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Abstract: The current paper studies the relation between
the algebraleity of a category and its factorcategories. We
show that a faciorcategory of an algebraic category need not
be algebraic, and we bring some sufficient conditions for a
category, not to be a factorization of an algebraic one.
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The notion of an algebraic category was introduced by

J.R. Isbell., It is a category which can be fully embedded in
some category of algebras., Algebraic categories were studied
intensively (see [3],[4],[5] and other papers by Z. Hedrlin,
L. Kudera, A. Pultr and V. Trnkovd). It was later shown that
under the set-theoretical assumption M  assuming that the-
re is not "too many" measurable cardinals, every concrete ca-
tegory is algebraic. Furthermore, the aséumption M was

shown to be critical ([5]). The current paper studies the re-
lation between the algebraicity of a category and its factorf
categories, We show that a factorcategory of an algebraiec ca-«

tegory need not be algebraic, and we bring some sufficient
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conditions for a category, not to be a factorization of an
algebraic one.

We emphasize here that a factorization of a category is
for us any functor from this category onto another one which
is one-to-one on tho_ class of objects. The category dual to
the category of all sets and mappings ( Set* ), and several
other common categories (e.g. that of complete boolean algeb-
ras ( B), compact topological spaces (Comp ) , and the
dual to the category of abelian groups ( A *) fail to be
algebraic under mow M , as it was proved in [5].

It is to be noted that the non-algebraicity of Set* is es-
sential +there; the non-algebraicity of the others follows .
from this fact. Throughout this paper we shall use the word
"algebraic® exclusively in the sense "algebraic under

monv M ", gimilarly "non-algebraic".

We obtain that e.g. Set*, B, Comp ,and AB* fail to
be factorizations of algebraic categoriss. It is proved in
(6] that every category is a factorization of a concrete one.
This result, then, cannot be strentghened to the assertion
that every category is a factorization of a concrete.algeb-
raic one, A generalization of the main theorem from [5] and
our above mentioned conditions imply the non-algebraicity of
other categories, the non-algebraicity of which could not be
proved by the methods introduced in (51,

The present paper has four sections. In the first one
we introduce conventions and recall some definitions and tLeo-
rems which will be of use later. In the second one the not’ m

of an T -measure and the main theorem from [5%] are generali-
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zed, Further, there are conditions sufficient for a catego-
ry, not to be a factorization of an algebraic one, here. Se-
me corollaries are given, In the third section we study the
category of relations. It is proved here that it has no small
left adequate subcategory, and it fails to be algebraic. In
the fourth section there is an example of factorization of
an algebraic category onto a non-algebraic one and further
similar examples.

I am much indebted to A, Pultr, who introduced me to the
topics of factorizations, and helped me throughout the whole
work on this paper. I had also a valuable conversation on

these questions with Z., Hedrlin.

I

I.1. We work in the Godel-Bernays set-theory sometimes
assuming the axiom mon M (see 1.18), The class of all
cardinal numbers will be denoted by Cn , that of all ordinal
numbers by On , and the cardinality of a set X by IXI.

I.2, We use the language of the theory of categories
which is in current use., The class of objects of a category
#  will be denoted by &° , the class of morphisms by
R™ .1 X,Ye R° , then R (X,Y) denotes the set of
morphisms of R from X to Y. BY R* we denote the
category dual to R identifying R*° with £%° and
ﬁz*(X,Y) with R (X,Y) for every X,Ye %° . The
composition is written from left to right, i,e. the composi-
tionof £: X— Y  with g:Y—Z 45 fg . Subcate;
gory is denoted by < . If (L ¢ f?/, P: R—> 4% 18 a
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functor, then its restriction to 0L is denoted by F/ & .
Shirking of ® (notation Sh (R) ) is such a thin cate-
gory that Sh(R)° = R° | end S (R)(X,Y) + 0 iff
ﬁ«(X,Y)* 0, forevery X,Y& R° . A functor
F: 8 — % 1s a retraction if there is & functor J: &£ —

—> R with JF =4, .

