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GENERATION OF COREFLECTIONS IN CATEGORIES

Ji#{ VILIMOVSKY, Praha

Abstract:This paper is concerned with generating of
reflections and coreflections in categories. In the first
section I give the fundamental construction of the paper,
the category K - F , where T 1is a monocoreflector in a
given category ¢ and X 1is any class of objects from

UL , and derive some properties of the notion. In the second
part I give an example in the category of topological spa-
ces, and make some remarks about bireflective subcategories.
The third section deals with applications in the category of
uniform spaces and uniformly continuous mappings.

Kei words _and ¥hraseg: coreflective and reflective sub-~
categories, metric-fine uniform space, maxigenerator.

AMS: Primary 18A40, 54B15 Ref. Z. 2,726.21, 3.962
Secondary 54D35, 54D60

1.
Suppose UL is a category., We shall denote, as usual,

by || +the clase of objects and by (X™ the class of

morphisms of the category Of , The symbol f: a —= & (or

£
@ —> & ) will denote a morphism from the object @ to

r .
1.1, Definition. Let (¢ be a category, F a coreflec-
tor from (L onto a coreflective subcategory & . For a €

eldl ,let gad’: F(a)—> a dencte the corresponding eore-
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flection., Further let X be a class of objects of O . We
shall say that an object @ & 10| has the property X -
-P if for every L e X ,(f:a — &) e U™ there exists
(g:a—>F(b)) e ™ oo that w¥g = £ .

Let X - F denote the full subcategory of (I gene-
rated by all objects with the property X - F .

Analogously the dual definition: Let T be a reflector
from (L onto a reflective subcategory & , for a e |l «”:
¢ & —» F(a) the corresponding reflection, X c |L| , We say
that a € |0l has the property K x I , if for every 2 €
eX, (f: r—> a)e ™  there exists (g:F(h)—ale
e 4™ go that g,(u}" = £ , We denote by X x F the cor-
responding full subcategory of &

1,2, Proposition, Let Of be a category, F a coreflec-
tor in the category (L . Let X,L ©be two classes of objects
of (L . Then the following is true:

() If X cL , then L-FcX-F .

®(XuvlL)-F=X-FPAL-TF .
The proof follows immediately from the definition.

1.3, Theorem. Let (f be a cocomplete locally and co-

locally small category, I a monocoreflector in (L , X any
class of objects from (U , Then X - F is a monocoreflec-
tive subcategory of & .

Eroof: I shall use the criterion of monocoreflectivity
given in [6], It follows from there that to prove the mono-
coreflectivity of X ~ F it suffices to prove the following:
a) X -F 1is closed under isomorphisms. (This is evident.)
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b) All coproducts of objects from X - T are in X-F .,

¢) Coequalisers of diagrams a,:::_}!r , where & elX-F!,
are in X -F .

a) Let {#,3 gy be a collection of objects from X -
-F.Let {fy %= S4.% ,; be their coproduct in the cs=-
tegory OL . Further let aeX, (f: Sy —>aldes A™ .
For every « € J  we have the morphism (fmy : % —> als
e L™ 5 B, € IX-F|, 8o there exists (g : &% —>
— F(a)) so that for every < € J  there 18 w¥gy, = fm, .
Further for every « € J we have the morphism g : & —
—>TF(a) ; consequently there exists exactly one (g : 3 by, —>
—>F(a))eX™ such that for every « & J  there is gmye=
= @, « This implies that for every « € J there is
«ome= «qu = fm, , from which g = £ . Conse-
quently S &, e IX-F1 .

b) Suppose given the diagram a::}b’ in the ca-
tegory U , & € |\K -F| . Let pp: & —>c be the coequ-
aliser of (£,q ) in the category (X . We are to show
that c e (K-F.| ., Let deX, (h:c—>d)ed™ . Then
(ip: & — d) e U™ , consequently there exists
(h:l —>Fld))e A™ so that w®h = hp .Since
(u,d'hf = @,‘*hg, and (a,"' is a monomorphism, Mhf = Hhg -
From the limit property of coequalisers there exists exactly
one (m:ic —» F(a))e A™ such that wp = $ Then
(wdu.m = (u,"'h = fp and p is an epimorphism, so that
‘ad'.w = M . This implies that c¢ e |1X - F I and the

theorem is proved,
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Further in this paper let O denote a complete, local-
ly and colocally small category, F +the monocoreflector from
(t onto a subcategory i . If a e |(L| , we shall denote
by y,": P(a.) —> a the corresponding monomorphism given
by the functor P .

