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A NOTE ON CARDINAL INVARIANTS OF SQUARE

Petr SIMON, Praha

Abstract:

This paper contains some results concerning cardinsl
invariants which appear on Px P , mainly ¢ (P xP) and
(A). Two casea, when the equality A (P) = ¢ (Px P)
holds, are studied and a partition of regular T4 space in-
to an open dispersed subspace and a closed subspace with

prescribed o -weight is given.
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The notation of E. Gech, Topological Spaces [1], is
used, Cardinal functions are denoted as in Juhdsz = book [3].

For completeness, the definitions are given here:

Souslin number: c (P) = nup { carol U | U is
a disjoint open system in P 3
density: d(P) =mim{cardd DI D is &

dense subset of P 3} .

’
U -weight: x (P)

for P13}

min fcad Bl B is a 7 -base
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(A system 73 of non-void open subsets of a space P is
called 2 -base for P , if for each open U % J in P
there is some B e B with B c U )

neighbourhood character: o (AIP)=min {cad U U

is a neighbourhood base of a subset A in P¢.

]

xCAIP) may be abbreviated to 7 (A) , if no
confusions are possible.

Por the other invariants, see [3].

All spaces are assumed to be T,, .

Theorem 1. Let P be a linearly ordered topological
space, m = 2 a natural pumber. Then c (P™) = & (P).
Particularly, ¢ (P x P) = d (P)

Proof., Because of the obvious inegquality c (P™) =<

2 d(P™)=d (P) we need only to find some dense subset D
of P with carad D= c(P™) .

Let W be the system consisting of all sets of the
form I, x I, x...x1I, ,where I,, I,,..., 1In are
disjoint open intervals in P , and of all singletona
{X,%,..., x>, where X € P 1is an isolated point. Using
Zorn s lemma, one can find a meximal disjoint subsystem
Ve W . Clearly card ¥ = ¢ (P™) .,

Por xeP, <x,x,...,x> e UV : Maximali-
ty of U implies that {<x,x,...,x>% € ¥ for every
isolated X ; suppose X non-isolated, <X, x,..r,, x> &
€¢ U7 . Then for some open interval la, & [  con-
taining X the cube Ja, & [™  1is disjoint with
UV . Since x is non-igolated, there must exist a
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finite sequence Y, < o, < ... < Ym_4 of points of

Ja, &L such that all intervals
la, g 0, Ty, gy [eee, I%mgs Ym-a Ly Jtpm 4, XL
are non-void, imt la, gy [xdy, gy [x ... xJyy, Ll e w
end Ja,y, [xJap,, gy lx.. xIgpy R LAVUY =0

which contradicts to the maximality of 7 .

Next, put D = {x|<x,x,..., x> e V3Iuv iyl
such that % 1s an
Since card D =

there exists I, x Iy x ... x Ipe ¥

end-point of some I, , 1< m < m 3} ,

= cand ¥ £ ¢ (P™) , 1t remains to prove that D is den-

sein P. Pick upe p € P and let Ju, o [ be an

arbitrary open neighbourhood of p 7
if there

We know that Jwu, v [ n UV + 7
exists an <x,x,...,x > € U such that <x,x,..., x> €
e Ju,n» L™ |, then Ju, v [ n D % ¢ , so let us

consider the case Ju, v ["n I, x I, x... x I, # 0@
for some I, xI,x...x I, eV with disjoint I,, I,, ...
viey Iy . Obviously Ju,» [ n Iz £+ @ for all
4,144 € m . VWe claim that at least one end-point of
some I; belongs to Ju,s [ ., If not, then I; >
DJu,nvr [ forevery 4, 14 4 £ m , and since
s, L+ F , the intervals I,, I,,..., I, . canhot
be disjoint - a contradiction. Thus Ju, ar ( always
meets D and ) is dense in P

~ Remark. Kurepa ‘s result [4] that for each linearly or-
dered topological space S the inequality ¢ (S) <
Z2c(SxS)= c(S)* holds, is a consequence of the
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previous theorem. One needs only to realize that the densi-
ty of & linearly ordered topologicel spaoe' cannot exceed
c(P)* . (The proof of this fact, quite adaptable for
an arbitrary c (P) , 4is given in Rudin’s paper [5) for

a special case c(P) = %, .)

