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Commentationes Mathematicae Universitatis Oarolinae 

14,2 (1973) 

GENERATION OP COREFLECTIONS IN CATEGORIES 

Jirf VILfMOVSKf, Praha 

AbstractsThis paper is concerned with generating of 
reflections and coreflections in categories. In the first 
section I give the fundamental construction of the paper, 
the category X - F , where T is a monocoreflector in a 
given category 01 and X is any class of objects from 

OL , and derive some properties of the notion. In the second 
part I give an example in the category of topological spa­
ces, and make some remarks about bireflective subcategories. 
The third section deals with applications in the category of 
uniform spaces and uniformly continuous mappings. 

categories, metric-fine uniform space, maxigenerator. 

AMS: Primary 18A40, 54B15 Ref. Z. 2.726.21, 3.962 

Secondary 54D35, 54D60 

1 . 
Suppose 01 is a category* We shall denote, as usual, 

by ICt I the class of objects and by CC"1* the class of 

morphisms of the category OL . The symbol £: O/—*» Jtr (or 

a/ —-> $y ) will denote a morphism from the object a> to 

Jbr . 

*•*• Definition. Let OL be a category, F a coreflec­

tor from OL onto a coreflective subcategory & . Por a, e 

€ IcXI , let yf'i F Co,)—>• a, denote the corresponding core-
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flection. Further let X be a class of objects of OL . We 

shall say that an object cu fi \OL\ has the property X -

- F if for every ireX-(f:cu--»>ir)c a** there exists 

C9.S w —*» T(Jb)) e CI"* so that (tPq. 0 £ . 

Let X - F denote the full subcategory of OL gene­

rated by all objects with the property X - F . 

Analogously the dual definitions Let F be a reflector 

from OL onto a reflective subcategory & , for cue \OL\^ * 

id,—>>. FCo/) the corresponding reflection, X c I (XI , We say 

that a/ e \0L\ has the property X * F , if for every to e 

e X , Cfs ir—*» a,)e OL^ there exists C9.; FC£)-*a)e 

€ cX/Tn/ so that 9 - ^ = £ • We denote by X * F the cor­

responding full subcategory of OL . 

1.2. Proposition, Let OL be a category, F a coreflec-

tor in the category OL , Let X ,L be two classes of objects 

of OL . Then the following is trues 

(a) If X c L , then L - F c K - F . 

( b ) ( X u L ) - F - K - P n L - P . 

The proof follows immediately from the definition. 

^•3t Theorem. Let OL be a cocomplete locally and co-

locally small category, F a monocoreflector in 01 , X any 

class of objects from OL . Then K - F is a monocoreflec-

tive subcategory of OL . 

Proof s I shall use the criterion of monocoreflectivity 

given la [6]. It follows from there that to prove the mono­

coreflectivity of X - F it suffices to prove the followings 

a) X - F is closed under isomorphisms. (This is evident.) 
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b) All coproducts of objects from X - F are in K - F # 

c) Coequalisers of diagrams t^ZZ j%& « where ire IX- Fl , 

are in X - F . 

a) Let i Jb^ i^ € ^ be a col lect ion of objects from X -

- F . Let iJb^Sz** 2 ifc !<*.«;, be their coproduct in the cft-

tegory (X . Further l e t a, e X , (£: ZJb^ > a,) e CI""' -

For every «c e J we have the morphism (im/^ : Jfe ,̂—* o )̂ e 

e a w > JftJc, * I K - F I f so there ex i s t s C ^ : Afc > 

—>F(a,)) so that for every <& e J there i s ft**"^ -» fm^ . 

Further for every oc c J we have the morphism q^ : to^ —* 

—^FCa,) | consequently there ex i s t s exactly one (q,: %Jt&~~* 

—&> T (a,)) e OL'™' such that for every cc 6. J there i s ^ofe* 

* 9 ^ • This implies that for every oc e J there i s 

(** tyM'ec** flffyoc ** ^tH'oc > from which Q/f'fy ** £- • Conse~ 

quently S ^ C I X - P I . 

b) Suppose given the diagram a,^ ^ J2K in the ca-

tegory OL , Six € IX - F l . Let q,: Ĵ r -—•*• c be the coequ-

a l i ser of C£, <fr) in the category OC . We are to show 

that c e I K - P I . L e t dL e X , Civ: c — > <i) eCfc"*'. Then 

ClJv>fv: Ĵ  =*• ol) € OL'™' -, consequently there ex i s t s 

(Jfc:Jfr > F C c i ) ) e a / n v so that ^ A / • jfc^ .Since 

QA, Jh£» ^ J b ^ and ^ ^ i s a monomorphism, Jk,f a? jh,^. . 