I.3. The category of sets and mappings is denoted by
Set , let us introduce notation for. some mappings:
43 :1=101— 2=10,4% 1is defined by 0i; = 4
(3 =0,4)
%y : 1—> X denotes the constant mapping to X
(x e X, X e Set®)

4a: X—> 2 1is the characteristic function of A
(AsX,X e Set?®)
For x € X we write g, instead of %y 3 - By the sa-
me symbols we denote the corresponding morphisms in the ca-
tegory Set* .,

I.4, Definition. Let § : R —> &£ ©be a functor. P
is said to be a factorization if & is onto £ , and one-

to-one on the class of objects of R

I.5. Definition, Given a category # =and an equiva-
lence ~yy on R (X,Y) for every X,Ye R’ , we call
the collestion {~y,,X,Ye ®°% a congruence on A if
(VX,Y,U,Ve ROVVE, g € & (X,Y)(Vhe R(V,X)(Vh e
€ER Y, U (fryyq => £h ~yy gh & hE ~yy kg ) .

Notation: We shall write only ~s instead of

wet
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{~y, X,Ye #°3, and R .~  will denote such a ca-
tegory that (R~ ) = B° and A/~ (X,Y) =
= R(X,Y) ~y,y forevery X,Ye 8° .

I.6. Remark. Apparently every congruence on a category
® determines a factorization & —> R .~ , and con~-
versely we can assign to every factorization & a congruen~
ce ~ such that £~ g iff £ = ¢ . Throughout this
paper we shall interchange the notion of factorization and

that of congruence,

I.7. Definition. A collection of ordinals A=4d},i €1},

where I is a set, is said to be a type.

I.8, Definition, Let A= 4d;,i € It be a type. Deno-
te by R (A) the category the objects of which are all
pairs <X,4R;,ieI¥)> ( XeS&t",R;EX&‘ for eve-
ry 4+ el ) and morphisms from < X,{R;,4i{ € I3)> to
{Y,{5; ,4e€1%> areall mappings £:X— Y with

o
Rif "= S, for every i € I . Denote by G =R (£23%)
the category of graphs.

I.9. Definition. Let A=4d:,4i € 1% be a type. The
category of algebras of the type A. is a category A(A4),
the objects of which are all pairs < X,{w;,< e 13> whe-
re X is a set and w; : I#——-) X are mappings., Morph-
isms from <(X,4w; , 4 e 13> to <Y,4»;,©ie€13> are
all mappings £ : X — Y with wyf = £a vy for every

1 el .
1,10, Definition. A category R  is said to be algeb-

-
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raic if there is a full embedding J: & — G .
Remark. The original definition of an algebraic catego-

ry (Isbell) is the following:t R is algebraic if there is
a type A and a full embedding J: % —> A(A) (hen-
ce the word "algebraioc"),

"It was proved 11_1 [{3] that both definitions are equivalent.

I,11, Notation., Let R be a category, {A;,4ie I%
a collection of its objects, where I is a set. Then by
R(4A;,i el3) we denote a category, the objests of which
are all pairs (X, 4Ry ,4el3) (Xe®R’ R e RA;,X)
for every 41 € I ). Morphisme from < X,{R;,i el}> to .
{Y,49;,4# €13) are such morphimms f € & (X,Y) that
g,fes,b forevery feX; and <L el.

I.12, Theorem. If R 4is algebraic then every
ft(iA;,i« € I13) 4is algebraie, too.

Proof: See [5].

I.13. Definition. Let R be a categary, L & R .
L 1is said to be a left adequate of # y if the only
transformations from R (-, X)L —> R (-,Y))/L  are
. with fe R(X,Y) (gvf = gf for every g
€ R(A,X) and arbitrary A € A° ), and if distinet f
and ¢ induce distinct ¥, and g . The notion of a right-
adequate subcategory is defined dually, If (X 1is both a
left and a right adeguate of ® , then it is said to be an
adequate of R . If there is a emall category X S R
such that O 4s a left adequate of ® , then ® 4s said

to have a slﬁall left adequate subcategorv,

- 246 -



I.14, Theorem., Let & have a small left adequate sub-
category. Then R is algebraic.

