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CARDINAL SUMS AND DIRECT PRODUCTS IN GALOIS
CONNECTIORS

Jarmila LIS, Praha

Abstract: In this paper we study Galois connections,
especially the Galois connections of cardinally and direct-
ly decomposable posets. We describe the poset of all pola-
rized mappings of cardinally decomposable posets, We give
a characterization of polarized mappings and study three
problems of [3]; we show by examples that, in some cases,
they have negative answers. We give a partial solution for
one of these problems concerning posets of all polarized
mappings between two posets;, where one of these posets is
directly decomposable.

Key _v_lgrds an% phraseg: Galois connections, polarized
mappings, cardinal sums and direct products of posets, car-
dinally indecomposable posets.

AMS: 06A15 Ref., . 2.724.1

1, Introduction. In this paper we study Galois connec-
tions, especially the Galois connections of cardinally and
directly decomposable posets.

Let A,B be posets, T: A—B , T*: B—> A
be antitone mappings with T*T(a)Z2 a , TT*(2) = &
for all a e A, b €B ; then <T, T*)> 4is called a Galois
connection between A ,B ; T is a polar:l.zéd mapping.

The poset of all polarized mappings A —> B  will
be denoted by &£ (A, B) (ef, [2],(3]).
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We use these symbols and assumptions:

X (resp. @ ) signifies the symbol for the direct
product (resp. for the cardinal sum);

1 denotes a singleton, 2 denotes a chain consis-
ting of two elements; the empty set (§ 1is a poset as well
as a lattice,

Let {T, T*> be a Galois connection between po-
sets A,B let o e A, & €B . Then, as it is well
known,

(1) T* 1is uniguely defined by T ;

(2) o = T*(&) it b £ T(a) -
In [3], among others,these problems are formulated:

33) A,B,C be given posets. Is
L(A,L(B,C) & L(L(A,B),C) 2

3) A,B,(C Dbe given posets. Is
LA, B=xC) & L(A,B)x £LCA,C) %

5) Does &£ (A, A) & £(B,B) imply that A = B 2

Theorem 9 represents a partial solution of the problem
3b). Generally, there is no positive solution for these
problems, which is demonstrated by examples in the last

section,

* 2o Cardinal sumg, It is well known that it is possib-
le to d escribe every poset as a cardinal sum of cardinally
indecomposable posets; we get this cardinal sum as a decom-
position of this poset according to the eqvuivalence rela-
tion generated by the relation A .
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If A or B is empty, then evidently £L(A,B)=4.
We shall study cardinally decomposable nonempty posets.

Theorem 1., Let A , B be posets, A=%@;IA; , B =
24063 By , where Ay %= 4, By + 4 are cardinally
indecomposable posets for all 4+ €I, 3 € J . Then
&£ (A,B) 1is not empty iff there exists a mapping ¢ :
s+ I1—J such that ¢ 1is onto, one-to-one and for all

iel, £(A;,Bgci) 1is not empty.

Proof. 1) Let Te L (A,B) , let 1 €I, a;c A,
be arbitrary., If T (ajy)e Bj , we denote 9 (4) = 3 .
Then T(Ay) € Bgcay holds since any A; is an equi-
valence class of A/e where ¢ 1is the transitive clo-
sure for the relation N . Let o €« Ay ,then a; ¢ o)
and thus T(a;) € T(a’,) . So, we have a mapping ?: 1
—> J which is one-to-one; ¢ 13_ even onto. Indud:, ir
4 € J 1is arbitrary, we take some Xy & B; .There ex-
iste 4 e€ I such that T™(by)e Ay . Since TT*(4y)z
z by , TT*(#) 4is contained in B; and s0 3 = @ (<).
Denote T= T/ T - T"/ch“ . Obviously, T, e
€ £(Ay,Bgey), <Ty, TX> 1is a Galois connection be-
tween A, Bgiy -

2) Let ¢ be some onto and one-to-one mapping 1—J ,
let there exist Ty & £ (A, Bgy)) such that (T,,T})
is a Galoie connection between A; , Bge) for all ¢ e
€ I . Define the mappings T: A—>B , T*: B—> A by
Tla)=Ty(a) if aed; , T*H)=T{(#) 1f $ € By, -
Evidently, < T, T*) forms a Galois connection between
A,B
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Theorem 2. Let A, B be posets, A EL@I Ay, B =
=% B; ,where Ay 4 F, By % § are cardinally
indecomposable posets for all L € I , 4 € J . We deno-
te by P  the set of all onio and one-to-one mappings
I—> J . Then

£CABY = @
L

@ (. x %A, Bo) .

