it is evident that our results 

are valid (with a few slight formal modifications) in 

metrizable topological linear spaces, too* By J , the real 

line is denoted* 

Theorem 1* Let x 0 be a point of X , M c X a neigh

bourhood of «x0 , £ : JVL — > T and assume that there is a 

G-derivative £*Cx0) of £ at the point x0 . Then f has 

an H-derivative at x0 if and only if the functional <p^ 

<pH(t,Jk)~ !~ ££(x0 + tJh,)-£(x0 + tJb)l\\ (t 4- 0) 

^CD,*)-0 

i s continuous at the point (0fH) c JL+ x JC for every 

fixed J0v e X , i*e* i f and only i f for every s > 0 and 

M, e X , there are <f >• 0 and % > Q such that 

« ! Cf (x0+tfh) - £(x0+tJh)li * e 

for a l l Jfc, e X with II M, - M, 11 « % and a l l t € ( 0, <f) . 

Proof* We can suppose that M i s convex and open. Let 
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A ^ > 0 be sufficiently small so that x0 + A ^ e .M 

and set 

£(Jh,t ) m -i L£(x0+Jht) - £(x0)l -£'(x0)A> 

for Jfa e X and t e (0, A^) * 

1° Suppose our condition is satisfied and let a num

ber B >• 0 and a closed convex symmetric sequentially 

compact set C be given. It follows from G-differentlabi

lity of £ at x 0 that there is d^ e (07 Aj^) for eve

ry given h , c X such that 

(1) ISffc,t)»* j 

for all t e (0,0^) „ Moreover, there is ^^ >• 0 such 

that 

(2) l£ , foc0)CA--Jfc) l * - j 

whenever II %v -* ^ II < 1 ^ because of continuity of 

£'<*•> i x~-> y . 

By our assumption, we can choose numbers ( 4 e (0, d £ ) 

and %. € f 0-Ujj,) for svery Ji> e X so that ^ + 

+ tit e M and 

(3) I 1 C£C*0 + tJh,) - £(x0+tJk,m * \ 

whenever II Jh, - A, II -c ^ ^ and t e ( 0, cf^) . I t follows 

then from ( 1 ) , ( 2 ) , ( 3 ) that for every given e >> 0 and 

J b s l , 
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(4) 1 3 CA,,t)lt £ I3CJh,,t)I + l3CJi-,t)-- 2>CJ ,̂t)f| 4* 

* H3C*i,,t)lUllf*Cx0) C^-^)ll + 

+ II - C f (x0 + tk,)~ £Cx0 + t^ ) ] l l £ e 
x« 

for al l Jfe e X with II ^ - & II «< ^ and a l l t e C0,c^) . 

Denote B ( i ) = i i e X : HA/ - ^ \\ < ^ I . These sets 

are open and j ^ c B ( * v ) 3 C . Since C i s compact, we 

can choose a f inite number of elements Jh^^..,rJk^e C such 
#1V 

that ^ B ( ^ ) 3 C ; set c ^ s / w i k ^ ,..., fl& J . It fol 

lows then from (4) that 
I 2> Ck,t ) l l ^ £, 

for all t e C 0, <fc ) and all i e C which means by the 

theorem of Sova quoted above that £' Cx0 ) is an H-deriva-

tive of £ at x0 • 

2° On the other hand, suppose £ has an H-derivati-

ve £'Cx0) at x0 . If the condition of our theorem were 

not valid, such a number fc,0 > 0 , an element %u0 e X and 

sequences i Sh,^} c X and { t^ 3 c (0 , A^) would exist 

that 

i t < ± Ч,--M< r i *~ < 

and 

(5) ll4-t-^
0

+t
m.-^o

)
- -*^o

 + t
'»*'-.

)
-

11
 *

 6
o 

for all /n
 s
 1,2,.., . 