Proof: -Ses [2],

I,15. Theorem. Let (L, 3£, ® be categories, and %X <
€ % S R . Let £ be an adequate of R , and (L a left
adequate of &£ . Then (X is a left adequate of %

Proof: See [11.

I.16. Notation. Denote by P~ a functor from Set* to
Set defined by XP~ =epX for X € Set™’ , and (A)EP™ =
={xeX,xfeA} for fe Set™(¥Y,X), AsY

I,17. Definition, Let < € Cm . A mapping ¢ : XP —
— 41P” 1ig said to be an « -additive measure, if for every
set A with |A| £ < and for every mapping £ : A— XP~
there i8 x € X  with fu = £ %, P7 . If « = fee¢P~ for
some € € X , then it is said to be trivial, If contrary,
non-trivial,

Remark, A classical definition of an o ~-additive measu-
re is the following: A mapping @ from expX to 40,13
is an « -additive measure if for every collestion {A;,i eI}
of disjoint subsets of X with |I| £ o we have
(.-_L‘JIA"J(“‘ =_,’§.1A;(u, . The equivalence with our definition is

obvious (see [5]).

I,21, Axieom mon M : Por every « € Cm there ex-

ists a non-trivial o -additive measure @ XP~— 47" .

II
II.1, Defi: tion. Denote by Y the following subca-
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tegory of Set*

¢° - Sat*’ - 103 ,

IC2,14) = 44,4, %, $¢4,2) =0 ,

(X, 4)=4% ,xeXt, $U4,X)=20 for X+ 1,2 ,
$(2,X)=4q ,xeX}, 9X,2)=0 for X %+ 1,2,
X, Y)=0 it X +Y end X,Y #+4,2,
g(X,X)= £4,%  for every X € ¥° .

Por X e $°-44,23% denote by ¥y  the full subecatego-
ry of ¥ generated by the objects 4,2,X .

Remark, & 1s isomorphic to ¥* , and ¢ has no swall
left adequate subcategory.

II,2, Definition. Let U,V  be sets, M=if: U —V ,
xe€ X% he acollection of mappings, o« € Cfvv . A mapping
@ :U—>V 1is called an  -additive M -measure if for
every mapping f: A—> Ul with |Al £ o« there is some
x € X with fu = ff, .

An M -measure is said trivial if there is asome X, € X with
@= f"o . Otherwise it/ia called non-trivial,

II.3, Lemma, Let U,V be setsg, x € Cm , = =
Zmax (s, I1V1) . Let @ : XP"—> 1P~  be an « -addi-
tive measure and M = {f, : U —> V, xe X % be a col-
lection of mappings. Por m e U, eV put M(w,o) =
={xeX,ufy=wv3.Then @:U—>V , defined by ug = v
iff (M(u,»))@ =4 , 48 an o -additive M -measure.

‘Epoof. For every u e UL we have 'V, M (u,»)=X.

v e
Since |Vl & e , it follows that there 1s the unique v ¢ ¥
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with (M (u,»))w =1 . Thus @ 48 a correctly defined
mapping, To show that «  is an « -additive M -measu-
re consider some mapping f : A — U with 1Al 2 « .
Define £: AxV—> XP~ by (<a,#>)f =M(af, o)
for every a € A, eV . Since |AxV| £ « , it follows
that ?'(L =£fk, P~ for same xe X . As

(VueWufg =v=(N(uf,olu=1sxeMuf,v)=uffy=v),

we have f@d = ff and thus @ 1is an o -additive M -

measure.

Definition. @ is said to be induced by «

The following generalizes a theorem from [5]; the proof
is a simple modification of that given in [5],

II.4.Theorem (mon M ). Let ® be such a category
that Y€ R , and Y(X,1) = & (X,41) for every X e ¥°-
-41,2% . Then & 1is not algebraic.