Let us denote by FKA the monocoreflector in ({ onto the
subcategory K -F . Let F, @ be two monocoreflectors
in 0L , and &, € the corresponding monocoreflective subca-

tegories of CL . We shall write P < G 1iff &% c € .

1.4, Proposition. (a) If F< 6, then X-Fc K -G .
) X-F=X-F.

(¢) Fx 1is the largest monocoreflector (in the order "< ")
with the property (b).

1.5. Proposition, Let € = X -F  (monocoreflective
in @ ). Let Kg =U{Lcl®i|€=L-F3. Ihen:
() X, -F =% ,
(b) Ko 1is the largest class of objects from (L (in the
order given by inclﬁaion) which fulfils (a). (So whenever
L-F=¢ ,then LcXyg )

The proofs of the propositions 1.4 and 1,5 are evident.

s

1.6. Notegs (1) By 1.5, for every subcategory €=X-F
of the category (L , there exists the largest class L c | L)
such that € =L - F . We shall call it the F -maxigenerator
of € in & and denote it L = X ..  or only X, ,if
there will be no ambiguities.

We shall call the class X c 1(L| an T -maxigenerator
if there exists a subcategory € of X such that
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€C=%X-F, X=Km -

() 1£ X,Lc Il , then:

(@) X ¢ KXo »

() X ¢ I, dimplies X,, ¢ L., ,
(¢) Xpp v Lpp €c (K0 L)y ,

@ (Xpd = Kem

1.7. Propogition. Kemar =it €l®l|Ya € IK-F|V(a I, e
edm d(a EsF(h)e ™ such that u®3 =£3 .
The proof follows immediately from 1.1 and 1.5.

1.8, Propogition. Let € be a subcategory of the cate-
gory 00 . Let

Ke=iteldl|Vael€lV(f:a —>2)e ™ A(g:a —F(ENeA™
such that “g=£% .

Then K -F 1is the least subcategory in (I of the type
K-F containing ¢ .

To prove this proposition it suffices to notice that
Ke-F=N{X-Fl€cX-Ft and that the inter-
section of a family of sulc ategories of the type K - F is
again of this type.

1.9. Note. Evidently such X, is an F -maxigenerator.
The category X, -F from the foregoing proposition we shall
call the F -~hull of € 4in (& and denote Fhull (<€) .
It is easy to see the validity of the following two proposi-

tions:
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1,10, Proposition. Let X ©be an F -maxigenerator,
X-Fecl-F .Them L cX .

1.11. Propogition. Let X ,L ©be T -maxigenerators;
then (K "nL)-F=FPhutl (XK-FUL-F).

1,12, Thecrem, Be < a monocoreflective subcategory

of a category &L , & < ¢, G the corresponding monoco-
reflector. Then K¢ = fxe lAI|F(x) = G(x)} .
In a special case: Xppo, = i& € |AI|F (&) =F(&)3} .

(We understand by the equality an isomorphism in the catego-~
ry A )

Proof: Let x € Ky . There is G(x) e |€ | .Let 7% :
: G(x) —> X be the monomorphism corresponding to the co-
reflector G . There exists (§*: 6(x) —=>TF(x)) e A™
such that w*§* = m* . Since ¥ c €, F(x) e | €]
Then there exists (exactly one) (B¥*:F(x)—> G(x)) e ™
so that m* 3> = «* . Consequently 2™ A¥Ps ™ §* =m* ,
wEXDY = XN = w* . The morphisms w*, n*  are
monomorphisme, so F (x) is isomorphic to G (x) .
Conversely let F(x) = G(x), rel€l,(£: 0 —>x) €
€ A™ . There is G(&)= & ,80 (G(£): & —> G(xND e ™ ,
But G(x)=TF(x), hence, x € Ko .
There 1s a question: Is every monocoreflective subcategory
€ in A ‘containing & of the type X - F  for some
X ? The answer is negative = see example 1.15 .

