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NODAL FILTERS IN SEMILATTICES
' J.C. VARLET, Lidge

Abstract: A filter of a semilattice S 1is said to be
nodal if it 1s comparable with any filter of 5 in the set
of all filters of S ordered by inclusion. The nodal fil-
ters of S form a chain and induce a partition of § to which
an interesting congruence is associated., Moreover, the Dede~
kind cut of a nodal filter is again a nodal filter,

Nodal filters have especially nice properties in impli-
cative semilattices, i.e, semilattices on which a second bi-
nary operation x 1is defined. We characterize nodal filters
solely by means of the latter operation., We also determine
the sublagebras which are in direct connection with nodal fil-
ters and, by the way, we focus our attention on the irreducib-
le elements of the semilattice, Finally we obtain a characte-
rization of the nodal filters in terms of congruences.

Ke* woiggx congruence, endomorphism, filter, implicati-
ve semilattice, irreducible, lower semilattice, node.

AMS :06A20 Ref. %, 2.724.81

§ 0. Preliminaries
The word semilattice will always mean lower semillatice,

i.e. a commutative idempotent semigroup or, equivalently, a
partially ordered set (abbreviated poset) in which any two
elements @ and & have a greatest lower bound, denoted by
a « & or simply afr , the partial ordering being defined by
a <& if and only if at’ = a .The least and greatest ele-
mente of a semilattice S , when they exist, will be denoted
by 0 and 4 respectively. When S 1is a lattice, the second
binary operation will be denoted by + .
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The symbols N, U, -, ¢ and © will be used in
their usual set-theoretical meaning: intersection, union, dif-
ference, inclusion and strict inclusion. 3

A filter of a semilattice S is a non-empty subset F
of S such that xy € F if and only if xe F and g€
. € F ., The principal filter generated by an element @ of S,
i.e. the set {x:xeS, x =2 atlt , will be denoted by
fa) .

When ordered by inclusion, the set F(8) of all fil;
ters of an up-directed semilattice S is a lattice in which,
forany P,G e J(8), F-6G=FNG and P+ G is the
filter generated by F UG . Of course, if S 1is not direc-
ted above, F NG is a filter only if non-empty.

An element @ of a semilattice is irreducible if a = &c¢

implies a =& or a =c¢ .

A semilattice S is implicative if, for any a,f € S,
there exists in. S a (unique) element a % A&  such that
ax £ £ if and ogly if x £ a x A . Hence any implicative
semilattice can be considered as an algebra $=<S; -, x
of type <2,2)> . An implicative semilattice is distributi-
ve and always has a greatest element 4 .

Terminology and notations are mainly borrowed from [41],

§ 1. Nodal filters in arbitrary semilattices
In [1]1 R, Balbes and A. Horn have introduced the notion

of node in the context of a lattice but it makes sense in any
poset, A pode of a posetl S is an element which is comparab-
le with every element of S . We are going to generalize this
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concept but we first need a lemma.

Lemma 1,1, For a filter F of a semilattice S , the
following conditions are equivalent:
(1) for every xe F and every o & T , the relation
X > 1is satisfied;
(2) for any filter G of S, either G € F or 62F;
(3) P 1is a node of F(S) .

Proof. (1) == (2). Let us suppose there exists & filter
G incomparable with P ., Then there are elementa x and o
such that xeF -G, 4 € 6-F and x ¥ o .
(2) = (3). Immediate by the definition of a node.
(3) = (1), I£ F 1is a node of JF(S) , then for every

Xx€F and every 9 ¢ F we have [4) & F , hence [g)>
DFo[x) and x >4 .

Definition 1,2, A filter satisfying one of the conditions
(1) = (3) will be called a nodal filter,

Trivially the whole semilattice S is an improper nodal
filter. A principal filter [x) 1is nodal if and only if «x
is a node. Two nodal filters are always comparable. These ob-

servations are summarized in the following statement.

Lemma 1,3, The set N (S)  of all nodal filters of a
semilattice S , ordered by inelusion, is a chain whose grea-
teat element is S , It has not necessarily a least element;
nevertheless, if S has an element 41 , then N(S5) has the
least element [14) .

Note that X (S) can have a least element even when S

is not bounded above. In a chain all filters are nodal; an
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t.he contrary, some semilattices have no proper nodal filters
(take for instance the direct product of two chains isomorph-
ic to the set of integers).

In a lattice, any proper non-principal nodal filter is
prime,

In a semilattice S with ( , any proper nodal filter
is contained in D(S) , the dense set of S . In fact, let
us suppose that the proper nodal filter ¥ of § contains a
non-dense element a . Hence there is & # (0 such that af=
=0 and & ¢ F, an impossibility since a > & .