I1,5. Corollary (mon M ). Set*™ 1is not algebraic.

II.6, Theorem (mon M ), Let ® be a category, ¥ <=
€ ® and R (X,1)=¥(X,1) for every X € ¥°~ 14,2} . Then
& is not a factorization of any algebraie category.

Proof. Let (L . be algebraic, $: 0L —» R be a fac-
torization, Suppose that R° = k° @and X3P =X for e-
very X €e 0’ . Let J: (L —> G  be a full.embedding,
denote by [0  the natural forgetful functor O: G —> Set,
and put F = JO : & —> Set, Put «=~max (%,11Fl,I12F1,
(A (2,4)1), Let w : XP~™ —> 4P~ be a non-trivial

o =-additive measure. For every x € X choose arbitra-
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rily some f, € X (X,1) with £, & = % . Let M =
= {f,F:XF— 4F,xe X 7. Denote by @ the « -additjve
M -measure induced by w (see II.3). Since J 1is a full
embedding, it followas from the additivity of @ that there
is some §eX and g¢ € %(1,4) with @¢d = %, =and
"@¢F = @ . Choose some hee (L(2,X) with hed = g .
Let us show that he¢F@ = heFfgF @ As 12Fl € « | the.
re is some £, P e M with W Ff,F= heF@ = hgf‘g,gf
it follows that hgfx = hf?? yand (hef )P =3¢k =

7

= (he 9¢)® = 44 . Therefore necessarily x = § , and
heFP@ = hiFeF . Put j, = hgf; , and lot 437, pc 37
be the set of all @ -preimages of 4, . Then we have g3 <
£1(2,4)1 &€ « , Forevery ¥ € # put Xg =

= {.xsJC,x#@,hffxa-é-{}.Apparently x-{g§=wyﬂx, .

T 4s faithful, hence for every ¢ € 8  there is b, e 2F
with £ 39F % #,3,F = ag . Then M(tpheP,a,)c

c X -Xgy for every 4 € 3 , because X €
€ M(ﬂ,hgf‘, d«f) ite erhgl’fx F = Ay i.e.

x & Xy. A8 by M TR = by MgFEF=04,F= ap ,we have
(M(%y MgF,ap)) @ = 1 . Therefore (Xp)w = 0 for every
Yep and a8 3 £ « also ca,yﬂx,.)&-o.musne-
cessarily ({§3)u = 1 , which is a contradiction.

II.7. Corollary (mon M ). Set* is not a factori-
zation of any algebraic category.

11,8, Lemma. If R 1is a factorization of an algebraic

oategory, then every category R ({A;,461%) is also a
factorization of an algebraic category.
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Broof: Let §: L —> R be a factorization, and let
(L be algebraic. Suppose that ° = ®° and X =X
for every X € (L° . For every object <X,{R; ,ieI})> of
R({Ay,i e13) (see I.11) let < X,{Ry,< eI1?> be an
object of the category X ({A;,4 €I13}) such that
(Viel)(Vged(A;,X)) (g eX;y = gd eR;). Denote by
(L’ the full subcategory of L({A;,i €13) generated by
these objects. We can suppose that if <X,{R;,i e 1?D> %
£<Y,48;,i€1%> then <XR;,iel}d>+<Y,45,,iel}>,
for we can add more isomorphic copies of any object to the
category (L’ . By I.12 (L’ is slgebraic. To define a facto-
rization @’: W'— R ({A;,4i e I3) , put <X,{X;,iel3>P=
= (X AR;,i eI3>P, £0’ =£P . It suffices to verify that
£peRUA; 1 e13)™ for every f e X’™ | Let
£:¢X,4X;,2€I13>—><Y,45,,i € I3%> be a morphism of
(t’ , and let ¢ € R; for some 4+ € I . Let h e L(A;,X)
with @ =g , deee S €R; . Then mfe S; and -
(hf)Pp=qgfd € Sy . Therefore £9@ is a morphism of
the category R ({A;,4+el}) .