The following two propositions are easy:

1.13. Proposition. Xg,, .. 18 closed under retracts.
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1.14, Proposition, & -F= %, H-F=04 . A, &
are maxigenerators. If « is an ordinal number, we denocte
by P, the set of all ordinal numbers less than o . The
set Py 'is well ordered, hence, we can consider P, as a
thin category, where for every 3, ¥ € P“‘ there is &
morphism from 3 to ¥y if end only if B £ 7y .

1.15, gx_agml_g: We consider the category ?01” - Paeq
is cocomplete (because every subset of P@'w, has a sup-
remum lying in P@_‘*,f e ?4)44,4 is a small category so
it is locally and colocally small, It is easy to verify that
N c P04+4 is monccoreflective iff fcor every subset B <
c B there is Sup B e B, Let B be monocoreflective in
PQ,M N F the corresponding monoccreflector. Let X c P“,ﬂ, ,
t €Ryeq - Lot Xy = Jma"{cce}()oc =t ?.There i8¢ t e X-PF
if and only if &, = o, or there exists o € e such that
t=swv s b, .

Let us consider ) = Pw_1+4 now. P“’o“’- is monocore-
flective in P‘.,"M , Pg,o*,, c Py, +2 . Suppose there ex-
ists XK c Py, 44 such that Po 42 = K - F . It is easy to
see that every element from X is less than w, + 2 , Hen=-

ce, Wo+3e€eX-F="P4y,, , which is a contradiction.

From the definition of & maxigenerator and from 1,11 we

get easily:
1,16, Proposition. The intersection of two F -maxige-

nerators is again an F ~-maxigenerator.

1,17, Definition. Let (L be a cocomplete, locally and

colocally small category, I a monocoreflector in L . Let
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us denote by Ap  the class of all subcategories ¢ © /2
such that there exists X c | (LI 80 that € =X -F . On

Ap we define the operations "A ", " v ":

K-FAL-F=((XXouvulL)-F

ki
X-FvL-F=(X,nL,)-F .

1.18, Theorem. (Ap,A,V) forms a complete distribu-
tive lattice with 0, 1 .

The proof follows immediately from 1,16 and 1,17. The
role of 0 1is played by the category & and the role of 1
is played by the category (L .

1.19. Definition. If XK < 10L] , we define by induction:
X*-F=X-TF ,

Kn+4—P=(KW-F)~F for m =1 .

1.20. Proposition. (a) X,, nX-F = & .
() If m =1, then X™-FAX™-F=X"""Fr (K™ P, =5
The proof is evident,

1,21, Analogously to 1.2 - 1,20 we can formulate and pro-

ve the duals 1.2° = 1,20° if we begin with the definition of
XxF.

References: The construction X - F is given also in
[11] and a special case in [8]. The construction in the cate-

gory of uniform spaces is described in [3].

2.

We shall denote by CR the category of topological
completely regular T, spaces and continuous mappings. CR

- 312 -



is complete, locally and colocally small category. The func-

tor 3 which assigns to every space X from (R its Cech-
Stone compactification, is an epireflector in CR . Let us de~
note by Comp the corresponding subcategory of CR . Furt-
her we denote by Realcomfi the epireflective subcategory of
all realcompact spaces, The realcompact reflection will be de-

noted, as usual, K .

2,1, Proposition. Let X be a clasa of spaces from CR
closed under continuous images, F an epireflector in CR .
Then X € Kx F if and only if for every embedding j:Y =»X
there exists ¢:F(Y) —=X such that g@’ = 4 (where &’:
:Y—= F(Y) is the corresponding reflection),

Proof: The necessity of the condition is evident.

Let X from CR satisfy the condition, Let Ye K, £: Y —
—> X continuous, and let Z = £(Y) . By assumption, Z e X ;
let j: Z<—>1Y be the embedding. There exists g : F(Z)—>
-»X continuous such that g,coz =3 . Let ¢ =g F(£), Then
q(ty:'@F(f)(wy = ?g',szf= £ .

Hence, X e X x P .

2,2, Corollary. Be X .a class of spaces from CR closed
under continuous images., Then X € X x 3 if and only if every
subgpace of X which lies in X 1is relatively compact.