The mapping f C ^ ) : X — • Y is continuous at \ by 
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the definition so that there exists a number rrt0 such that 

(6) IfUJthn. - £%U0)*i0^ \ 

for a l l m, 2 <rC0 . Since Jh^—> M.Q ,the set C= \h><m,x fm- = 

* 0,4,2,..Jis compact and so by the Mazur's theorem the closed 

convex hull C of CuC-C) i s symmetric and compact, too. By 

the theorem of Sova, 5 (*t,t)—y 0 i f t ~> 0 uniformly with 

respect to h, e Z and hence we can find и 

(7) IS^.tJI * 
g

0 

3 

for all m, 5. ̂  and all /nt *-* 0 • 

We conclude from (6) and (7) that there is m.
0
 such 

that 

K 4~ tf c ^ * ^ ^ - f r^ + t^a^nit ^ 

^ (I S C ^ - t ^ ) ! + 113 C ^ W I l + 

+ i l f V - V A n , - f V x 0 ) ^ 0 l l ^ etf 

for a l l /yv 2s <tv0 . However, this i s a contradiction to (5). 

The theorem i s proved. 

Corollary. Let M c X be a set with a non-empty 

interior and l e t f; it —* y be a mapping having a G-deri-

vative at some interior point x0 of Jb . Suppose there 

i s a functional g> » JC —* K such that 

li £ (x 0 + * t ) - £ ( x 0 -*• t r ) l i -£ <y CA(- -<v) 

for a l l ^ . ^ e J4 and le t it/m, ODC^,) « tj and 
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$>(tJk>)£ ecCt) <%(Jhs) for a l l jh. e M and t e C 0 , A ) 

where A > 0 and li/ra- /txx-fv ~- oc C t ) -c oo . 

Then £ possesses an H-derivative at the point x0 . 

Proof. Let g , > 0 and h, e X be g iven. There ex

i s t s <.% e CO, A ) such that -~- oc Ct) «. C for a l l 

t e C 0, </k ) where C -= 4 + i->v /tHtn- -r oc C t ) . Further, 
' i~-v 04- "t 

c 
there is oj^ > 0 such that <j? C-&. - it-) < -^ whenever 

tlto,-JMI<<^ .Consequently, il •£ Cf Coc0 + tJh) - f C*0 + tJfc/)3ll< e 

whenever t e ( 0;o^) and II h, - &/11 < ̂ ^ and hence our 

assertion is true by Theorem 1. 

Now, let M be a neighbourhood of a point #0 e J 

and suppose there is a Gateaux variation Vf (#.,M,) (i.e., 

a nonlinear G-differential - see [6],C93) of a mapping f : 

: X — > y at all points of JH . Consider the following 

three types of continuity of the mapping Vf (#,&)• .MxX-^y; 

(a) Vf (xfM,) is separately continuous at all points of 

tXol x X , 

(b) VfCy,*) is jointly continuous at all points of 

**p* x X , 

(c) Vf (*7A) is jointly continuous at all points of 

i*0l x X 

and, moreover, it is continuous in the variable x at the 

point tf0 uniformly with respect to & e X with 

1*1 £ 4 . 
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It is easy to see, because of homogeneity of 

Vf (x9Jh,) in Jl , that (a),(b),(c) are equivalent to 

the following conditions (a'),(b') and (c#), respectively: 

(a') Vf ( X , J M is continuous in x at the point x0 

for every fixed h> e X and Vf (x0 , M,) is continu

ous at the point Jh> -= Q ', 

(b') Vf (x , JK ) is jointly continuous at the point 

<*o , 0) i 

(c') Vf ( x , & ) is continuous in x at Xo uniformly 

with respect to Jh, e X with 1JM £ 1 and Vf CiX̂ , ̂  ) 

is continuous at the point iv » 0 * 

According to the well-known theorem of Vainberg (see 

[9]), the condition (a') is a sufficient one for the G-va-

riation VfCxo, 4v) to be linear and continuous in Jh . 

it means f possesses a G-derivative £'Cx0) at x0 

and Vf (x9Jh,) * f f(x0) h> for all JH-e X , Furt

her, as it can be easily shown, the condition (c') implies 

the mapping f has a Fr£chet derivative at x 0 -So, the 

conditions (a) and (c) imply the existence of a (J- and F-

derivative of f at x0 , respectively, and hence a natu

ral question arises what is the meaning of the condition 

(b). The answer is given by 

Theorem 2* Let x 0 be a point of X ; Jt c. X a neigh

bourhood of X 0 and let £ : U — » Y be a mapping having 

a G-variation Vf (x9Av) in H . Suppose Vf (x9Jh) : 

;JHx-X-— .* Y is continuous at the point (x0 > 0) , 
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Then f possesses an H-derivative £' C.x0 ) at the point 

x0 and V£Cx 0,^) » £'(x0)Jh, for all h e X . 