If, in a semilattice § with 0, D(S) isa prix;cipal
filter, we can form D(D(S)) = D2(S) . Let us now consi-
der a semilattice § with 0 in which D (S), D2 (8),...
esoy D™(S) form a finite sequence of principal filters,

We can claim that all proper principal nodal filters of S be-
long to this sequence; their generating elements are exactly

the nodes of S .

Definition 1,4. We say that two elements x and g4 of a
semilattice S are connected (in symbols, (x,4)eR ) if
there is no nodal filter which separates them, Let us notice

that (x,1) & R implies either x >a or X < 4 .

Theorem 1,5, In any semilattice S , the relation R en-
joys the following properties:
(1) R is & congruence of ¥ = < S; o > 3
(2) any R -class contains at most one node;
(3) an R -class is totally ordered if and only if it is a
singleton;
(4) S/X 1is a chain dually isomorphic to N (S) .

- 266 -




Proof. (1) (x, 4 )eR,(y,x)eR and (x,x) ¢ R are
incompatible since, by the latter, there is a nodal f£ilter
P such that, for instance, X € F and = ¢ T . We then
have g € F and (q,2)¢ R , a contrediction. Thus R
is an equivalence relation on S . Moreover, if (x,4) € R
then (x», 44) e R for every A e S since otherwise
x» e F and 45 ¢ T  for some nodal filter T , hence
xeF 6 »elF and 4 € T , which contradiets (x,q) e
e R
(2) Let @ and & be connected nodes of S . We have either
a <& or < a . In the firat case, for inastance, a and
% are geparated by the nodal filter [ o) .
(3) Let [aJR , the R -class of a , be totally ordered and
(,a)eR, ¥+ a . Any x€ S is comparable with a
and & . Hence both @ and & are nodea, which contradicts
(2).
(4) Let us define the mapping o< : S/R — X(S) by Cex =
=T, , where T is the nodal filter generated by the X -
class C . 1In fact, Fp =4xeS:x Zgy, 4y e C3. Obvious-
ly « is bijectiveand C ¢ C’ in SR  if and only if
L 2F in X(S) .

In [8] we defined, for any element a- of the semilatti-
ce S, the subset D, as followss Do =i{x e S: xy £ a
implies o £ a } .It is clear that D, is a filter if non-
empty. The following theorem provides us with a new characte-
rization of nodal filters.

_ Theorem 1,6, A non-empty subset I' of a semilattiee S

is a nodal filter if and only 4 F = N{D, : x €« ¥ § .
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Broof. 1°) 1f: since the set-intersection of filters is
a filter if non-empty, we just have to prove that P ism no-
dal. If not, there exist 4 € P and > é F with o
and x ineomparable, hence 42 = x < x . Since oy e Dy ,
4z = x implies x % X , a contradiction.
2°) only if: let T be a nodal filter of S . Fer every
g eFP and every x ¢ F , we have o > x and 4z < X im-
plies 2 £ x , hence 4 € Dy and P < D, . Since x ¢ D,
for any X # 41 , the proof is complete.

Now we direot our attention to the Mac Neille completion
of the semilattice S or, more precisely, to the dual of the
latter., It means that to every subset A of S we associate
its "Dedekind cut" (A)* | i.e. all uper bounds to the set
of lower bounds of A . )

We call a filter F of S normal it F = (FN* | Obvi-
ously any principal filter is normal, The normality of & non-

principal nodal filter can be characterized as follows.

Theorem 1,7. In a semilattiee S , for a non-principal
nodal filter F , the following eonditions are equivalent:
(1) F 4is normal;

(2) S-F 4s not a prineipal ideal;
(3) imf F does not exist,

Proof. (1) == (2). Firat, let us observe that for any
non-principal nodal filter F holds $S-F =P, If $S-F=
=(al,then (P")* =2[a)>F and T is not normal,
(2)=> (3)a I imfF=a , then a ¢ F, a is the grea-
test element of S ~F , hence S ~F 1is a principal ideal.
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(3) = (1). If P 4s not normal, then (F)* 5 F  and the-
re is an element a & F which is an upper bound of S-F .
This element obviously constitutes the greatest element of
S~F . It is also the infimum of F .

Corollary 1,8. In a semilattice S , if a filter T is
nodal, then its Dedekind cut ( P71)* is also nodal. ‘

Proof. Since the case I' principal is trivial, by vir-
tue of the preceding theorem we may restrict ourselves to the
consideration of a non-principal nodal filter F for which
inf P exists, let a=inf T, thus a ¢ F . For any x ¢
€ S-F wehave x £ a , @ is a node whence [a)=(F")

is nodal,

§ 2. Nodal filters in implicative semilattices
Pirst of all we characterize the nodes and the nodal fil=-

ters of an implicative semilattice by means of the only bina-
ry operation x .

