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ON HADAMARD DIFFERENTIABILITY

Ji¥{ DURDIL, Praha

Abstract: In this paper, a necessary and sufficient
condition for a GAteaux differentiable mapping to be Hada-
mard differentiable is given. It is proved as a consequen-
ce that a mapping £ with a GAteaux variation V£ (x, &)
which is jointly continuous at a point (x,, 0) posses-
ses an Hadamard derivative at the point x, .

Key wordg: Nonlinear mappings in normed linear spa-
ces, Gateaux differentiability, Hadamard differentiability.

AMS, Primary: 58020 Ref. Z. 7.978.44

l. In 1923 Hadamard published a note in which a new
method hara differential of a function can be defined, was
shown. Later on, his idea was precised and generalized by
Fréchet and now we can state the following definition of
differentiability in the generalized sense of Hadamard (see
(23,031,043,06]):

Definition. Let X, Y be normed linear spaces. An
operator £: X — Y is said to have an Hadamard diffe-
rential at a point x, € X if there exists a continuous
linear mapping L : X— Y such that for any continuous
mapping @ :[0,41 — X  for which ¢@'(0+) exists
and q,(O).-._xo » the mapping F(t) = £(g (t)) is diffe-
rentiable at t = 0+ and F'(0+) =Lg'(0+). The map~-

- 457 -



ping L is called the Hadamard derivative of f at x,
and Lg' (0+) is called the Hadamard differential of
£ at X, . For abbreviation, we shall often write " H-de-
rivative" and "H-differential" only.

The idea of Hadamard differentiability was later
transferred to topological spaces (for example, by A.D,
Michal, Ky Fan, M. Balanzat, Long de Foglio). Simultane-
ously, in connection with the development of a differential
calculus in topological spaces (by Gil de Lamadrid, Sebas-
tif8o e Silva, H.H. Keller, M. Sova, the above mentioned
authors and others - see [6] for references), a notion of
a compact differentiability appeared (see [21,(31,[6],[7],
[8])e M. Sova proved in [8] that both the notions of Hada-
maad differentiability and compact differentiability are
equivalent in the case of metrizable linear spaces. We sta-
te here this fact as

Theorem (Sova [8)). An operator f: X — Y is H-
differentiable at X, € X  with an H-derivative £'(x,):

X —> Y if and only if t&'ng%w(.x,,,th)—a uni-

formly with respect to v € C for every closed convex

symmetric sequentially compact set C = X , where

@ (X, ) = €£Cxp+ ) = £(x,) ~ £2°(x,) A (h €X) .

Various properties of H-differentials are listed, for
example, in [4] and [61. We recall here only the facts that
Fréchet differentiability (see [6] or [9]) for a definition)
implies H-differentiability, H-differentiability implies
G8teaux differentiability (see [6] or [9]; we shall further
write G-differentiability only), the notions of Fréchet and
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Hadamard differentiability are qquivalent in the case of
finite dimensional spaces and a G-differentiable Lipschitz-
ian mapping is H-differentiable (see [4],[61).

The last fact and the theorem of Sova quoted above
are the only known types of the criteria for Hadamard dif-
ferentiability. The purpose of this paper is to give some
other conditions under which a G-differentiable mapping is

H-differentiable.

2. Throughout the paper, let X and Y be normed 1li-
near real spaces. However, it is evident that our results
are valid (with a few slight formal modifications) in
metrizable topological linear spaces, too. By R , the real

line is denoted.

Theorem 1. Let X, be a point of X, Mc X a neigh-
bourhood of X5, £: M —> Y and assume that there is a
G-derivative £'(x,) of £ at the point X, . Then f has
an H-derivative at x, if and only if the functional o,

{qh“,h)sI%E£0%+th)—ﬂk“¢hdﬂl(t+0)

gb(a,h)= 0

is continuous at the point (0,%) € R* x X for every
fixed h € X , i.e. if and only if for every & > 0 and
h e X , there are >0 and 7 > 0 such that

1

l; [£(x,+th) - £(x,+th)1l < €

for all e e X with Ik -All<n andall te(0,d).
Proof. We can suppose that M is convex and open. Let
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A, > 0  be sufficiently small so that X,+ A, e M

and set

Bh,t) = L 0(+ht) - £0x,)]-£'(x )0

for heX and te (0,Ag) .