II.9. Corollary (mon M ). The following categories are
not factorizations of any algebraic category:
the category of complete boolean algebras (PB) ,
the category of compact Hausdorff topological spaces ( Cmn,fz),
the category dual to that of abelian groups ( AL*) .

Proof: In [5] it is proved that Set*  can be fully
embedded into B, Ab*({X;,< eI}) eand
W({Yé,jeJi) for suitable {X;,< € I} and
iY,,3e€J31 .
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The following two theorems will be needed in the follo-
wing. The proof of the first one is a modification of the
proof of the theorem from [5] quoted above. The proof of the

second one is analogous to that of II.8,

11,10, Theorem (mon M ). Let & be a category, S €
S ¥°-{4,2% be a proper clasa. Let for every X € S  be
J: Iy — R an embedding with (¢, (X,4))J, =
= 'R(JCJXJJX) , and let 4J, = 1J,, for every X,X'e S.
Then ® 4ia not algebraic.

II.11. Notation. Let 0L be a category, ¥° & &’ .
For every X € ¢°-{4,2} denote by Ofy  the following
" subcategory of L :

oy = <1,2,X% ,

Ay (2,4) = w(2,1) , ay,2) =0
Uy X, 1) = XX, Ay, X)=0
Uy €(2,X) = A (2,X), Ay (X,2)=0

Uy (4,4) = £4,3, @, (2,2)= £4,3 , &, (X,X) = {4y}

II.12, Theorem (mon M ), Let ( be a category, s
S U’ . Por every X e ¥°-{4,21 given a functor $x: Uy —
— Y with Xdy =X,28y=2 and 1%, =4 , such that
all §y are factorizations, then (I  is not algebraic.

. III

IITI.1., Definition. Denote by Rel the category of
sets and relations, i.e, Ref’ = Set®- {0} , and Rel (X,Y) =
={R,R e X =YY% for every X, Y € Ret® . The compo-
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sition is defined for ReRel (X,Y) and Te Rel (Y,2)
by RT=4{x,2>eXx2,(IgeY)x,p>eR &<q,2>6 T)} .

Notatiop. Let RS X=X, xeX,4€Y , Put xR =
={y €Y, <x,476R}, Ry =ixeX,<x,4>€R?}

III.2. Lemma. If Rel has a small left adequate subca-

tegory, then it has a one-object left adequate subcategory.
Proof:s Let  be a small left adequate of Rel . We
can suppose that X is a full subcategory of Ref , and that
there is some o« € Cm with « € #° and I1X| £ < for
every X € (L° . It is easily seen that (L is also a right
adequate of Ref . By I1.15 it suffices to show that the full
subcategory of Refl with one object <« is a left adequate of
L .Let X,Ye L° , and @ :Rel(~,X)—> Rel(-,Y) be a
. tranéformation of the covariant hom-functors on it. Putting
IXl=p £ ,we get X =4xy,re 33 . Let JeRel(ex,X)
and 5ekdfx,eo) are defined by J = {7, x>, vref},
J= <y, ¥?, 7€ 3% . Obviously 31 = 1y « Put R=(J)z
and X = JR, * 1is induced by X , for (T)e=(TTN)c =
=TF()e=TIR=TK for every T e Rel (e, X)

III.3. Theorem. Rel has no amall left adequate sub-
category.

Proof. By III.2 it suffices to prove that Rel has
no one-object left adequate subcategory R , 8ay, the object
of which is e, «« € (m . Consider an arbitrary set X with
o< < |X1 . We have T-f%irlxv’l‘ for every T ¢
€Rel(sc,X).To define 2 :Rel(ex,X) —> Rel (x,X) put
(T)e= Uigyix7T where yT = T 1figTi<IXl, FT=X
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if (¢TIl =1X| . Verity that = 1is a transformation of func-
tors on R , For arbitrary R € Ref (x, o) and T e
€Rel («,X) we have (RT) e = fri= #RT , and