From the limit property of coequalisers there exists exactly 

one C AA, : c 9* F C ol ) ) € fit""' such that ju,>p, m #i .Then 

(pt- **>/(*> « ^ ^ -« A>fv and .ft i s an epimorphism, so that 

(j^u, ssr H . This implies that c e IX - F I and the 

theorem i s proved. 
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Further in this paper let OL denote a complete, local­

ly and colocally small category, F the monocoreflector from 

OL onto a subcategory 3r , If a> c I OL\ , we shall denote 

by fif: FCoO -*• a, the corresponding monomorphism given 

by the functor F . 

Let us denote by F% the monocoreflector in OL onto the 

subcategory X - F - Let F, (x be two monocoreflectors 

in OL > and &9 *€ the corresponding monocoref lective subca­

tegories of OL . We shall write F <: ff iff # c <e . 

1.4. Proposition, (a) If F < 6 , then X - F c X - S . 

(b) X - F * X - FK . 

(c) FK i s the largest monocoreflector (in the order n <. M) 

with the property (b) . 

1.5. Proposition. Let <6 -» X - F (monocoref l ec t ive 

in OL ) . Let X«g -* U * L c tCt|J<e«L-F J . Then: 

(a) X€ - F » « , 

(b) X<g is the largest class of objects from OL (in the 

order given by inclusion) which fulfils (a). (So whenever 

L - F * t , then L c X ^ .) 

The proofs of the propositions 1.4 and 1.5 are evident. 

!•£• Notes: (1) By 1.5, for every subcategory #-=X-F 

of the category OL 9 there exists the largest class L clftl 

such that ? s l - P . We shall call it the F -maxigenerator 

of £ in OL and denote it L * Xp^^^ or only Xmv »*£ 

there will be no ambiguities. 

We shall call the class X c 1 OL I an F -maxigenerator 

if there exists a subcategory <£ of OL such that 
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•£ -r K - F , A*8 A/nj, • 

(2) If X, L c \0i\ , then: 

<*) X c X ^ , 

(b) X c L implies lkm c L ^ , 

(c) X ^ u i ^ c CX u L U , 

(d> f X ^ U - K^ . 

1.7. Proposition. XF/waJ6,~ * * e lfl£l|Vo, e IX-F I VC<* £-*.*>€ 

e flt/w 3Co/-?l>FC^)>€ a*" such that < a ^ -* £ J . 

The proof follows immediately from 1.1 and 1.5. 

1.8. Proposition. Let i? be a subcategory of the cate­

gory 00 . Let 

K<g - lire I a i |Y* € I €1 VCf: a —•A') e (HT0 2(%-. a, —+>?<*)) eOLm 

such that (txa sa f f . 

Then X - F is the least subcategory in flt of the type 

K - F containing % . 

To prove this proposition it suffices to notice that 

X ^ - F s - n - C X - F I ^ c X - F f and that the inter­

section of a family of subcategories of the type X - F is 

again of this type. 

1.9. Note. Evidently such X ^ is an F -maxigenerator. 

The category X^ - F from the f$p*egoing proposition we shall 

call the F-hull of <t in a and denote I^juUCt€) -

It is easy to see the validity of the following two proposi­

tions: 
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1.10. Proposition. Let X be an F -maxigeneratorf 

X - F c l - F . Then L c X . 

1.11. Proposition, Let X , L be F -maxigenerators; 

then ( X n L ) - F r TJkuM C X - F u L - F ) . 

1»12# Theorem. Be *C a monocoreflective subcategory 

of a category Ci , # c <£ ., 6 the corresponding monoco-

reflector. Then X*£ .»*x6iai|FCx)-*(x<:.x)J . 