' The “corner point‘s" of I, x I, in the proof of
Theorem 1 (m = 2 ) have one nice property: they cluster
to the diagonal of P x P , as a consequence of linear
orderability of the space P . But, without any additional
agsumptions, the points Xu.y chosen arbitrarily from
W xV , W,V disjoint members of some open base for
P , need not behave so nicely and one has to seek them
in WAllxV , where W is a neighbourhood
of the diagonal, This idea leads to the inequality d (P) <
< 2 (A). e(PxP) , which will appear also as a
cofolle.ry of the following theorem.

Theorem 2. For a regular space P , o (P) =<

£ ¢(P). g (A) -

Proof: Let ¥ be a neighbourhood base for A  in
PxP, cadl ¥ = g (A) . For Ve U 1let
%V - be a system of all non-void open subsets W e?
such that W xW cV . Let J, < %, be a maximal
disjoint subéystem of ZV - its existence follows by
Zorn’s lemma. Since cand 7, = c(P) , for 7' =
=U{LT IVeT? we have caxd I < ¢ (P). x (A) .

The desired inequelity will follow, if we show that 7 1s
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a J -base,

Let L be an arbitrary non-void open subset of P
P being regular, we can find another non-void open subset
Uy osuchthat Wy c Uy c L .  The set W =
=(UxWouP- .ﬁ:,')x (P~ ﬁ,, )) 1is an open neighbourhood
of the diagonal; let V ‘ be a member of U, V c ¥ |

and consider J, .

(N is dense in P because of maximality of
J;V.Thusforsome Te?;, we have T A U, * 0 ,
it contains, say, a point 4. . By the definition of %V ,
TxTcV . Moreover, T c W , which implies that
3 1;; a Jq -base. To this end, suppose contrary: there ex-
ists apoint x € T -U , Then <x,y > ¢ U x U ,
because X tu,<x,ry,>¢(P-—.1—L,,)>,<CP--ﬁ4) , becau-
se o € U, , which is a contradiction to <x, 4> €
€T x TeVeW=(UxU v P-U)x(P-T, .

Remark., Juhdsz [3] has proved for completely regular
spaces P that w (P) £ ¢(P).« (P) . The formula given
in Theorem 2 is analogous and I do not know whether it can

be strengthened to w (P) < ¢ (P). ¢y (A4) .
Corollary 1. For a regular space P
a) d(P) 2 o(P) =2 ¢(PxP).yq(A) ,
) y(A)< 2 (P)=>c(P)=d(P)=x(P)= c(PxP).

A natural question arises: What are the spaces with
neighbourhood character of diagonal less than Jr -weight
like? Aceording to Corollary 1, g (A) < a (P) holds
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if and only 4f x (4) < 4 (P) . One consequence of
this sharp inequality follows from Theorem 3,

Theorem 3., Let P be a regular space without isola-
ted poiﬁte. Then x (P) £ g (4) .

Proof: According to Corollary 1, it suffices to prove
the following: Let o be a cardinal number. Then
qC4) £ implies d (P) £ o« . The proof will be
given in two steps.

I. At first we shall show that under the assumptions of
this theorem, each subset of cardinality at least « hes a
cluster point.

Suppose contrary. There existse an M c P, caxd M =
> « such that every x € P has a neighbourhood Oy
with card (O n M) £ 41 ., Without loss of generality
we may assume that caxd M = o4 (4) .

