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A NOTE ON CARDINAL INVARIANTS OP SQUARE 

Petr SIMON, Praha 

Abstract: 

This paper contains some results concerning cardinal 
invariants which appear on P x P , mainly c ( P x P ) and 
% ( A ) . Two cases, when the equality d f P ) * c ( P x P) 
holds, are studied and a partition of regular T/j space in­
to an open dispersed subspace and a closed subspace with 
prescribed sr -weight is given. 
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The notation of E. Cech, Topological Spaces [1], is 

used. Cardinal functions are denoted as in Juhdsz* book [3]« 

For completeness, the definitions are given here: 

Souslin number: cCP) = wufv { coucoL % I % is 

a disjoint open system in P 5 • 

density: d (P) = mvn, i ccjtdL D I D is a 

dense subset of P ] • 

Zt -weight: tf (p) = tnuAv ica/tcL (& I 3 is a tC -base 

for P J j 
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(A system (& of non-void open subsets of a space P is 

called X -base for P , if for each open U 4- 0 in P 

there is some B € J& with £ c IL .) 

neighbourhood character: ^ C A I P) = mwn, i OODUL % i % 

is a neighbourhood base of a subset A in P 1 . 

% (A I P ) may be abbreviated to £ (A ) , if no 

confusions are possible* 

for the other invariants, see f3]. 

All spaces are assumed to be T^ . 

Theorem 1. Let P be a linearly ordered topological 

space, m, > 2 a natural number. Then c Cp-"v) = d C P ) . 

Particularly , c ( P x P ) - . d ( P ) . 

Proof # Because of the obvious inequality c CP'71) -£ 

-= otCP^)-* ctCP) we need only to find some dense subset D 

of P with OOUKXL D -6 c C P ^ / . 

Let W be the system consisting of all sets of the 

form I,f x I 2 x ... x 1^ , where 1^ , I 2 , •-., I/n* **« 

disjoint open intervals in P , and of all singletons 

<x,x, ..., x > , where x € P is an isolated point. Using 

Zorn's lemma, one can find a maximal disjoint subsystem 

V c W . Clearly OOJUL V 4 c (?*-) . 

tor x e P , <x,x,...,x> 6 U V : Maximali-

ty of If implies that -C < x, x,..., x >* e V for every 

isolated x $ suppose x non-isolated, <x,x,*.,,x>^ 

£ ^J V • Than for some open interval 1 a/, j2r C con­

taining x the cube 1 a,, Jtr [ ̂  is disjoint with 

L ^ V . Since x is non-isolated, there must exist a 
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finite sequence /ŷ  -< ^2 •< ••• < ty/n-A °^ points of 

J cu , >£r- T such that all intervals 

-1 a,, ̂  E , J/j^ , / ^ r ,..., Ĵ ti.j?, /#».,, C , l*frn,.4 * & L 

are non-void, but l a , ^ [ x ] ^ , ^ Cx ... x J ̂ n.^,^t e W 

and J a., /^ C x J ̂ , ^ 2 Tx ... x J ̂ ^ , ir £ n U 2T = 0 , 

which contradicts to the maximality of IT . 

Next, put J)=r-{xl<x,x,... , x > c V} u i <#, I 

there exists L, x I2 x ... x I / t ve'ZI' such that ^ is an 

end-point of some I,^ , 1 i4 «. is frv 5 . Since CXXJU±$ s 

= CQ^O£ *y ̂  c CP"1') , it remains to prove that D is den­

se in P . Pick up a yft € P and let J AJL , nr C be an 

arbitrary open neighbourhood of ^ . 

We know that 1 AA, , nr l™ n U V 4* 0 , if there 

exists an <x,x,...,x> € V such that <x, x, ..., -* > 6 

€ J -a,, AT L^ , then J ^ / i r - C n D - f c ^ , so let us 

consider the case ] AJL, AT l"1, n 1A x I2 x ... x l ^ 4s 0 

for some 1̂  x 1̂, x ... x 1^ e T with disjoint 1̂  , I2 , ... 

..., 1^ . Obviously J-^,/zrCnI^4-j0f for all 

3., 4 £ g. £ m .We claim that at least one end-point of 

some I-J. belongs to J JU, , nr C , If notf then 1̂ . D 

3 J>«̂ , /ir C for every 3. , 4 £ ^ £ rrv , and since 

J JUL, AT I =£ 0 , the intervals 1^, 1%1 ..., 1^ . cannot 

be disjoint - a contradiction* Thus 1 JUL, nr i always 

meets J) and D is dense in P . 