2.3, Example: Let Psewdocompr denote the class of all
peeudocompact spaces in CR . We can easily see that Pseudoromp
is exactly the class of all spaces fulfilling the condition
vX = X . Using 1.12" we can see that Pseudocomfr is a f3-
maxigenerator and that Paeudocomp x 3 = 3hutl (Realeomp) .
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Let us suppose the existence of a measurable cardinal
(i.e. a cardinal m  such that there exists a set § of po-
wer m and a nontrivial two valued measure on ez S va-
nishing on onepoint sets). Let X be a discrete space of a
measurable power., Then X 1s not realcompact, but every con-
tinuous mapping from a pseudocompact space into X can be ex-
tended to e continuous mapping into (BX ; consequently
X € Pseudocompr x 3 -

Hence, the epireflective subcategory Realcomp is distinct
from its [3 -hull in the category CR .

2,4, Definition. We shall call the subcategory € of XX

bireflective , if it is both epireflective and monocoreflecti-

ve. (For example, the symmetric graphs in the category of all
graphs.)

2,5, Lemma, Suppose ¢ is bireflective in L ; let F,

be the corresponding epireflector, F, the corresponding mo-
nocoreflector, a, & € |(L| . Then a € &% x F; if and only if
¥ edfal-T .

Proof: We denote by wh:a—>F(a), @y P,_(a,);-b a
the morphisms generated by the functors F;, T, . Let a €
e{f3xF, . For every (f: & —>a)e (L™ there exists £ :
+F, (&) —>-a  such that £4¢~"3"=£. F,(&) e 1€l , hen~
ce there exists exactly one P:E(&)—> F, (@) such that

@2 = £, . If we let £'=49(w‘3,’ , then:
(LZf':@:é@ﬁzf,‘@fsf . Hence,ﬂe&a.”:-»?,, .

The converse implicetion is analogous.
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The following three propositions are corollaries of the
foregoing lemma:

2.6, Propogitiop. For every Kc|ﬂ,!:)(x?1 is
an F, -maxigenerator, X - T, 1is an F, -maxigenerator,

2.7. Bropogition. For every Kﬂm =(XxF)-Fy ,

KF,.M

2.8, Proposition. Let € be an epireflective suboatego-
ry of 0L , F the corresponding epireflector. Then € is b’.t-
reflective if and only if every F -maxigenerator is a mono-
coreflective subcategory of (I . (Analogously the dual propo-
sition.)

We note that in Haus (the category of Hausdorff apacesv)
orin CR or in Umif , or in separated uniform spaces
there is no bireflective subcategory except the whole catego-
ry. The result for topology appears in [9]; the result for
uniform spaces is due to M, HuSek (unpublished),

3.

We shall treat the applications of the theory in the ca-
tegory of uniform spaces now, By a uniform space we shall un_
derstand always a separated uniform space with the uniformity
given by a system of uniform coverings (see [71), Ve denote
by Unmif the category of separated uniform spaces and uni-
formly continuous mappings. The category Umif 1is complete
and coeomplete.

The products are uniform products, equalisers embeddings of

closed subspaces, coproducts are uniform sums, coequalisers
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natural projections onto quotient spaces. The category Umif
is evidently locally and colocally small,

We denote by FEime the monocoreflective subcategory of
Unmif oonsisting of all fine gpaces; let o be the cor-
responding monocoreflector, Purther, let Sulf Dbe the ca-
tegory of all subfine spaces (subspaces of fine ones), Sulf
is again monocoreflective; let £ be the corresponding co-
reflector. Let Locf  be the category of all locally fine
spaces (i,e. spaces, where every uniformly locally uniform
covering is uniform), Locf  is monocoreflective in Unmif;
lo‘t A be the corresponding coreflector. Then Eime c Subfc
cLlocf,lee x < £ < A .

Farther, let Inj be the class of all injective uniform
spaces, 7N the class of metric spaces, ¥7 of complete
metric spaces, Comﬂ the class of all complete spaces. The
last one is epireflective in Unif , We denote, as usual,
by 7 the epireflector assigning to every uniform space its

completion,

3.1, Ezgm. Let X ©be a class of uniform spaces
closed under subspaces, ' a monacoreflector in Umif, ‘“‘x s
s P(X) — X the corresponding monomorphisms. The uniform
space X is from X - F if and only if for every Y from
X, £: X—-T->- Y uniformly continuous and onto, there ex-
ists ¢: X—> F(Y) uniformly continuous so that @.”9 =£ .