In a special case: Xfmutk> -» 4 Xx e \OL\ j FK (Xr) -» F(Jtr) } . 

(We understand by the equality an isomorphism in the catego­

ry a .) 

Proof: Let x € K<£ . There is G (x) e I *€ I . Let ^ x s 

. (JCx) — ^ - x be the monomorphism corresponding to the co-

reflector 6 . There exists C§*: <?Cx) =>FCx)) e 0t/m' 

such that ^*f * =* ̂  . Since & c <£ , F Cx) e I € I . 

Then there exists (exactly one) C^*;FCx)—> G (*)) e Oi^ 

so that n\* <&* ssr <u>* . Consequently i£* <£*£*=. p* §* » ̂  > 

^ x ^ * ^ . x _ ^ ^x _ ^* # The morphisms p*, ^* are 

monomorphisms, so F Cx) is isomorphic to GCx) . 

Conversely let F (x) - G Cx ) , Xr e I <6 I , ( £ : Xr > x ) € 

€ (l™ . There is 6 Ux) * Xr , so C 6 Cf): Jer—> 0Cx)) 6 0r v , 

Bat 6Cx)=rFCx) f hencef * e K ^ -• 

There is a question: Is every monocoreflective subcategory 

*6 in Ct containing *& of the type K - F for some 

TH ? The answer is negative - see example 1.15 . 

The following two propositions are easy: 

1.13. Proposition. Kp̂ -vo*. i s cl°se<i under retracts. 
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1.14. Proposition. Ot - F « # , #-- F - 01 . OL , & 

are maxigenerators. If cc is an ordinal number, we denote 

by P^ the set of all ordinal numbers less than «c . The 

set Poc is well ordered, hence, we can consider P^ as a 

thin category, where for every /3 , <% e: P^ there is a 

morphism from [3 to -y if and only if /$ -̂  y • 

!•!->• Example: We consider the category P^ +/f . P4H.4 

is cocomplete (because every subset of p4̂ 4.>i has a sup-

remum lying in P^ +^ ). P ^ 4. 4 is a small category so 

it is locally and colocally small. It is easy to verify that 

& c P.̂ 4.4 is monocoreflective iff fcr every subset B c 

c $ there is Ŝ tft B € fl , Let 18 be monocoreflective in 

P$> 4.4 , F the corresponding monoccreflector. Let XcP^,^, 

i e PttVM , Let Kt = Imf itc e K J cc 35 i } . There is i € X - P 

if and only if Jkt = o>^ or there exists or € & such that 

t £ tr ^ Jht . 

Let us consider lb » P^+/f now. P^ + 2 is monocore­

flective in ?cs +4 , Po0*4 c Po>0+2 . Suppose there ex­

ists K cP^, +^ such that ?&> + 2 = X - F . It is easy to 

see that every element from K ie less than <u0 + 2 .Hen­

ce, 6)p + 3 e X - F * P̂ > 4. 2 , which is a contradiction. 

Prom the definition of a maxigenerator and from 1.11 we 

get easily: 

I.l6# Proposition* The intersection of two P -maxige­

nerators is again an F -maxigenerator. 

1«17* Definition. Let Oi be a cocomplete, locally and 

colocally small category, p a monocoreflector in 01 . Let 
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us denote by Ap the c lass of a l l subcategories ? c d 

such that there ex is ts X c I Qi I so that *£ * X - F . On 

A F we define the operations M A % w v "* 

X - F A L ~ F = (X u L ) - F , 

X - F v L ~ F ~ ( K ^ L , ) - F . 

1»18. theorem. ( Ap , A , v ) forms a complete distribu­

tive lattice with 0, A . 

The proof follows immediately from 1.16 and 1.17. The 

role of 0 is played by the category & and the role of i 

is played by the category 01 

1»1^* Definition. If X c I Ot I , we define by induction: 

K4 - F . X - F , 

X^'-F- CX^-F^F for m, > 4 . ' 

1^20. Proposition., (a) X ^ n I - F = ^ • 

(b) If »v =>4 , t h e n X ^ + ^ F n X ^ - F « X ^ t F n ( X ^ F ) F / ^ ^ . 