1° Suppose our condition is satisfied and let a num-
ber £ > 0 and a closed convex symmetric sequentially
compact set ( be given. It follows from G-differentiabi-
lity of £ at X, that there is d, e (0, Ay ) for eve-
ry given h € X such that

1) 18 (n,t) = -g‘-

for all t e (0,dy ) . Moreover, there is 7, > (0 such
that

(2) 1€ (x,) Ch- RN < =

whenever Il 4 - & Il <), because of continuity of
£ lxe): X— 7Y .

By our assumption, we can choose numbers dp € (0, dy )
and m e (0,7my) for every e X o0 that x, +
+th e M and

‘ 4 €
(3) ll;[f(‘x,,+th)-£‘(xa+tk)]ll £ 5

whenever Ilh - Il <m, and te (0,ds) .It Lollows
then from (1),(2),(3) that for every given € > 0 and
heX ,
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(4) 18 (R, WM 1B, ) +1B(h,t)- Sk, <
€18 Ca, )+ N£(x) (h-g) +

+ | %[f(x°+th)—£(x,+ t&)1l £

for all % e X with |h-Ahl<m, and all te€(0,d,).

Denote B(A)=ikh eX:llh -nl<n,? . These sets

are open and ;,LécBUh’) > C . Since C is compact, we

can choose a finite number of elements %,,...,h, e C such
m

that .U B(h )> C ; set dé:mwm{d',;,_ﬂ,.,., o, § - It fol-

lows then from (4) that

13 (k,t)l 2 ¢

for all t e (0,d;) and all % e C which means by the
theorem of Sova quoted above that £’(x,) is an H-deriva-

tive of £ at x, -

2° On the other hand, suppose £ has an H-derivati-
ve £'(x,) at X, . If the condition of our theorem were
not valid, such a number €, > 0 , an element %, &€ X and
sequences {M,¥c X and {t,3 c (0,Ay) would exist
that

1
llhn—holl<%, to < =

and
1
(5) b L Gt ) - £ (X + tm My )11 > &

forall m =4,2,... .

The mapping £'(x,): X —> Y  is continuous at A, by
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the definition so that there exists a number m), such that

2
(6) W€ (x,) Iy ~ £V, & =5

for all m = m', . Since Sy, — Mk, ,the set C={f,: m =

=0,4,2,,,3ia compact and so by the Mazur’s theorem the closed
convex hull 8 of Cu(-C) is symmetric and compact, too. By
the theorem of Sova, & (#,t)—> 0 if t — 0 uniformly with

respect to % e { and hence we can find m,',', such that

~ €
) L& S, ta) | & =

for all m = m’, and all m =0 .

We conclude from (6) and (7) that there is m, such
that

1
K-E;Ef(xo-f-tmho) - x4ty M)l £
€08 Uy, ty) + 18 (hy,ty)l +
+ N €(X,) by = £7(X) ol £ &

for a1l m = m, . However, this is a contradiction to (5).

The theorem is proved.

Corollary. Let M c X be a set with a non-empty
interior and let £: M — Y be a mapping having a G-deri-
vative at some interior point x, of M . Suppose there

is a functional @ s X —> R such that

P, + ) =-£xy+ )l £ @ (w-2)

for all w,r» & M and let Am (&) =0 and
h v
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P(th)£ec(t) g() for all heM and te (0,A)

where A > 0 and mWi¢(t)<oo
t— O+ t

Then £ possesses an H-derivative at the point X,

Proof. Let ¢ > 0 and h € X be given. There ex-
ists dy e (0, A) such that -1— o (t) < C for all

. 1
te(0,d5) where C=4+%sz(t) . Further,

there is 7, > 0 such that @ (h-k) < % whenever

I -% l<my .Consequently, ll%[f(\xo+th)— £(x,+th)III< €
whenever t & (0,dp,) and lh -% l<my and hence our

assertion is true by Theorem 1.