The proof is the dual analogon of the proof of 2.1,

3.2, Definition, We say that the reflector G in the
category Umif 1is a modifieation, if for every uniform spa-
oe wX the corresponding reflection wX—= 6(@X) is
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an identity on X . Hence, G(w) 1is the finegt uniformi-
ty on X coarser than y such that G (wX) 1ies in the
corresponding reflective subcategory. Analogously we define
a comodification,

In [10]) it is proved that in Umif every coreflector

is a comodification.

3.3, Let Y be a uniform space, {M,l,ey all its met-
ric uniformly continuous images, frp: «Y—> M, the cor-

responding mappings onto. Then (u,Y is projectively genera-

ted by the family {pgloe) (see for instance [7]). Let F

be a comodification in the category Umif now, We denote
um(w the uni{ormity on Y projectively generated by
the family {Y Lo F(Ma)laej s where s is, from
the point of view of sets, the same as i, . Further we defi-
ne by transfinite induction:

@e) o, @
m =a (u @) , and

if 8 1s a limit ordinal, we set 4w = Y, 4w .

There exists an ordinal number ¢ such that whenever d =
= 4 (J° an ordinal number), then .w“n@, = u,(r)‘a, . We sget
wlwY) = (“'(r’t“')y . We can easily see that a4 is a functor
in the category Umif .

3e4. Proposition. The functor u from the foregoing pa-
regraph is exactly the monocoreflector F,, (see 1,3) onto
the subcategory M - F .

The proof follows easily from the definition of « .
The properties of the category M - « are described main-

1y in (4], further in (1},(2),031,(13]1,[14]. I shall present
some other examples here,
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B’S'M’ w-&-w.

Proof: Every uniform space X 1is embeddable into a pro-
duot of injective uniform spaces T Ye = Z . Isbell sho-

wed in [7) that the uniformity on X 1s induced by embedding
into the space «cZ . Now, it is easy to complete the proof,

3.6. Exgmple: X e Compl — o« if and only if its comp-
letion is a fine space.

Eroof: Let X € Compl - ,and let 3: X <> gX be the
embedding into the completion, Then 4: X—» <7 X 1is uni-
formly continuous. Every Cauchy filter on o« X is evi-
dently Cauchy on 7 X . Hence, e« X 1is complete, Then
(7 1is a reflector) 2 X 1is isomorphic to o 2#X . Hence,
7X 4is fine,

Conversely, let X be a fine space, Y a complete 'spaco.
£f31 X—>Y uniformly continuous, 4 : X< ¥ X the embed-
ding. There exists (exactly onme) h: yX—> Y uniformly
continuous such that M4 = £ .

24X 1is fine so that fy is uniformly continuous into «Y .
Hence, £ is uniforhly continuous from X to xY , so Xe

e Compl ~ < ,
3.70M8 Tm—& -77)1—-1-77”.-.2. .
Proof: Ginsburg and Isbell proved (see [7]) that for e-
very complete metric space M, ApM = <xoM . Furt-

her « < £ < A , from which the proposition follows imme-
dia.tely.

From the last example it follows that Swulf c ¢M - o .
Hence, (M), 0 © (Imi)dgmas -
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3.8, Definition. Let ¥ be a full subcategory of Unif .
We define the full subcategory Sulr-€ of Unif: X e
e Sulr -~ € if and only if there exists some 7 in ¢ such
that X 4is uniformly embeddable into Y .

3.9. Theorem. Let € 1be a coreflective subcategory in
Unif, F  the corresponding coreflector. Them Sul-- ¢ is
monocoreflective. (Let us denote ,2..‘ the corresponding core~
flector.)

Broof: Let X & |Unif| . We shall construct L£,X . The-
re exists an injective space Y and j; X<—=Y  embedding.
We define ,zex to be the set X with the uniformity indu-
ced by the embedding 4’: X< F(Y) . Clearly, X € Subr- €.
Let Z ¢, 4:X' <> Z embedding, f:X’—>»X uniform-
1y continuous. Then there exists £': Z —»Y such that £% =
= 3£ . £’ is uniformly continuous into F(Y) ,E'MX
is uniformly continuous into .LeX . The unicity 1is evi-
dent, Hence, £, is a comodificationm.