The proof is evident. 

1.21. Analogously to 1.2 - 1.20 we can formulate and pro­

ve the duals 1.2' - 1.20 ' if we begin with the definition of 

X*F, 
References: The construction X - F is given also in 

[11] and a special case in [8]# The construction in the cate­

gory of unifomn spaces is described in [3]. 

2. 

We shall denote by CK the category of topological 

completely regular T^ spaces and continuous mappings. CR 
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is complete, locally and colocally small category. The func­

tor fi which assigns to every space X from CK. its Sech-

Stone compactification, is an epireflector in C.R , Let us de­

note by Comfi, the corresponding subcategory of CK . Furt­

her we denote by JUxtlc&mji the epireflective subcategory of 

all realcompact spaces• The realcompact reflection will be de­

noted, as usual, i)K . 

2.1. Proposition, Let X be a class of spaces from CK 

closed under continuous images, P an epireflector in CK . 

Then X e K. * F if and only if for every embedding £: If c->X 

there exists $.;P(Y) s*-»X such that 9 * ^ - 4- (where {*?: 

.y ^ p(Y) is the corresponding reflection)• 

Proof: The necessity of the condition is evident. 

Let X from CK satisfy the condition. Let Y e X , £ : Y-» 

—-* X continuous, and let Z • f (Y) , By assumption, Z e X 5 

let £-Z*—*-»-T be the embedding. There exists "fy : P(Z)—> 

-*>X continuous such that lj,p, =* £• • L«* fy> **q,F(£) .Then 

^ ^ y = ^ P C £ ) p y -= *<* 2f = f -

Hence, X e K * P . 

^•2* Corollary. Be "K a class of spaces from CR closed 

under continuous images. Then X e X * /J if and only if every 

subspace of X which lies in X is relatively compact. 

2.3. Example: Let Bftetuiocom^ denote the class of all 

pseudocompact spaces in CX « We can easily see that fauulazjmp' 

is .exactly the class of all spaces fulfilling the condition 

vX ~ (IX . Using 1.12' we can see that V^uuLoxunfvfb is a (J-

maxigenerator and that T^ujuicyxiorrvfv * /i « fihuM (JUalaornp,) . 
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Let us suppose the existence of a measurable cardinal 

(i*e* a cardinal nrrv such that there exists a set S of po­

wer <m> and a nontrivial two valued measure on tup, S va­

nishing on onepoint sets)* Let X be a discrete space of a 

measurable power* Then .X is not realcompact, but every con­

tinuous mapping from a pseudocompact space into I can be ex­

tended to a continuous mapping into (IX ; consequently 

Hence, the epireflective subcategory Eeo-tcom/i, is distinct 

from its fb -hull in the category CX • 

2»4* Definition. We shall call the subcategory if of Oi 

bireflective , if it is both epireflective and monocoreflecti-

ve* (For example, the symmetric graphs in the category of all 

graphs*) 

2»5* Lemma* Suppose % is bireflective in Clj let Ej 

be the corresponding epireflector, F̂  the corresponding mo-

nocoreflector, a,, Jtr e \Oi\ . Then a, e iJtr} * F4 if and only if 

Jbr e icul - P2 . 

Proofs We denote by p% : a,—*>Tf(cu)9 p%: Tz(cu)—> cu 

the morphisms generated by the functors T^ , P2 • Let a, e 

e iJtr} * F1 * For every C £ : ir —** a,) e (Mf* there exists ^ : 

. P, (Mr) —^--o> such that &, <u^ * £ . TA (Mr) € 11 I t hen­

ce there exists exactly one ^sP-CJbO—>F a(a,) such that 

&& ** £4 . If we let £'* ̂ ^ > t h e n : 

<** £' - ̂ ^ ^ * f i <** * f • Hence, Jer € ̂ o,i - P1 , 

The converse implication is analogous* 
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She following three propositions are corollaries of the 

foregoing lemma i 

2.6. Proposition. For every X c ICtl\t X * F-, is 

an ?2 -maxigenerator. X - P a is an F>, -maxigenerator. 