Proof> We can assume that the set -M is convex and 

open# Let h0 be an arbitrary point of X , let e >- 0 

be given* 

Continuity of Yf Cx,ii<) implies a G-derivative 

£'C*0) of £ at y0 exists (see C9J)* Moreover, there are 

(tc •> 0 and ̂  -> 0 such that 

*0 + * e .M. and 

(8) HVf Cx0+x,^))l - m c * o + *,^)-V£Cxo,0)I-^ e 

whenever II* II < (a- and %%^ < % y x , ^ e X . Set 

cTa? ^ C^ + II ̂ i/0 1) '^ » then a l l points ,*<,+ tii^ , x0 +• tfo 

and x0 + th + i H C Jh, - ^ f l ) belong to JH i f t c . 0 , ( f ) , 

^ € rO^ 4 ] and Hjfc, - h0\ < % . By the mean-value theo

rem, there i s ^ t ^ < CO,^] for every t e C0, <f) and 

^ € X , II h - Jh0 II < % such that 

(9) « ̂  C£Coc0+tJ^0)-£Cx0 + t ^ ) 3 * 

£ I ^ V £ f j ( 0 + U o + ̂ f t * . t V , th-tb0H -=-

« i V£Cx0+tJk0 + tf^tOh,- Jh,0) , K-K0)l . 

It follows now from (8) and (9) that for every given 

e > 0 and )t0 e l , there are cT > Q and -̂  > $ 

such that 
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i, 4 

II j l £ C ^ - r t * ^ ) - f Cx0 + U v ) ] l . * e 

for all t c C0, cT) and to, e X with IH -Jh,0i ^ n . 

Hence £* (#0) is a H-derivative of £ at ,x0 by our 

Theorem 1. 

Sejaaik* Let fr C t, jj+ ) be a real function on S x 

x H ( S c K ^ ) satisfying the Carath^odory conditions 

and having a partial derivative ^ Ct, JUU ) f let ^ Ct,-aJ 

be bounded and continuous in the variable XL . M*M« Vain-

berg showed in [10] that a mapping * Ct) —> <3- Ct, x C£)) 

from L^CG) into LaCG) possesses a jointly continuous 

G-differential D9, Coc,Jk>Ct> « £V*>* Ct))JfcCt) Cx.AcL^CG)) 

but it is nowhere Fre*chet differentiable in L^CG) . 

Another example of an operator satisfying all assumptions 

of our theorem and being not Fr6ehet differentiable, was 

given by Alexiewicz and Orlicz in [1] • 

3. Let G and G' be bounded aubaeta of m, -dimen

sional and mv -dimensional Euclidean spaces Km, and S ^ * 

respectively, let -f* and <̂  be arbitrary numbers, ^ .£ 

& Ap,, <£ & 00 . Denote by M ^ C G1) and M^ C G) the sets 

of all real functions xC^.i) on G%x 8 auch that 

llx(*,t)BM = i[ xU,t)d.tlu _ 00 

OГ 
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respectively; here 1*0/ denotes an ordinary norm in 

the Lebesgue space L ^ ( g ) and (I . JIL a norm in 

L a CG?' ) . It is a well-known fact (see 151) that .M^G 1) 

and N^(G) are linear spaces, II • \\M and 11*1)̂  are 

norms in U^CG*) and H^ ((J) , respectively, and 

M ^ (<?*) and Jf^ (G-) with these norms are Banach spaces* 

Now, let X (*, t, «tt ) be a real function on G% x fix X 

satisfying the CarathSodory conditions; i.e» K ( * , t,4t) 

is measurable in ̂ > for almost every t 6 G and all ̂  e 

6 R , measurable in t for a.e. ̂ e ^ and all u, e R 

and continuous in xt, for a.e. * e Or* and a.e. t e (J • 

An operator K. defined by the formula 

t U U ) « J* KC*,t,*(t>>ctt ^ c « ' ) 