Theorem 2,1, Each of the following two conditions is ne-
cessary and suffieient for an element o of an implicative
semilattice S to be a node:

(1) for every x € § , either a x X =1 or xxa = 1;
(2) for every x € S, axx=x or 1 .

Proof. It is obvious ror.(l) since x x ¢4 = 4 4if and
only if x < o .

Now if a 1is a node, then x = a implies a % X =
=1 and x < @ gives a xx = X. If a is not a node,

there existas £ not comparable with @ . Then a#r < a and
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a xalr$1; morecver a x alr = &, hense a x al +ak.
We remind the reader ([5], p.63) that a subset F of
an implicative semilattice S 4ia a filter if and only if
@) 1eF
(1) a eF and ax el imply & eF .
The proof is given for ipplicative lattices but no use
is made of the second lattice-operation.

Theorem 2,2, A subset F of an implicative semilatti-
ce S 1is a nodal filter if and only if

(1) 1eF ;

(11°) @ x4 =1 and aePF imply & e F

(111") o x & + 4 and a x & eF imply a,breF .

Proof. 1°) if: since the system (1°) - (1i1") is obvi-
ously stronger than (i) - (ii), F is a filter, It remains
to prove that F is nodal. If not, there exist a ¢ F and
Lr e such that o £ & . Then @ * & 4 and ax & ebF
(owing to a x & 2 & ). By (1i1") a € I , which is a
contradiction.
2°) only if: since . F % f , P 34 . Since a x & =1
is equivalent to a = & , (ii”) holds in any filter. Teo
prove (iii"), let us assume a x & # 1 together with
ax & e and conaider three cases.

Case 1, a ¢ T and & ¢ F, Then a x (=1 if o < &
{45 F otherwise,

Case 2, @ €l and H ¢ F. Then a x & = & .

Case 3, o ¢ F and e T, Then a x & = 1

In all these cases one of the premises is violated, hence
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the only possibility 18 < «e F and & ¢ F . ‘

Our next concern will be the determination of some sub=
algebras of the implicative algebra ¥ =<S; -, x > .
Clearly any filter of S is a subalgebra. Less obvious is
the following proposition, in vwhich X has the same mean-
ing as in 1.4,

Theorem 2,3. In an implicative algebra ¥=<S; -, x >,
for any subset A of S,B=(U{LxJR:xecA¥)U{4} is a
subalgebra.

Proof. For any o,z € B, 4z € B and 4 x = = 1
if o4 £ z , whereas g *x % € [2IR if 4 ¥ = . Only
the last assertion is worth explaining. If (g4,z) ¢ R
and g4 > = , then g4 x 2 = 2 . Let us suppose now (rg,z)’e
€ R and 4 4 =z . Since 4 x 2 = xz always holds, if
(y x z,2) ¢ R , then there exiats a nodal filter F con-
taining y % z but not * . As (y,x)e R, F $ o
hence y xx >n and 4 (4 xx) = g ., But, by definition
of 4 %z , we have a4 (4 % z) £ z , This leads to the

contradiction 4 £ x , g.e.d.

If ¥ >a and (a,®) ¢ R , then clearly &rxa=a.
But we can have & xa = a even when & * a and (w,ir)e;
€ R . Before giving a necessary and sufficient condition en-
suring the previous equality, we introduce a definition,

Definition 2,4. An element a of the semilattice S will
be said irreducible with respect to & (& >a ) 1f ¥x = a
implies x = a . Then a 18 also irreducible with respect
to any ¢ € § such that ¢ = £ . Let us notice that an
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element a is irredueible if and only if it is irreducible
with respect toany & > a .

Theorem 2,5, In an implicative semilattice S, & x a =
=a 1if and only if @ 1is irreducible with respect to any
upper bound of {a,t} .

Proof. 1°) ifs we have to show that & x a = a , i.e.
¥x < a if and only if X € @ . Only the direct implica-
tion is not trivial, By virtue of the distributivity of S ,
&x £ a implies the existence of elements &7 and x4
satisfying &y 2 &, x, = X and Wy x4 = @ . The element
A4 1ie an upper bound of {a,&?, hence x, = @ and
X £a . '

2%) only if: let X be an upper bound of {a,&? , We have to
show that X4 = o impliea 4 = a . Clearly it suffices
to prove that 4 < a . Since x = &, one has x x @ £ b xa=
= a,hence X x o = @ (x x @ 2 a always holds), and

Xy = @ implies 4 £ a .

Corollary 2,6. Let @@ and & be two elements ef the im-
plicative semilattice S such that & > a . Then & %xa =
= a if and only if @ is irreducible with respect to & .