Let %  be a neighbourhood base of A, card U =
= %4 (A) . The cardinality of 9 equals to that of M ,
hence we may write U =4{ U, |l x e M 3 . Since P
has no isolated point, no x & M is isolated and thus
for each U x U there exists an 4, =+ X such
that < x,4, > e U, .

Clearly c£4<x,g,>lxeM¥n it =/ - it
not, one obtains a contradiction to discreteness of M .
Thus V=PxP- cl {<{x,yy>) xe M} is an
open subset of P x P containing the diagonal; since
@ is a neighbourhood base of A , there is some.
Uy e U, U. €V . Bat <x,g, Vel ,<x,m>¢7Y
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- a eontradiction.

II. Now we shall econstruet a dense set in P of ecardi-
nality < < .

Again, let 9L  be a neighbourhood base of A

2
cand U 4 o« . Por each U € U there exists a subset
Ay c?P such that

(1) x:hn&,x,/y_eAu=> (x,g> & U,

WA 2A, =3x,gel, x+q4,<xy>ell .

(In the system A of all Ac P satisfying (1), define
a partial order by inclusion. Then apply Zorn's lemma and de-
note any maximal element by A, . It will satisfy (ii),
too0.)

Ay is discrete (in P ) for every U . Suppose
sontrary: Let an X € P be a cluster point of A, -
For every open neighbourhcod 0 of X we have
cand (0 nAy) = &, 3 since U 1s a neighbourhood
of A , there is a neighbourhood Oy, of x with
Oy % Oy ¢ U . Let us pick up two distinct points 4,z
belonging to Ay A 0, ., Then <g,2>e 0, x 0, c U,
which is a contradiction to (i). Pollowing I, we obtain
cand A < =

Let us denote A = U{A, U e U} . Obviously
cancdl A = o« , The set A 4ds dense in P : Por any x €
e P, x & A , 1let us choose an open neighbourhood 0
of x and ( P regular) let us £ind some open V with
xe€VeVecO. Thest W=(0x0)u((P-V)x
= (P-Y)) s a neighﬁourhood of A in Px P , hence
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there 18 some U e U contained in W . It remains
to show that 0  intersecta A, . Setting A’= A, vu

Ui{x} , there must be some 4 in A,  with {x,y e
€U by (i1). Since U c (Ox 0)u ((P-V)= (P-V)) ,
the point <x, 4 ? belongs to 0 x 0 and the point
' ng belongs to 0 n Ay . This completes the proof.

Corollary 2. Let P  be regular, y(A) < st (P) . Then
P contains at least one isolated point.

Lemma, Let P be a topological space, A a closed

subset of P . Then g (A ,|AxA) < x4 (A,|PxP)

The proof is easy and may be left to the reader.

Corollary 3. Let P  be regular. Then P = Au B ,
where AN B =g, A is closed in P, =x(A) =
< ¢ Ap 1P x P) and B is dispersed. If
X(lp!PxP)< o (P), then caxodl B = & (P) .

. Broof: If x(P) = x(Ap I PxP) | it suffices
towite AaP, B= g . It x(P)>x(4,IPxP),
there are isolated points in P by Corollary 2. The reader
may verify that the cardinality of the set of isolated points
is greater or equal to x (P) .

Let us define for ordinal numbers § , card § <
< cand P, the sets Af’ Bg, Cg ¢

§=0:C,=B,=4xeP| x isolated in P 3}

A= P-B, ;
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§

§=(3+4:C§-={x|.x ehAs, x isolated in Ay %
Bg= UfB ol < §3 u Cg

Af:?’jg ?
limit ordinals Ci=ﬂ,Bg-U{B¢'lec<§? s
Ai- P-Bt .

Obviously Af is closed for every § , thus, by

the Lemma, %(AA"AE"AG) € X (40, IP <xP) .

Let n be the first ordinal such that

:L(AAn!A.,L x Ay) Z @ (A,) . It remains to write

A=

(11

(2]

(3]

(4]

(5]
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