Now, let M be a neighbourhood of a point x, € X
and suppose there is a GAteaux variation VEf(x, &) (i.e.,
a nonlinear G-differential - see [6],(9]) of a mapping £ :
+ X—> Y at all points of M . Conaider the following
three types of continuity of the mapping V£(x,h): MxX—Y:

(a) V£(x,/) is separately continuous at all points of
{x,3 < X,

(b) V£(x,%) is jointly continuous at all points of
i3 = X,

(e) V£(x,4) is jointly continuous at all points of
{xpd = X

and, moreover, it is continuous in the variable x at the

point X, uniformly with respect to h & X with
Il =4,
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It is easy to sge, because of homogeneity of
VE(x,n) in & , that (a),(b),(c) are equivalent to
the following conditions (a”),(b’) and (c”), respectively:

(a’) V£(x,m) 1is continuous in x at the point X,

for every fixed % e X and V£ (%, 4 ) is continu-

ous at the point & = 0
(b°) V€(x,%) 1is jointly continuous at the point
(Xg ) o) H

(¢’) VE£(x, &) is continuous in x at X,
and V£ (x,, #)

uniformly

with respect to 2 € X with 1hl < 1

is continuous at the point M = 0 .

According to the well-known theorem of Vainberg (see
£9)), the condition (a’) is a sufficient one for the G-va-
riation V£ (x,, £ ) to be linear and continuous in % ;
it means £ ©possesses a G-derivative £’(x,) at X,
and VE(x,h) = £(x,) % for all /e X . Furt-
her, as it can be easily shown, the condition (c¢”) implies
the mapping f " has a Fréchet derivative at Xo - So, the
conditions (a) and (c) imply the existence of a G- and F-
derivative of £ at x, , respectively, and hence a natu-

ral question arises what is the meaning of the condition

(b). The answer is given by

Theorem 2. Let X, be a point of X, M < X a neigh-
bourhood of X, and let £: M—> Y be a mapping having

a G-variation Y£(x,#) in M . Suppose Vf (x, M) :
+:MxX— Y ie continuous at the point (%o, 0) .
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Then £ possesses an H-derivative f£'(x,) at the point
X, and Y£(x,,R) = £'(x,) for all h e X .

Proof. We can assume that the set M is convex and
open, Let %, be an arbitrary point of X, let € >0
be given. '
Continuity of Y£(x,% ) implies a G-derivative
£2(x,) of £ at x, exists (see [9]), Moreover, there are

% >0 and m >0 such that

X, +x e M and
(8) WVE (xp+ X, ) = NVE (x,+x,4) - VE(K,, 01 & €

whenever llxll< w and lyll<mn, x, € X . Set

=@+ Wy )1t ; then all points x,+th, , X, + th

and Xo+th + Pt(h-4,) belong to M if te (0,5),
2 e[0,41]1 and H& - hyl < 7 . By the mean-value theo-
rem, there is ), ,, e [0,4] for every te (0,d") and

heX ,I%h-mll<m such that

1
9) Iy [E0x, +th,) - £ (5, + th)] <

< "%Vf(xo'*tha“'""e,n.(”'"t""a)r th-th) =

= AWVE( +thy+ B, t(-2,), h-h )l .

It follows now from (8) and (9) that for every given
€>0 and %,€ X, thereare >0 and 7 >0
such that '
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A
)\;[f(xoa—tha)— £, +th)ll < e

for all t € (0,d) and s e X with [ -h,l< 7.
Hence £'(x,) is a H-derivative of £ at x, by our
Theorem 1.

Remark. Let g (t, &) be a real function on 6 x
x R (6 ¢ Ry ) satisfying the Carathéodory conditions
and having a partial derivative g', (t,«) ,let ¢, (t,«)
be bounded and continuous in the variable w« . M.M. Vain-
berg showed in [10] that a mapping X (t) — g (t, x (£))
from LQ_(G) into LQ_CG) possesses a jointly continuous

G-differential Dg (x,h )(t) = g'n(t,x () A (t) (x,hel,(G))
but it is nowhere Fréchet differentiable in L, (G) .

Another example of an operator satisfying all assumptions
of our theorem and being not Fréchet differentiable, was

given by Alexiewicz and Orlicz in [1] .