(R)T'c-R(p%iﬂux(s'l‘):vg‘({g-}xﬁgk(3'1‘). It suffices to verify

= &
that U BT = U BT . 7Rl & « , hence it

'\pé.a{nfs'rulxt then there is some B e R  with IpTI=IXI,

i, BT=X . If spgﬂfsrl<\x| then IBTI < IX| for
every e R . Thus T is a transformation. If © were
induced by some S e Rel (X, X )  then we would have 45 =
=493} for every g €Y , for {<0,4)}z=1{<0,47} =
=-{<0,4>38=40% = @S . Hence ({03xY)S = {03 xY for e-
very Y s X . But by definition of © , we have

({03 Y)e=405=xX forany ¥ $ X with 1Y| = |X1| ., Thus
¥ cannot be induced by S, and R fails to be a left
adequate of Rel .

III.4. Lemma. Let F:Set*—> Set be a faithful func-
tor, « € Cm , & = Ko, @& : XP"—> 1P” be a non-trivial
o« =-additive measure. Let N = {%yF:XF—>1F,x e X} .Then
the o -additive M -measure @ induced by @« (see II.3)
is non-trivial.

Proof: See [5].

III.5. Theorem (mom M ). Rel 1is not algebraic.

Proofs Denote by J: Set*—> Ret the full embedding
defined by XJ=X, fJ= {<xf,x> ,xeX} for every
£ & Set* (.Y, X). lat P':Ret—> G be a full embedding,
o: 9—»5«@ the natural forgetful functor, put F=F’0 .
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Let oo = max (s,,I4F[, I2F1|) and @ :XP"—> 1P~ be
a non-trivial o -additive measure, Putting M = {%, JF :
:XFP—> 1F,x € X} , denote by @ the « -additive M =~
measure induced by « . By III.4 « is non-trivial, too.
The additivity of @ , in virtue of the fact that P’ isa
full embedding, guarantees the existence of some Te Rel(X,4)
with @ =TF . We have T % 0 . Let us suppose the con-
trary: Considering g, e Set*(2,X) , we obtain 3,J)FZ =
= yx JF OF = OF , Since I2F| ¢ « there exists
feX with gy JF@ = gy IFR¢JIF = i, JF . F is faith-
ful, hence 4,JF % OF . Thus T+ 0  holds. So we can
write T =Ax4, where 0 # A € X . To get a contradic-
tion with the non-iriviality of @ , it suffices to show that
IAl =4, di.e. @ = (dx,3x1)F=%, JP for some x, & X .
Suppose that there are x, 4 & A with X 4% 4 . We have
AxJ(Ax1)=2xA=9,3(A=1). As F is faithful, there is some
% e 2F with (&)(2x4)F % &1, JF . Denote by £ the
mapping from {x,q 3 to XF defined by xf=(#)y, JF ,
yf=(4)1, IF . Now, the additivity of @& guarantees
the existence of some § &€ X with fg=fRhgJF . x + 4
implies X # § or 4 % § . Let e«ge X % § . Then
()yy JF@ = ()74 JF kg W= ()1, P (&)(2x1)F =

= (D) JF(AxNF = (#)qxJF@ .
Therefore & #+ (Ax4)F forany A with IAl=>1 .

Remark. By I.14 the preceding theorem implies that under

mon M Rel has no small left adequate subcategory. Theo-
rem III,3 states more: Rel has no small left adequate
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subcategory independently on set-theoretical assumptions.,

v
IV,1l, Notation. Denote by D the following assumption:

There exists a proper class (C & Cm such that for every
o« € C there is R, € «?  such that the full subcatego-
ry of G- consisting of objects <, R ? for every
o € C 1is discrete (i.e. besides of identities, it has
no other morphisms), The negation of this assumption will be
denoted by mon D .

Remark, It is easy to see that D is equivalent to the
statement that no big discrete category is algebraic., It is

not known, whether ) is independent on M or not,

IV,2, Theorem (mon M ). There exists a non-algebraic
category which can be obtained as a factorization of an al-
gebraic one.

Proof: We shall construct two examples of algebraic ca-
tegories which can be factorized on a non-algebraic catego-
ry; one assuming mon- D , the other assuming D .