Remark* Kurepa's result [43 that for each linearly or­

dered topological space 5 the inequality c C 5 ) £ 

.6c(SxS)s« cCS) 4" holds* is a consequence of the 
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previous theorem. One needs only to realize that the densi­

ty of a linearly ordered topological space cannot exceed 

c C P ) * . (The proof of this factt quite adaptable for 

an arbitrary c ( ? ) , is given in Rudin's paper E53 for 

a special case c C P ) -* $r0 .) 

The "corner points" of 1̂  x 1 2 in the proof of 

Theorem 1 (m, s 2 ) have one nice property: they cluster 

to the diagonal of P x P , as a consequence of linear 

orderabillty of the spaee P . But, without any additional 

assumptions, the points x^y chosen arbitrarily from 

U x V j XL jY disjoint members of some open base for 

P , need not behave so nicely and one has to seek them 

in W A IL x V , where ¥ is a neighbourhood 

of the diagonal. This idea leads to the inequality cLCP) ̂  

-- ^ ( A ) « c ( P x P ) ? which will appear also as a 

corollary of the following theorem. 

Theorem 2. For a regular space P , sr (P ) *£ 

.£ cCP) . x (A) '. 

Proofs Let V be a neighbourhood base for A in 

P x P , OOJKL V *k i ( A ) . For V e If let 

%Y be a system of all non-void open subsets U c P 

such that U x U c V* - I*et Tv c % v be a maximal 

disjoint subsystem of 2fy - its existence follows by 

Zorn's lemma. Since ca/cct Ty -£ c C P ) ., for T'-= 

~U<%\VeVl we have avtd, T £ c (f ) . <% C A ) . 

The desired inequality will follow, if we show that T is 
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a ST -base. 

Let 11 he an arbitrary non-void open subset of P j 

P being regular, we can find another non-void open subset 

U,j auch that U^ c U^ c XL . The set If » 

« C U x l D u C C P - U ^ J x C P - U ^ ) ) i s an open neighbourhood 

of the diagonal! l e t V be a member of V} V c V , 

and consider Tv 

LJ tfy i s dense in P because of maximality of 

lTv t Thus for some T e Tv we have T n VL^ * 0 , 

i t contains, say, a point <%> . By the definition of %y , 

T x T c V . Moreover, T c UL , which implies that 

f i« a St -base* To th i s end, suppose contrary: there ex­

i s t s a point .x e T - U « Then < x , ^ ) | l l x 11 , 

because « ^ . U . , < x l / ^ > # C P - T l ^ ) y C P - T l > | ) , becau­

se 4^ € U^ , which i s a contradiction to < x , ^ > € 

e T x T c Y c W « C U x U ) u CCP-U^ )x C P - U ^ ) ) . 

Remark, Juhdsz [3] has proved for completely regular 

spaces P that 4 irCP )£cCP ) .>a ,CP) . The formula given 

In Theorem 2 i s analogous and I do net know whether i t can 

be strengthened to 4 t r C P ) - £ c C P ) . f - C A ) . 

Corollary 1, For a regular spaoe P 

a ) c L C P ) ^ ^ r C P ) ^ c C P x P ) . ^ C A ) , 

b) ^ C A ) < ^ C P ) s ^ c C P ) - < l C P ) = 5 ^ C P ) * c C P x P ) . 

A natural question arises* What are the spaces with 

neighbourhood character of diagonal less than St -weight 

like? Aoeording to Corollary 1# $t C /l) -< flrCP) holds 
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if and only if \ ( A) «£ d (? ) . One consequence of 

this sharp inequality follows from Theorem 3* 

Theorem } • Let P be a regular space without isola­

ted points. Then zc (?) £ % (A) . 

Proof: According to Corollary 1$ it suffices to prove 

the following: Let cc be a cardinal number* Then 

% C A ) £ oc implies <L (?) £ cc . The proof will be 

given in two steps* 

I* At first we shall show that under the assumptions of 

this theorem, eaoh subset of cardinality at least oc has a 

cluster point* 

Suppose contrary* There exists an Ji c l , oafoL M 2 

25 oC such that every x e P has a neighbourhood 0X 

with ocutcL ( 0X n it ) -& \ . Without loss of generality 

we may assume that CJOJUL .M =* % ( A) < 

Let <W, be a neighbourhood base of A , co/cc6 % -.» 