2.7. Proposition. For every X ^ * ^ « (X * F<) - P a , 

*Fa*»a* «- <X - F a ) * F4 . 

2« 8* Proposition. Let 1? be an epireflectire subcatego­

ry of CX , P the corresponding epireflector. Then <£ is bi-

reflective if and only if every F Haaxigenerator is a mono-

©©reflective subcategory of CX • (Analogously the dual propo­

sition. ) 

We note that in Hans (the category of Hausdorff spaces) 

or in CX or in U/rti/f , or in separated uniform spaces 

there is no bireflective subcategory except the whole catego­

ry. The result for topology appears in [91$ the result for 

uniform spaces is due to M. HuSek (unpublished). 

We shall treat the applications of the theory in the ca­

tegory of uniform spaces now. By a uniform space we shall un­

derstand always a separated uniform space with the uniformity 

given by a system of uniform coverings (see 171). We denote 

by U/rU/f the category of separated uniform spaces and uni­

formly continuous mappings. The category lUvltf is complete 

and ooeomplete. 

The products are uniform productst equalisers embeddings of 

olosed subspaces, coproducts are uniform sums* coequallsers 
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natural projection© onto quotient spaces. The category Unif 

ia evidently locally and colocally small* 

le denote by Sunt the monocoreflective eubcategory of 

limit consisting of all fine spaoea; let oc be the cor-

reeponding monocoreflector, further9 let So-Crf be the ca­

tegory of all eubfine apaeea (subspaces of fine ones). SuM 

is again monocoreflective; let Z be the correoponding oo-

refleotor. Let L**c* be the category of all locally fine 

spaoea (i.e. apaoe09 altera every uniformly locally uniform 

covering ia uniform). Leof ia monocoreflective in U/nXl; 

let K be the correaponding coref lector. Then TAJTVL C &u2rtc 

cLox^,i.e. o i < i < A . 

Further9 let 2*tj, be the claos of all infective uniform 

0paoea9 Hi the claaa of metric spaces 9 ylfl of complete 

metric spaces. Commit the clasa of all complete space©. The 

last one ia epireflective in UmiA • We denote, as usual9 

by f the epireflector assigning to every uniform space its 

completion. 

3*1* Proposition. Let X be a class of uniform spaces 

closed under sub spaces, P a monocoref lee tor in tt*u/f, (U, : 

j P CX) —•*• X the corresponding monomorphisms. The uniform 

space X ia -f-ron X - F if and only if for every y from 

X 9 £i X a* T uniformly continuous and onto, there ex­

ists <^i X—•*- FCY) uniformly continuous so that qjq, = £ . 

The proof is the dual analogon of the proof of 2.1. 

3»2« Definition. We say that the reflector S in the 

category U/ni/f ia a modification, if for every uniform spa­

ce £4jf the corresponding reflection p,X—a* ff((->X) i® 
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an identity on X . Hencef B ( AA,) IS the finest uniformi­

ty on X coarser than AA, such that G(AA,X) lies in the 

corresponding reflective subcategory* Analogously we define 

a comodification. 

In [10] it is proved that in VUd* every ooreflector 

is a comodification. 

3.3. Let y be a unifoxra space, i&a)a,*D a11 *** met" 

ric uniformly continuous images* <<p>a,x <*¥—**&<*, *---• OOT~ 

responding mappings onto. Then AA*Y is protectively genera­

ted by the family i.A%tu
tia,md *see for i*1-3**110* t73). Let P 

be a comodification in the category li/ru/f now. We denote 

AA,C4) Ai, the uniforaity on Y protectively generated by 

the family {Y —-J-*-- FC>la#)}fl.€j , where jv'a, isf from 

the point of view of sets, the same as 41 a, , Further we defi­

ne by transfinite induction: 

<*-M> €4) , ftc) % , 
JUL QA, m AA* K Ad, AA. t % and 

if (S is a limit ordinal, we set AA, AA* * J^S* A*, * AA, . 

There exists an ordinal number f such that whenever & 2? 