(1) Denote by L the subcategory of Set , the objects
of which are all cardinals and the morphisms are all one-to-
one mappings between them. This category is algebreaic; e.g.
the mapping o —> (e, {7, "),y +d", 9, e « ¥ >
defines a full embedding of ¥l into G . Denote by
Card  the thin category such that Card® = Cn° and
«—> R iff « £ forevery <,f3e€Cn .Let & :

1 —» Caxd be the unique functor with «P = = for

every « € Cm . & 1is a factorization. Moreover ¢ is
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a retraction, for we can define a functor J:Caxrd —> %L
by owJ = ,(c+B)T=3w,, ,where F 5 is the inclusion
of ¢« to 3 . It is known that under mon D C(Card is non-
algebraic., (It is easily seen that if there were a full em-
bedding F:Card —> G then there would exist a proper
class C = (Cm such that ;U BF(f—>x)F F«xF for eve-

ry « € C . Then we can choose some X € “P‘ngx BF(3>x)T

for every < € C . Consider the full subcategory of
R(£2,43) consisting of objects (o ,{Ry, {x ¥3 7> , whe-
re <« € C and <ex,R > = «F . Obviously it is a big

and discrete category, which contradicts to mom D )

(2) Let xe€ Cn , put < = o« = {0t and for A c o put
A=Ax{0} , Given « € Cm, 8 € o , then denote by

fat o« — 2 the mapping such that o f; = 1 iff 3 =
=3, ¥ € o . Further denote by @ < —> o the mapping
defined by ¥gp = v if y e, ¥ Z 3, Fga =10 if

2

Yex,y< /5 . Assuming D , denote by Rz e = for

every < € C the coples of R, (see IV.1) on = under
the bijecti'on g —> <y ,0) .Let ® be the full sub-
category of X({41,4,2,23) conaisting of the following
objects:

<2,440%,103,2%4<0,0%,¢0,4,<1,1>33> ,

(x,{103, 0,2, {Ky,0),¢<d, 7, F€ x3¥ Y for every
xel, «x>2,
<<,10,0,R2,0%> for every « € C , o« > 2 .

It is easy to verify that we have R(2,x)=0,
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R(2,2)=0,R(«’, &)=0, R (e, 5)=0, B(% , &)= 0,R(Z,2)=
=8et(X,2), R (&, )= Set (X, ), R (x,2)= {fy ,fex, 3 >07

for every «,x’e€ C with o % «’, &, e’ > 2 . Apparent-
ly the following is true for every 3, v € o, ¥ > 0 :
nfy =%o 1f P<¥,9pfy=%A¢yp If ¥ £ [ . Define

a congruence ~ on H : Let ¢, ¥ € 8™ , then o~ ¥
as soon as one of the following conditions is fulfilled:

() 9 =y,
(b) There is some o« € C,oc > 2 such that ¢, ye R(X,2) ,
P=2A,¥=1p where A,B S & with 1Al =4 = |LBI ,

(c) There i8 o« € C,cc > 2 such that g,y e R(X,2), 9 =1,,
¥ ={p , where A, B C & with [Al>1 or A =0, and
[Bl>4 or B=0 .

This defines correctly a congruence on ® , a8 we have
S%(2',X)=O for every X e R°, X % 2 and R(X,x)=0
for every X € R°,X 4 & . Denote by 4y  the class in
® ./~ containing the characteristic functions of all one-
point subsets of & , and by 45 the class in R A~
containing %o + o —> 2 . As other claasses in ® ./~ con-
gist of one point only, we shall denote them by the same
symbols as their representatives., To show that R ./~ is
not algebraic, comstruct functors J : S —> R/~ (x 6(C, x>

>2,0’=cc- {0 fulfilling the assumptions of II,10. Put

- = ) — e —.ﬂ. I3 _-ac
10,=2,20,=&, I =x, 4, =4,, 4, = 1],

Upde=%nr Ry I = £, for every 3 € <’ . Obviously all
J« are embeddings, and

- 258 -



R/~ (,2)= R(e,2)=48,,Becx,B>03=1R, T, e},

Therefore R .“~  1is not algebraic, though it is a fac-
torization of an algebraic category R .