3. Let G and G’ be bounded subsets of m -dimen~
sional and m -dimensional Euclidean spaces R, and R,, ,

respectively, let s+ and q be arbitrary numbers, 4 <

£fp,q% o, Denote by Mg (G') and N, (@) the sets
of all real functions x (4,t) on @'x G  such that

Ix Coytily = lfsx(n,t)d.t <

or

= ]
llx(b,t)lluﬁ = Immlx (»,t) llLﬁ< 0 ,
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respectively; here | . Il,__" denotes an ordinary norm in
the Lebesgue space pr(G) and | . ll,_% a norm in
Lg (G’) . It is a well-known fact (see [5]) that M, (G*)

and Ny, (6) are linear spaces, I . lIM% end J. n"ﬂ are
norms in Mg (6’) and N, (G) , respectively, and
Mq’ (G’) and .N',,, (G) with these norms are Banach spaces.

Now, let X (4,t,« ) be a real function on G'x Gx R
satisfying the Carathéodory conditions; i.ee X (4, t, «)
is measurable in 4 for almost every t € G and all « ¢
€ R , measurable in t for a.e. » e G’ and all w e R
and continuous in &« for a.e. » € G' and a.e. t e G .

‘An operator K  defined by the formula
Kx(s) = fGKCb,t,u(t))dt (re@”)

(for measurable functions x (t) on G ) is called the

Urysohn operator (defined by K (ax,t,«) )e

We suppose in the proposition below that a partial de-
rivative X (4,t,«)  of the function K(s,t, «)
exists in G’x G xR and that both functions s.atiafy
the Carathéodory conditions.

Proposition. Let 1 £ 2, g < 0, x, € L, (@), let
U cLpy(G) be an open neighbourhood of zero, M = x, +
+ U and denote ﬁ={.x(/>,t)eﬁﬂ((§) s bf:ﬂ-smlx(/o,t)le us.
e A

Let X, X), , K Dbe as above and define an operator ¥ by

X (xy ) oy t) =X} (byt, %, (£) + x (5, (L) (»€G’,t66)
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for eNh(G) and % € L, (@) . Suppose ¥ maps

U = L.,.,(G) into Mg_ «G") is continuous at the point
(0,0) and ¥ (x,%) is continuous in the variable x

on Il for every fixed h e U . Let Kx, e Lo (G"). Then
K: M— LQ(G’) and there is an H-derivative K'(x,)1

1 Ly (G)—> Ly (6') of the operator K at the point X, -

Moreover,

IK'(xy) &0 (5) = fsx,:k(b,t,xo(t))h(t)dt (ne @

for all % € L, 6) .

Proof. By the mean-value theorem, there is a measur-
able (see [5]) function (s,t), 0< H(s,t)< 4 , such
that

Ife}{(/o,t,x‘,(t) +x (£ dt 11qu =
< ljsxm,t,xoce»u I+ llszL_(/:,t,oto(tH-’&(/a,t)at(t)).x(t)d.tll,_:
=1Kx, Iqu'-t- ﬂx('ﬂ‘\x,x)lqu'

for all x € L . The last term is finite for these x and
so K(M)c L,(6") .

It follows from the mean-value theorem again that

H%[K(x°+x+ch)<b)— K(x,+x)(5)] -
= X At % (D) 5 (0 ) dt I, =
= | fstxub,t,xact)»fx<t)+4a</,,m (t) -

~ KL (b, %)+ x (NS ()Idt N, =
2
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=X (x+deh, h) - X(x, b)),
[ 2

for every X e U, fr e L,‘,(G) and sufficiently small
v %0 (0£8(»,t) « 1) . The laat term converges to
zero if ¥ —» 0 because of homogeneity of ¥ (x, %) in

A and because v h lINp — (0 in that case. Hence

K possesses a G-differential at all pointa of M and

K (x) ;e (») = J;K_'w(b,t,x(t)) h(t)dt (b€

for x € M and & s L, (G). Moreover,

K> (x) % ﬂ,_q. = “:‘C(X-XO,}D) umi

for these x, v and so the G-differential is jointly
continuous at the point (x,, 0) . Now, Theorem 2 implies

that K'(X,) is an H-derivative of K at x, .

Remark. Our restriction to the case of a Lebesgue me-
asure is not essential and we can state the proposition for

more general spaces of the type of L, (6, &, @) .
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