& T ^ *^ an or<^inal number), then AA, AA, » AJLTAA, . We set 

AA,(M,Y) -= (uf*AA,)Y .We can easily see that AA, is a functor 

in the category \XmlA • 

3»4. Proposition. The functor AA, from the foregoing pa­

ragraph is exactly the monocoreflector Em, (see 1.3) onto 

the subcategory HI ~ F . 

The proof follows easily from the definition of AA, . 
The properties of the category %, - <c are described main­

ly in C4lf further in tl] 9[219[319[133 9 [ 1 4 . 1 . I shall present 
some other examples here. 
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3*5* Examplet Jt£ - cc m &uJtrf . 

|2Sfi£s Every uniform space X la embeddable into a pro­

duct of infect ive uniform spaoes ^TT.T^ - Z • Iabell sho-

wad in C73 that the uniformity on X Is induced by embedding 

Into the space ocZ . Howf It i s easy to complete the proof* 

3«6* Examplei X € Com^ti - oc i f and only If I t s comp­

le t ion ia a f ine space. 

Proof: Let X c Commit - *c f and l e t J. •• X c—** yX be the 

embedding Into the completion. Then $\ X—-» tCfX i s uni­

formly continuous. Every Cauchy f i l t e r on ocyX I s e v i ­

dently Cauchy on fX . Hence, ocgrX Is complete. Then 

( 7 Is a ref lector) ^rX Is isomorphic to c c ^ X . Hence* 

7 X i s f ine . 

Conversely, l e t <yX he a fine space, Y a complete space, 

f, j — i ^ y uniformly continuous, fr:Xc -> X ^ *&« embed­

ding* There ex i s t s (exactly one) Jhi yX—-** X uniformly 

continuous suoh that JH^ « .f • 

-yX i s f ine so that Jh i s uniformly continuous into tcY • 

Hence, f i s uniformly continuous from X to 00T , so X e 

6 Qofft^iJL -*» o c # 

3.7# |xjmjl£i /yffl - oc «r <yfll - / - <y#t - A . 

Proof 1 Ginsburg and Isbe l l proved (see C7]) that for e-

very complete metric apace <p)L , Xq>H m c c ^ i l • f a r t ­

her f * < i < A , from which the proposition follows imme­

diate ly . 

From the last example i t follows that &AjJrt c j r t - o t . 

Hence, C 7 f l t ) ^ ^ c C l ^ ) * ^ • 
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3.8. Definition. Let U be a fall aubcategory of Umli . 

la define the fall eubcategory BuJtr - & of UmlHt i X m 

e $*J* ~ *C if and only if there exists some T in *t auoh 

that X is uniformly embeddable into Y . 

3*9* Theorem. Let £ ha a coreflective eubcategory in 

Unisf, F the correaponding eoreflector. Than SuAr-*^ ia 

monocoreflective. (Let us denote *£g the corresponding core~ 

flector*) 

Proof* Let X c I lUvtf I . Wo shall conatruct j ^ X . The­

re exists an infective space Y and j.% X<—**? embedding. 

We define ZeX to be the set X with the uniformity indu­

ced by the embedding £' s Xc—s» TCY) . Clearly» X c So*- t. 

Let 2 e <€ , 4, : X'<—*> Z embedding, f t X'—*»X onifoi*-

ly continuous. Than there exists £': Z—*>Y such that £%m 

» £>£ , £' is uniformly continuous into T(Y) , f ' M * 

is uniformly oontinuoue into «6^X . The unioity is evi­

dent. Hence, t^ ia a comodification. 

If Y is injectivet then evidently i^ Y m ¥<Y) . So we get 

a stronger propositions Sufr ~ <C m !*£ ~ F . 

3.10. Example: &u£r - ( Cowifufe - oo ) - .S*t*"f . 

The proof is evident. 

cacaiisaa* -** - *C-«-*A - W- - >-• - i»y, - CÙ 

3.11. Proposition. Let P be a coreflector in UmV£ f 

& the corresponding monocoreflective subcategory. & is 

closed under subspaces if and only if Clujf. ) p y m UmLf . 

The proof is evident* 
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I»et K - F be closed under aubspaces ( in Uvvtit ) , then 

X - F m Imfr - FK D Imfr - F , so there i s CK)Fmxuc c 

3.12. Tt<fffQ" L e t ^ be a comodification in lUi^T , 

& the corresponding coreflect ive subcategory* Sfr i s c l o ­

sed under subspaces i f and only i f for every I , y « I lW<f I, 

I c y implies FCX) c FCT) . 