Proof. 1) Obviously, in case F 1is empty, the asser-

tion is true. Let F be ncneﬁxpty. From the proof of the
previone theorem we know that for every T € £(A,B) the-
re exists a unique mapping ¢, & F such that {T;i;¢7 ¢
€ ¥y L (A, ,Bg csy) vhere Ty = T/A‘ . Denote &(T)=
= ATidier s desn; 6CT) € @ (o £ Ay, Bygyy )

2) Let {Tid;q1 €9 (%’ix £CAy,Bgy)) , d.ed,
there exists e mapping ¢eF such that <T;,T%)>
is a Galois connection between A , Bgwy foraell i e
€I .Denote 7 ({T 3;,,7) =T , where T(a)= Ti(a) if
aeh;y ,T*H)=TL () if % e Bgqy) . Then
{T,T*> forms a Galois connection between A ,B .
Evidently: ‘
a)Iif T,6e%(A,B), T&€ G , then @ = q
aend 6(T) & 6(6) .
b) I AT Yy, 16 g ‘q?p(ﬁx

then 41,(_('1'4'14_‘1) € n ({631 -

LA By ), AT 3 0p 446,

<iel»

) o (iT, 1) =m4T;3, 47, n0(T) = T for all

TELAB), (Tige @ (o LA, Byay))
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3, Direct productg. Firet we describe all polarized
mappings between the posetas 4,35 .

Theorem 3, Let A, B be peseta, et T: A—>3B
be an antitone mapping. Then T e & (A,B) iff for eve~
ry e3B thers exists an elament Qg € A such that
Tlag) =z & ; if T(x) = Z then % & ay . Such
element ap is defined uniquely for every element & .

Proof. The uniqueness of a, is obvious if @y ex-
ists.
I) Let T & s£(A,B) , denote ayp = T*(&) . Certainly,
TT*(#)=Tlag)= & ;i¢ T(x) = & , then x & T*( &)=
= Q;h .
II) Denote T*( &) = ay . In accordance with the unique-
ness of ay we get a mapping T*:B—> A. <T,T*>
is a Galois connection between A , B . Indeed:

If & £ 8 ,then & £ T(ays) end thus ag = T*(&)=<
< ag = T*(L) .

If % e B ,then clearly & = T(ay)=TT¥*(%),

if a e A, then @ £ aqqp,=TT*(a) since from

T(a)«T(a) we get a < Qray *

Corollary 4. Let A, B be complete lattices, T :
:A—> B be a mapping. Then T € £(A,B) iff T(04) =
=1p and T(Yay) = Q Tla,) .

Proof. I) Let T ¢ £ (A ,B) , then necessarily
TO) = 15 . T(Yay,) € T(a,) holds for any « ; if
4 uB, y € T(ay) for any o , then a, < T*(g) for
any o« , thus Ya, = T*(y) and g4 & T(Ua,),
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i.e.’ T(%‘Ja"‘) = QT{W¢) .

II) Let & ©be an arbitrary element of B , denote

a,‘_ar(}‘.{.&.x . Then

T(a«*)zT(U )= N, T(x) = &

ranze™ T2l ’

x £ ap if T Z& .

Definition 5. Let A, B, C  be posets. A 1is said
to satisfy the & -condition with respect to B, C for
Tie L(A,B), Tye £L(A,C) ,if for any e B, c e C
there exists T¥ (&) A TF(e) dn A . A  satisfies
the & -condition with respect to B , C , if A satis-
fies the & -condition with respect to B , C for any

T, € £(A,B), Ty e £CA,C) .