If ¥ 4is injective, then evidently lcY = P(Y) . So we get
a stronger propositions Subr- € = Imj - F .

3.10, Example: Sulr - (Compl - <) = Subf .
The proof is evident.
Copollary: Imj - o =i - L = Imj -« .

3.11, Propogition. Let F be a coreflector im WUmif ,
& the corresponding monocoreflective subcategory., & 1is
closed under subspaces if and only if (Imj ) = Unif |

The proof is evident.
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let X-TF be closed under subspaces (in Unmif ), then
X-F = Inj - P> Inyg ~F, eo0 there 18 (X)g,,. <
c (Imid,, ;in particular X c (Imi) ..

3.12. Legma. Let P be a comodification in Unif
¥ +the corresponding coreflective subcategory. S is clo-
sed under subspaces if and only if for every X,Y e |Unifl,
X cY implies P(X) < F(Y) .

The proof follows immediately from the fundamental pro-

perties of comodifications.

3.13. Theorem. Let F, G ©be two comodifications in
Unif  preserving uniform embeddings. Then the class X =
= ¢XIF(X) = G(X)} is closed under subspaces,

The theorem is an easy consequence of the lemma 3,12 .

3.14. Corollaries: 1) The class {X [£X = AX 3} 4is he-
reditary.
2) Let & Dbe monocoreflective, F' the corresponding core-
flector. Then, if ¥ is hereditary, X - F hereditary, then
there is X¢ .. hereditary.

3) Since for every complete metric space X , £LX = AX, it
follows from 1) that M c {XI1£X = AX3 ; hence, for eve-
ry metric space M , LM =AM ; and M - L =M -2 .

3.15. ‘Thﬁozﬂ. 7’m - cM ~ /a .

Proof: Let XegyM-x, MeM, £: X —= M uni-
formly continuous, 3 : M <> yM embedding., Further, let
LicygM —= oM be the uniformly continuous identity
mapping, L : M — M the identity mapping (uniformly
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continuous). There exists ¢':X — <y M uniformly con-
tinuous such that 4 g’ = 3f . The functor £ commutes with
completion [3], so that « N = LyM = 2 M . Hence,
o' =3'g , where ¢ : X—>2M is uniformly continuous, A
tAMc—> xyM embedding. Evidently, 1 j’=jL,4i4’'g » 39 =
= 3£ 5 4 1s a monomorphism, so LG = £ . Consequently
Xem-2 .

3.16., Corollary: From 3.7, 3.14, 3.15 we get:
MM-ct=M-L=gM-LaM-A =gMm-4 .
Let us denote by Precomfir  the category of precompact uni-
form spaces and uniformly continuous mappings. Precomfr 1is
epireflective in Umif . The corresponding reflection (it
is a modification) will be denoted 41 . Notice that, whenever

¢ 4is a uniformity on X , @ 1s topologically compatib-
le with @ . See [7]. ’

3.17. Example: Precompp - « = Fine

Proof: For every uniform space wX, x@uX = xpeuX -
The identity 4d : ‘«,x —_— X is a precompact reflection,
If X € Pecomfr - < ,then the identity id: uX—> acpuX=
= «@X 1is uniformly continuous. Hence, x @ = @ , 80 uX

is fine. The converse inclusion is trivial,
3.18, Example: Subf - « = Fime .

Broof: Let X be a precompact space. Then X = gp X
is a Samuel compactification of X , and is a fine space., Then
X 18 subfine; consequently Precomf c Sulbf .Using 1.2 we
get Subf - x c Pecomp - « (= Fime) . Hence, Subf- =

= Fime .
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3.19. C ieg: Whenever Subf c X , then X - < =

= Fine . For example:

Locf - «« = FPine 3
(yM - ) - « = Fine .

By 3.6, Pucomp c Compl - < , hence (Comphl —x)- x =

= Fine .

R

erences: 3.5 is stated -in [3] and attributed to Isbell =

Rice, It appears also in [12], 3.6 appears also in [5],

3.4 appears also in [13] and [14]. In the special case, for
Fumow, Fy =u - gee [1],[2],[13],[14] (independently
due to Frolik and Rice).

All the overlapping results were obtained independently.

f1]

[2]
(3]

(4]
[5]
[6]

[n
(8]
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