IV.3. Proposition (mon M ). There exists an algebraic
category which can be obtained as a retract of an algebraic
one.

Proof. As a consequence of III.5 the category Ref
(see III.1) fails to be algebraic., We shall show that
Sh (Rel) (see I.2) is algebraic and likewise it is a re-
tract of Ref . To define functors J: SHh(Rel) —s Rel ,
$:Rel —> S (Rel) put XTJ=X,(X—Y)I=X=xY and
Xp=X,Rp=X—Y for every R € Rel (X,Y) . Obvious-
ly J and @ are functors and J is a coretraction of
® . Sh (Rel) 1is algebraic since it is a thin category
whose all objects are mutually isomorphic. So it is isomorph-
ic to a full subcategory of Q, congisting of a proper class
of copies of the same rigid graph. ,

Remark. The preceding example cen also serve as an ex-
ample of a category without a small left adequate subcate-
gory, the retract of which has a small left adequate. By
III.3 Rel has no small left adequate subcategory, while
apparently an arbitrary object of S%h (Ref) generates its
left adequate subcategory.

IV.4. Proposition. A retract of a category with a small
left adequate subcategory need not have a small left adegua=-
te.

Proof. Let W and Caxd  be categories considered
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in Iv,2 (1). Obviously Caxdl has no small left adequate
subcategorye Cancds is simultaneously a factorization and
a retract of MW . To show that %L has a small left ade-
quate, consider the following subcategory &£ & NL : £° =
=44,23, £1,2)=44,,4,%, £2,N0=0, LA, N={1,},

- £(2,2) =44;3 . Toverify that £ is a left adequate sub-
category, consider a transformation 2: WL (-,)/&—> WL (-,3)/L
for some oc,/3 € @° ., Define £: o« —> B by £ =9 iff
(Ry)t'= Sy for every y € x , I e 3 . It is easily seen
that £ 1is one-to-one, and induces = . Obviously two dis-
tinct £,95 00 —> 3 induce distinet transformations from
W(-,x)/L to W(-,B)/L .

IV.5. Remark (monM). Under D the category & is a
minimal non-algebraic category, i.es. every proper full subca-
tegory of it is aléebraie or iscmorphic to & .

Proofs It suffices to show that the full subcategories
Y4,2» (generated by the class $°2 £4,2% ), &% (genera-
ted by ¥°-{23),and ¢, ) (generated by ¥°- {1} ) are
algebraic, '

-¥4,2 18 a big discrete category. To define Jy: &/ — G
put 20, =41,0),cdy=<oc,R? for x e C,oc >1 (see
IV.I)’ (the functor J; 18 not defined on the whole catego-
ry 3’1 ’ bnt‘ on its full subcategory which is isomorphic to

- ¥4 ). Obviously J; 1is a full embedding. To define J,: H)—»
—R({41,1,2,23) put 13, = (2,{(0},{03,22,{(0,0),<0,4 2,<4,1233),
& Jg = <o, {403,0,Rs, 1<, >, <, 7, Fe x 33> .

It is easy to verify that J, 4a a full embedding.
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(We identify again &, with its full subcategory which is
isomorphic to it.)

IV.6. Remark. In the introduction we formulated the pro.-

blem, whether algebraicity is invariant under factorigcation.
It is solved negatively by IV.2, So far, a similar problem
remaing open: Is algebraicity invariant under factorization
which is simultaneously a retraction? Under mon D it is
also negatively solved by IV.2 (1), but our example given in
IV,2 (2) under D deals only with a factorization, and not
a retraction,

Let us recall another problem which seems to be of inte-
rest with regard to the examples constructed in this paper:
Under which assumption can Theorem I.,14 be reversed? In par-
ticular: Does there exist a complete and cocomplete algebraic
category which is not thin, and has no small left adequate
subcategory?
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