E.g., every N -semilattice satisfies the & -condi-~
tion with respect to any posets B, C

Lemmg 6. Let A ,B, C Dbe posets, T,,e:ﬁ(A,B),
Toe £(A,C).Define T: A—> Bx C as T(a)= (1, (a),
Ty(a)) forany ae€ A . Then Te £L(A,BxC) iff
A satisfies the & -condition with respect to B, C for
Tyy Ty

Proof. I) Let A satisfy the & -condition with res-
pect to B, C for T,, T, , define a mapping T™* : B x
x C—mA , T*(&,c)= T*(&) ATF(c) . Then <T, T*>
is a Galois connection between A , B < C  gince

1) both T and T* are antitone,
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2) TT#(B, ) = (T, (TX(&) A TF(C)), T, (THL) A T¥ (e 2

2 (T,TX (D), To T (e)) = (&, ¢) ,

T*T(a) = T*(Ty(a), To(a)) = TF¢T, @) A T¥Th(a) 2 @ .«

II) Let Ty € £(A,B), Ty e £L(A,C) and T €

€ £(A,BxC), where T(a)=(T,(a), T,(a)) . In accor-
dance with Theorem 3, for any (&, c)e B x C there ex;-
ists an element o, , @ A such that T (ap,) 2 (&,c) ;
X € ag, if T(x) = (&,c) . In particular,
Ty(ag )z, Tylay,) = ¢ , but thus ag, € qp = T (&),
Yo €A, = T¥Ce) . Let x £ ag, 4. , then T(.x)=(i‘,(.x) s
To(x)) 2 (T T L), T, I (e)) 2 (W, ¢) , i.e,x £ ap, and
THH) A TFCe) = ag,, = T*( &, c) really holds.

The following assertion is an immediate consequence of
Lemma 6:

Corollary 7. If A, B, C are posets, then A satis-
fies the & -condition with respect to B, C iff the po-
set L (A,B) x £(A,C) is so embeddable in
LCA,B = C) that for any (T,,Ty) e L(A,B) x L (A,C)
there exists T e £ (A, 3B = C) with Tla)= (T, (a), T,(a))
for all a e A .

Lemma 8, Let A ,B,C bepoéets,Te%ﬁ(A,BxC).
Define T,: A—> B , Tt A—C in this way: T(a) =
=(Ty(a),Ty(a)) for any a ¢ A . Then T;,T, are pola-
rized mappings iff for every & € B there exists some
¢y € C such that for any ¢ e C, TT*(#,¢) = (&, cp);
for every ¢ € C there exists some &, € B such that

foreny € B , TT*(&e) = (#,c) .

- 331 -



Ppoof. Let T, , T, be polarized mappings. Then by
Lemma 6 and its proof there is T*(#,c)= Ty (#)n TF(c),
i.e., T*(&,c) £ TF(&) . Denote cop = Ty T (&) . Ve
got (&, cy) & TTH ) = (T TFL), T, TH(8)) £ TT*(#,¢)
forany ce C . ’

If we put &, = T4TJ(c) , we can complete this part
of the proof by a similar reasoning.

II) Let YireB® 3¢, eC YeeC TTXW,c)

YeeC 3a,eB YoreB TT*(#,c) =z (8,,c)

v

(&, cp) ,

Denote ag = T*(,c,), a,= T*(&,,c) for every & e 3B,
¢ €« C . The element a4 satisfies the conditions from
Theorem 3 for T4 . Indeed, T(ay)=TT*(&,c,) = (&, c,) ,
thus T,(a,) = & ; let & £ T (x), i.e., T(x) =(Ty(x),
Ty(x)) 2 (&, Ty (X)) then, however, T (x) =
=TT*T(x) Z TT*(2, T,(x) = (&,¢,) and 80 x £ T*(&, cy.) = ay -
Analogous considerations hold for @, and T, as well,
Theorem 9. Let A, B, C be posets. Then
£CA,B)x £(A,C)= L(A,BxC)where the mappings T e
e L(A,BxC) and (T,,Ty) € L(A,B) x & (A, Clare in the
correspondence when T (a)=(T, (@), T,(a)) holds for each
ael, iff A satisfies the £ -condition with respect
to B,C and forany T € £ (A,B xC)

VoreB 3c,eC VeeC TT*(#,c)2(l,cp) ,
VeeC 34,63 VoeB TT*(,c)z(&,,e) .

Proof. Theorem 9 is a consequence of Lemmas 6 and 8
and of Corollary 7.
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Corollary 10, et A,3B, C be posets. Suppose that
either £(A,B) = £(4,0) = L(A,BxC)=f or that A
satisfies the & -condition with respect to B, C and

that there exirts T e £ (A, B =xC) (or resp,
T,c £(h,B) orresp. T, € £ (A,C) ) such that
TC(A) has & lower bound in B x C (or reap. T, (4A)

in B orrespe To(A) in C ). Then L£(A,B < C) =
Z£(h,B) = £(A,C) and in the second case 1, € A .