= ^ (A ) . The cardinality of 1L equals to that of M , 

hence we may write % s { U x I ,x e M 5 - Since P 

has no isolated point, no x s M is Isolated and thus 

for eaoh II x ft there exists an ^ -4* X suoh 

that < X, /y.x > c lix . 

Clearly c M < x , ^ ) l x eily A A = j3f -if 

not, one obtains a contradiction to discreteness of Ji . 

Thus V « P x P - c e < < x , ^ > l x e M J is an 

open subset of F x P containing the diagonal; since 

Ẑt is a neighbourhood base of A , there is some. 

^ e t t . l l . c V , But < x , ^ > € li x,<x f^>#) r 
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- a contradiction. 

II* How we shall construct a dense set in P of cardi­

nality ^ cc , 

Againv let °IL be a neighbourhood base of A , 

OOKCL % .£ cc . For eaoh U 6 % there exists a subset 

A u c P such that 

(i) x 4* ̂ , x, /̂  e A u ===> <x,«jf,> $ U , 

(ii) A' =£ A a »-> 3x,<^ c A', x 4- <^, <x,^> e a . 

(In the system A of a l l A c P satisfying ( i)» define 

a partial order by inclusion. Then apply Zora's lemma and de­

note any maximal element by A a . I t wi l l sat is fy ( i i ) f 

too . ) 

A a i s discrete ( in P ) for every U - Suppose 

contrary: Let an x 6 P be a cluster point of A-̂  • 

For every open neighbourhood 0 of x we have 

COKJCL ( 0 n Ay^) 2- #0 *y since U i s a neighbourhood 

of A 9 there i s a neighbourhood 0X of x with 

^x x ^x c ^ • ^et u s P--c^ ttp two dist inct points ^ , % 

belonging to A^ n 0X , Then < /£,,«, > e 0X x 0X c 11 , 

which i s a contradiction to ( i ) . following I t we obtain 

QXXKJL A^ < cc 

Let us denote A**U{AUL\Ue<f2L} . Obviously 

CXIKCL A -£ cc . fhe set A i s dense in P : For any x e 

e P , x ^ A , l e t us choose an open neighbourhood 0 

of x and ( P regular) l e t tts find some open V with 

X € r c V c 0 ., The set f - ( O x 0 ) u CCP - 7 ) x 

x C P - V)) i s a neighbourhood of A in ? x p , hence 
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there i s some U e *& contained in W . I t remains 

to show that 0 intersects A& • Setting A* » Ay. u 

u { .x 3 , there must be some ty in A ^ with < x , ^ > 6 

c Tl by ( i i ) . Since IL c COx 0) u C C P - V ) x C P ~ ? ) ) , 

the point < * , /jf. > belongs to 0 x 0 and the point 

tty belongs to 0 A A U . This completes the proof • 

Corollary 2 . Let P be regular, %(&)«.&(?) „ Then 

P contains at least one isolated point. 

Lemma. Let P be a topological space, A a closed 

subset of P . Then %( AA\ A x A) £ ^ C A p ! P x P ) . 

The proof i s easy and may be l e f t to the reader. 

Corollary 3 . Let P be regular. Then P =r A u B , 

where A n B *• 0 , A i s closed in P , at (A) -£ 

^ S t , C A p I P x P ) andB i s dispersed. If 

X C A p l P x P ) < s r C P ) , then avooL B 2. » C P ) . 

£roo£: I f arCP) ^ %,(&? I P x P ) ; i t suff ices 

to write A - 2 , 3 - 0 . I f arCP) > ^ C A P ) P x P ) , 

there are isolated points in P by Corollary 2. The reader 

may verify that the cardinality of the set of isolated points 

i s greater or equal to ar ( P ) . 

Let us define for ordinal numbers f , CJOKOL § <, 

< ca/ui P , tM sets Aj , Bj , C | : 

f . 0 j C o » B a « f . x c P l x isolated in P } 

A . - P - B 0 } 
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f a fl -H ; C f » < x I x cA/3, x isolated in A^ 1 

B j - LMB^I ot < f } u Cf 

A f . P • B f ; 

§ limit ordinal! C| » 0, Bj * U f B*, I cc « f J , 

A f - P - B f . 

Obviously Ac i» closed for every f , thus, by 

the Lemma, % C 4 A IAj x A f ) ^ ^ C 4 p / P x P ) • 

Let ^ be the first ordinal such that 

7^CAA I A^ x A^) 2? ar (k% ) . It remains to urite 

A m A^ , B » B^ . 
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