(for measurable functions *Ct) on G ) i s called the 

Urysohn operator (defined by XC>&, t,x^) )• 

We suppose in the proposition below that a partial de

rivative X^ ( A> , t , AJU ) of the function X (4>, t , >cc ) 

exists in G*x. G x X and that both functions satisfy 

the Carathdodory conditions. 

Proposition. Let A * ^L , o v ^a>,x 0 €L.^C(3 r ) , l«t 

U c L A ( Gf) be an open neighbourhood of zero, J i r *x0 + 

+ U and denote U-*4#(*,t) e JL (6) s 4>ô eeA> lx(* , i ) i€ U? . 

Let X, X'^, IK. be as above and define an operator 3C by 

X C*, M,) (*,t) = K^(*,t,x0(t) + x(*,t))Jh,(t) teefi^tfiS) 
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for * € H^ (Q ) and to, e L^ ( 0) . Suppose 3C maps 

H x h^ C <-*) into H<^( G') i s continuous at the point 

( 0 , 0 ) and yC(x,Jh) i s continuous in the variable x 

on li for every fixed Jh, € U . Let Kx0 € L ^ t f ' ) , Then 

K : M —> L (<*') and there i s an H-derivative Kf(*fl) t 

f Lf,(<?>—> L (̂<?*) of the operator K at the point x0 . 

Moreover, 

\V(x0)Jh,(A>) » f X^(*,t,x0Ct>)Jh,Ct)<tt C* 6 <T) 

for a l l Jh, e L^ C0> . 

Proof* By the mean-value theorem, there i s a measur

able (see [5]) function &(*>,t)9 Q£ <#C*>,t)£ 4 , such 

that 

If K U , t , x f l ( t ) - r # ( t ) ) < t t II, & 

.6 If X U , t , * 0 C t » d t l L + \\§r^(*,t,xQ(t) + &(*,t)xW)x(t)&t\\L~ 

. l(CtfalL + I X f * * , « ) l M 

for a l l * € U. • The last term i s f in i te for these x and 

so K(JH> c 1*^(6*) . 

It follows from the mean-value theorem again that 

I ^ C K C * , * * • * * , ) < * > - IK.(oc0 + *)(4>)3 -

- f X ^ ( ^ , t , x 0 C t ) + x ( t ) ) J ^ ( t ) d t J. « 

» II J" EX^C*,t>a0Ct) + .xCt) + '# (* , t ) ) Shs(t) -
& 

- K ^ U , t , a 0 ( t ) + ,x(t))&(t)3< . it iL -
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• $%(* + <&*&,, *l) ~ 3cc.x,it))lM 

for every tf e U , lb e L^CGr) and sufficiently small 

r =f 0 C0.6i>C/&,t) .64). The laat term converged to 

zero if t —* 0 becauae of homogeneity of 3C C\*, .-&<) in 

M, and becauae I! ̂ «f Jh.-11 ̂  —•* 0 in that case. Hence 

IIC possesses a G-differential at all point a of Mi and 

JVC*)*tC>b) » JX^Uft,«Ct>> A,(t)<£t (*>*&) 

for ,x e JA. and jfe, 6 L^CCJ) • Moreover) 

HC>(OC)JH, - ll#C*-*0,^)l!M 

for theae x, <$v and ao the G-differential ia jointly 

continuous at the point (xQ > 0) . How, Theorem 2 implies 

that K'frfp) ia an H-derivative of K at x0 . 

Remark. Our reatriction to the case of a Lebesgue me

asure is not essential and we can state the proposition for 

more general spaces of the type of L^ C Gf, % 9 p,) . 
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