The proof follows immediately from the fundamental pro­

perties of c©modifications. 

3-13. Theorem. Let F , <? be two c©modifications in 

Vbruyf preserving uniform embeddings. Then the class X » 

« iX I FCX ) =* SCX)} is closed under subspaces. 

The theorem is an easy consequence of the lemma 3.12 • 

3.14. Corollaries* 1) The class iX \JLX * XX } is he­

reditary* 

2) Let & be monocoreflective, F the corresponding core-

flector. Then, if & is hereditary, K - F hereditary, then 

there is Xj-J m 4 A . hereditary. 

3) Since for every complete metric space X , JLX = A,X , it 

follows from 1) that ffl c <X I IX m XX} • hence, for eve­

ry metric space id > JL Ji -» XJi $ and Hi - I ** 1fl ~ X • 

3.15. Theorem. ^ m - c o c T T l - X . 

Proof* Let X e <r#l - <* , JUL c 111 , f ; X —*-* Jl uni­

formly continuous, £ : H*—--** tfil embedding, Further, l e t 

-t-j atg".M .*-» yM be the uniformly eontinuous identity 

mapping, t *. Jtii -*» M the identity mapping (uniformly 
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continuous). There ex i s t s $-' : X — - • «cyJH. uniformly con­

tinuous such that i j - ' a £•£ . The functor JL commutes with 

completion [3J, so that oCf-M. » i f Jl — 'yXJl • Hence, 

V * J-'9* > where .̂ : X-—*>ZJL i s uniformly continuous» £• : 

:XJlc—> ccyJl embedding. Evidently, i £ ' « £1, , H ^ V » i-^fr " 

=* 3-f $ £ i s a monomorphism, so u $.*•:£ » Consequently 

X € 7TL - X . 

3#16# Corollary: Prom 3.7 , 3*14» 3»15 we get: 

7TTI - cc « Tfl - Jt » *ytH - X • ^ - it -» fltl - A . 

Let us denote by Tsuuxmuft the category of precompact uni­

form spaces and uniformly continuous mappings. Tkjt^oom^ i s 

epireflective in tt/n£df . The corresponding reflection ( i t 

i s a modification) wi l l be denoted v̂ « Notice that t whenever 

<u, i s a uniformity on X , <fi-<c*> i s topologically compatib­

le with <a . See 17} * 

3.17# Example: ?xtoomjp> - cc = P£tte . 

Proof: For every uniform space f^X, oc^X «. cofu<u.X • 

The identity -let s ^X—.*» jp,p,X i s a precompact ref lect ion. 

If (tX € fx&oowp, - oc. , then the Identity AdL : <u,X —->• ocfi^X a 

« c c f OC i s uniformly continuous. Hence, «c<a, » ^ , so (t,X 

i s f ine . The converse inclusion i s t r i v i a l . 

3#18. Example: &u&*£ - cc m Tim* . 

Proof: Let X be a precompact space. Then j X m -jvffcX 

i s a Samuel compactification of X - and i s a fine space. Then 

X i s subfine; consequently 2*u*c*m4*, c SMXT£ .Using 1.2 we 

get $*Jr£ - cc c ?M*&omji - <* C* TAmA) . Hence, S«i!»f ~ «.-* 
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3»19» Corollaries: Whenever SMJH C X , then X - «* * 

« But* .For example: 

Loc/f - cc » B̂ rur. , 

C-y 171 - • « & ) - oc • Eon*. • 

By 3»6 f fjtMjoo^mjjfu c Com^ii - «c , hence C Comfit - e c ) - cc » 

» R*i* . 

Referencef: 3.5 is stated in [31 and attributed to Isbell -

Rice. It appears also in [121. 3.6 appears also in [51. 

3.4 appears also in [131 and [141. In the special case, for 

P « «*, , F^ . AVCA) - see [11 f [2lf [131 f THl (independently 

due to frolik and Rice). 

All the overlapping results were obtained independently. 
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