Proof. In the case £(A,B)=%(4,0)=LABxC)= 40
obviously &L (A,B=C)= £(A,B) = £(A,C)

Let Ty e £(A,B) , let T (a) = & for each asA.
Then a = T} (&) foreach aeAd which implies
() =y e A .

Let Te L(A,BxC) be arbitrary. Then
TT*(W,e) z(&eq), TT¥(W,e) = (by,¢) for any (&,c) e
eB xC where (f;,c,)=T(4,) . By Theorem 9, the proof
is complete.

Corollary 11. Let A,B,C be posets, let A satis~
£y the & -condition with respect to B, C , let either
€A or OgeB and O e C . Then
LA, BxC) = £(A,B) » L(A,C) .

Proof. By Theorem 9, this assertion is true.

4, Examples
Lemma 12. Let A,B  be posets, let Te £ (A,B) a,

v, 0y, @y € A , Thén the following assertions are true:
1) If a-ll & , then either T(a) ll T(4) or there
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exists ¢ € A such that a £ ¢ , & € ¢ .

2) If @ is a maximal element, then T*T(a) = a and
T(a) is a minimal element in TC(A) .

3) If a4, a, 6re different maximal elements, then
T(a,) | T(a,) -

Proof. 1) Let T(a) < T(&), then ¢ = T*T(a) =
ZT*T (W) ,1e00y @ £ ¢, £ ¢

2) Necessarily a < T*T(a ). In case a is maximal
we get @ = T*T(a) 3 if T(x) £ T(a) then a=T*T(a)=
=T*T(x) and thus T(a) = T(x) .

3) The remaining assertion is an obvious consegquence

of the previous ones,

Example 13. The poset A constructed below does not
satisfy the & -condition with respect to the posets 3B ,

C; LA,BxC)= L(A,B) = L (A, C) is not
true, though 1, e A, 0y eB, 0, e C (cf. Pig. 1).
I 1
a 2 x Y
0
A B=x=( BxC
£U,B) x £ (A,C) $£(A,BxC)
Fig. 41
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L(A,B)= £(A,C)= A, cf.[3], Theorem 1,7, All pola=-
rized mappings from &£ (A,B x C) are:

T Tl T Tal T Te| Ty
all1|4|x|1]|n]|1]0
4 ]x]|1|8]14({0]1
NERERER IR A L
Tab. 1
By constructing &L (A ,B x C) it is easily to

obtain Card T(A) £ 2 and {1 € T (A) if
Te £C(A,B=xC) .

Example 14. The poset A satisfies the &£ -condi-
tion with respect to the posets B, C , but 4, ¢ A,

0g € B, 0. € C . It follows that £ (A,BxC) =
= £L(A,B) < £(A,C) does not hold - cf. Fig. 2

£(A,B) = LA, L(A,B) x £(A,C)
Fig. 2

There is no difficulty in proving: £(A,B) x £ (A, C)
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is totally disordered (in the sense of [3]) since the posets
L(A,B) , £L(A,C) are totally disordered, but
L£(A,BxC) 1is not totally disordered¢ The mappings T,
T' e £(&,Bx C) defined by T(a)=x, T(H)=x,, T(0) = 1;

Ta) = x, T'(#) = x,,T(0,)= 4 are such that T'< T .
Exemple 15. Generally, it is not true that

(A, L(B,C)) = L(LA,B),C) for arbitrary posets
A,B,C (cf, Pig, 3):

B=( £ (A,B)
© 0 00 0 0 00 0 6 0 ©

£(3B,C) L(A, £(B,C))
Fig. 3

& (A,B) 18 totally disordered but C 1is not totally
disordered - thus in accordance with Theorem 1
(L CA,B),C) is empty; L (A, (B,C)) is not
emptye.
Example 16, Generally, also the following conjecture
does not hold:
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"If A,B are posets, L(AA) =X £L(B,B) , then
A=2B "o
Indeed, for the posets A ,B in Fig.4 we have

9
o)
j o
d

Fig. 4
LA AY = 1 since T(a) N T(ec); T(®) = T(a;),T(c.v);

0

Qﬁ

T(d) =2T(e); T*T(a)=ay T*T(c) = ¢ by Lemma 12 and
by definition of Galois connections, where T ¢ &£ (A, A)
Clearly, L(B,B) = 1 ,‘ but A = B does not hold,
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