Corollary 2,7. In an implicative lattice L, &rxa = a
if and only if @ 1is irreducible with respect to a + £ .
(€71, Theorem 4)

Theorem 2,8. In an implicative semilattice S , a chain
C 1is a subalgebra if and only if
(1) C a4 .

(2) any x € C is irreducible with respect to its succes-
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sors in C .

Proof. 1°) if: let x,4 (x < 4 ) be any two ele-
ments of the chain C . Since x kx X =y xy =xxy ={eC
and 44 k X = % by Corollary 2.6, C is a subalgebra.
2°) only if: let € be a totally ordered subalgebra of S .
Clearly C has to contain 4 , If xe C, 4 € C and
x<q ,then 4 xx = x since g x x has to belong to C

and ¢4 x X = X .

Remark 2,9. In an implicative semilattice S , a chain
C is a subalgebra if, for any x,4 € C (x < a4 ), either
(.x,n})#l or X 1is irreducible. For instance, the set of all
nodes of S 1s a subalgebra., So it is interesting to charac-
terize irreducible elements of an implicative semilattice.
Such a wor® was done in [6] and [7], but in the context of
lattices. -

Theorem 2,10, In an implicative semilattice S, an ele-
ment a is 1rredx;cible if and only if x £ @ implies
XX a=a .

Proof. 1°) if: we have to show that 4% = a implies
Yy=a or x=a&.From 4z =a follows =z £ 4 % @ .
Let us suppose 4 % a . Since 4 < a 1is impossible, the
condition o 4 a 1is satisfied and the hypothesis yields
YyXa=a ,hence «x = . ’
2°) only if: let @ be irreducible. For any x & a , @ is
irreducible with rfspect to any upper bound of {x,a} , hen-

ce, by Theorem 2.5, X x @ = & .

To end with we shall characterize nodal filters in
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terms of congruences, But here also we need some prelimina-
ries,

Hereafter Emd (S) will mean the endomorphism monoid
of the implicative algebra ¥ =< 8; ., x > . To every
endomorphism « of & 1is associated a congruence O, de-
fined by

(.x,n})s@,‘, if and only if X = aec .

Let us recall j:hat an endomorphism « of an algebra
A=<A3TF> 1is sald to be a left vector endomorphism [3]

if there exists a subalgebra B =< B; F? of A satis-

fying the following two conditions:
(1) U4Cx1@, :[xl@ . NB £ J ,xehl =4A | i.e. the

uniton of the @, -classes which meet B is A

(2) @4 |3 = wy , vhere wy 1is the equality on B (in
Cohn s terminology ([2], p.59), B 4is a transversal for
A8, in R ).

We finally remind the reader that, for any congruence
©® of the implicative semilattice ¢, [116 is a filter
of S; we shall denote it by Fg . Moreover (x,3)e ®
if and only if xd = g4d for a suitable d € Fy . Conver-

sely, if F 1is any filter of S , then the relation & de-
fined by

(x,q) € O if and only if xd = ¢4d for
some o e F

is a congruence. In other words, the correspondence between

filters and congruences is one-to-one.
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When [4]@ is a nodal filter, the corresponding
congruence is rather special, as shown by the following theo=-
rem,

Theorem 2,11, In an implicative semilattice
¥=<S5; ., %> for any congruence € , the following three
conditions are equivalent:

(1) [131e@ is a nodal filter;
(2) © 1is anode of Con (¥) , the ccngruence lattice

of & 4
(3) for every x ¢ [11@, [x106 = {x} .

Moreover, for any congruence @ of ¢ satisfying these

conditions, there exists o« € Emd (¥) such that &, = @ .

Proof. First let us observe that the equivalence of (1)

and (2).1is obvious: the mapping ® — Ty of Con (¥)
onto F(8) 4is an isomorphism and Fg is a nodal filter
if and only if it is a2 node of F(8) .

(1) implies (3) since, for every x ¢ L4110 and every
o € [11@, we have xg =x, hence [x1® = {x3 .

(3) implies (1). Let us suppose there exist £ e Fq
and a ¢ Fg such that £ #+ a . Then fa + a and, how-
ever, since (fa)f = af, (fa,a)e ®:[al@ would no
longer be a singleton.

Finally, if @® is a congruence such that [11@ is
a nodal filter F , the mapping «< of S into S defined
by
1 it x e T,

XX = {
X otherwise
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is an endomorphism and €_ = ® . In fact, it is routine
to chesk that « preserves the two binary operations in all

possible cases as in the proof of Theorem 2,2.

Corollary 2,12, In an implicative algebra
Y=<S; ., %>, all endomorphisms « for which [1]1@,
is a nodal filter, are left vector endomorphisms,

Proof. Thanks to Theorems 2.3 and 2,11, we can claim
that (S -[11@_ )V {1} is the required subalgebra.
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